
Extending the ABC-Miner Bayesian
Classification Algorithm

Khalid M. Salama and Alex A. Freitas

School of Computing, University of Kent,
Canterbury, CT2 7NF, UK

{kms39,A.A.Freitas}@kent.ac.uk

Abstract. ABC-Miner is a Bayesian classification algorithm based on
the Ant Colony Optimization (ACO) meta-heuristic. The algorithm learns
Bayesian network Augmented Näıve-Bayes (BAN) classifiers, where the
class node is the parent of all the nodes representing the input vari-
ables. However, this assumes the existence of a dependency relationship
between the class variable and all the input variables, and this rela-
tionship is a type of “causal” (rather than “effect”) relationship, which
restricts the flexibility of the algorithm to learn. In this paper, we pro-
pose ABC-Miner+, an extension to the ABC-Miner algorithm which is
able to learn more flexible Bayesian network classifier structures, where
it is not necessary to have a (direct) dependency relationship between the
class variable and each of the input variables, and the dependency be-
tween the class and the input variables varies from “causal” to “effect”
relationships. The produced model is the Markov blanket of the class
variable. Empirical evaluations on UCI benchmark datasets show that
our extended ABC-Miner+ outperforms its previous version in terms of
predictive accuracy, model size and computational time.

Keywords: Ant Colony Optimization (ACO), Data Mining, Classifi-
cation, Bayesian Network Classifiers.

1 Introduction

Ant Colony Optimization (ACO) is a meta-heuristic for solving combinatorial
optimization problems, inspired by the observation of the behavior of biological
ant colonies [6]. One of the fields in which ACO has been successfully applied is
data mining, which involves finding hidden patterns and constructing analytical
models from real-world datasets [20]. Classification is one of the widely studied
data mining tasks, where the aim is to discover, from labeled cases (instances),
a model that can be used to predict the class of unlabeled cases. While there
are several types of classification methods, such as decision tree and rule induc-
tion, artificial neural networks and support vector machines [20], our focus is on
Bayesian network (BN) classifiers.

BN classifiers model the (in)dependency-relationships between the input do-
main variables given the class variable by means of a probabilistic network [7],

which is used to predict the class of a case by computing the class with the
highest posterior probability given the case’s predictor attribute values. Since
learning the optimal BN structure from a dataset is NP-hard [4], stochastic
heuristic search algorithms - such as ACO – can be a good alternative to build
high-quality models, in terms of predictive accuracy and network size, within an
acceptable computational time. Developing ACO-based algorithms to learn BN
classifiers is the research topic addressed in this work.

We have recently introduced ABC-Miner [19], as an Ant-based Bayesian Clas-
sification algorithm that learns the structure of a Bayesian network Augmented
Näıve-Bayes (BAN), where the class node is the parent of all the input variables,
and at most k parents are allowed for each variable in the network. The ABC-
Miner algorithm showed predictive effectiveness compared to other Bayesian
classification algorithms, namely: Näıve-Bayes, TAN and GBN [19].

In this paper, we propose ABC-Miner+, which extends our ABC-Miner al-
gorithm to learn more flexible BN classifier structures, where it is not necessary
to have a (direct) dependency relationship between the class variable and each
of the input variables. In addition, ABC-Miner+ allows the dependency between
the class and the input variables to vary from “causal” to “effect” relationships,
where the class variable can be a parent or a child of an input node. The pro-
duced model is called the Markov blanket of the class variable. Empirical results
on 18 UCI datasets show that ABC-Miner+ improves the performance of ABC-
Miner by producing simpler (smaller) BN classifiers that have higher predictive
accuracy in less computational time.

Note that we use the word “causal” in a loose sense in this work, simply
to refer to a direction of the dependency relationship between two variables.
The issue of whether or not Bayesian networks learned from observational data
represent truly causal knowledge is controversial (depending on how we define
causality) [15], and is out of the scope of this paper.

The rest of the paper is structured as follows. The next section gives some
background on BN classifiers. We briefly review the previously introduced ABC-
Miner algorithm in Section 3, to make this paper more self-contained. Our pro-
posed extension, ABC-Miner+ is described in detail in Section 4. We describe
our experimental methodology and show the results in Section 5. Finally, we
conclude with some general remarks and future research in Section 6.

2 Bayesian Network Classifiers

Bayesian networks (BNs) are knowledge representation and reasoning tools that
model probabilistic dependence and independence relationships amongst vari-
ables in a specific domain [5]. Learning a BN from a dataset (in which the
attributes are referred to as variables) consists of two phases: learning the net-
work structure, and then learning the parameters of the network. Parameter
learning is relatively straightforward for any given BN structure with specified
dependencies between variables. The task is to estimate a conditional probabil-
ity table (CPT), one for each variable, by computing the relative frequencies

of the variable with respect to its parents directly from the dataset. The CPT
of variable Xi encodes the likelihood of each value of this variable given each
combination of values of the parents of variable Xi in the network.

There are two paradigms for learning the structure of a BN. The first one is
referred to as CI-based (Conditional Independence-based, or constraint-based)
algorithms [8, 5], which suggests learning the BN structure by identifying the
conditional independence relationships among the nodes, according to the con-
cept of d-separation. The second paradigm views the BN as a structure that
encodes the joint distribution of the attributes. Hence, the aim is to find the
graph that best fits a given dataset in terms of maximizing the value of a scor-
ing function, which led to the scoring-based algorithms [8, 5]. In the context of
data mining, the scoring-based approach has been (overall) more popular and
it is somewhat easier to be used than the CI-based approach, partly because
the former views the problem as a well-defined optimization task, where various
search and meta-heuristic techniques can be employed [3]. K2, MDL, KL, BDEu
and several other scoring functions can be used for this task [8].

A recent, very comprehensive review on BN-learning approaches and issues
is presented by Daly et al. in [5]. For further information about BNs, the reader
is referred to [8].

While BNs should perform inference to answer probabilistic queries about
any node(s) in the network, BN classifiers are a special kind of the probabilistic
networks, which focus on answering queries about the probability of a specific
node: the class attribute. Thus, the class node is treated as a special variable in
the network. The purpose is to compute the probability of each value c in the
class variable C given a case x (an instance of the input attributes X) using
classifier BNC, then label the case with the class having the highest probability,
as in the following formulas:

C(x) = argmax
∀ c∈C

P (C = c|x = x1, x2, ..., xn, BNC), (1)

posterior probability︷ ︸︸ ︷
P (C = c|x = x1, x2, ..., xn) ∝

proir probability︷ ︸︸ ︷
P (C = c)

n∏
v=1

likelihood︷ ︸︸ ︷
P (xv|Parents(Xv), BNC) , (2)

where C ∈ Parents(Xv)∀ Xv ∈ X.
Näıve-Bayes is the simplest kind of BN classifiers; it has a network structure

where the class node is the only parent node of all other nodes (input variables).
This structure assumes that all attributes are independent of each other given
the class. However, in many real-world application domains this assumption
is not satisfied, and more sophisticated types of BN classifiers, which consider
dependencies between the predictor attributes, can lead to higher predictive
accuracy. This led to the development of a general type of BN classifiers called
BN Augmented Näıve-Bayes (BAN).

In a BAN classifier, each node representing an input attribute not only has
the class node as a parent, but it is also allowed to have other parent nodes which
are also input attributes. Hence, the edges representing dependencies among

input attributes can be regarded as a kind of BN, which justifies the name
”BN-augmented” Näıve-Bayes. Usually, however, each node representing a input
attribute is allowed to have a maximum number (k) of parents, in order to reduce
computational time and reduce the chances of over-fitting the BN to the data,
and in this case the algorithm is often referred to as a k-dependency BAN. Note
that when the maximum number of parents k is set to 1, the BAN is usually
referred to as a TAN (Tree-Augmented Näıve-Bayes), because in that type of
classifier each node representing an input attribute can have at most one parent
node (in addition to the class node), so that the dependencies among input
attributes are represented as a tree.

Figure 1 illustrates the various kinds of the BN classifiers. Friedman et al.
provided an excellent study of these algorithms in [7]. A comprehensive compar-
ison of these various Bayesian classifiers by Cheng and Greiner is found in [3].
Surveys on improving Näıve-Bayes for classification are found in [10, 11].

Fig. 1. Different types of BN classifiers: (a) Näıve-Bayes, (b) TAN, and (c) BAN.

3 An Overview of the ABC-Miner Algorithm

ACO algorithms have been successful in solving several combinatorial optimiza-
tion problems, including classification rule discovery [12–14, 18, 17] and general
purpose BN construction [2, 16, 21]. However, ABC-Miner, introduced by the
authors in [19], is the first ACO algorithm that learns the structure of BAN
classifiers [19].

In ABC-Miner, the decision components in the construction graph (which
define the search space that an ant uses to construct a candidate solution) are
all the edges of the form X → Y where X ̸= Y and X,Y belong to the set
of input attributes. These edges represent the attribute dependencies in a con-
structed BN classifier – i.e., an edge X → Y means that the value of Y depends
(probabilistically) on the value of X.

In order to build the structure of a BN classifier, the maximum number of
parents for a node is typically specified by the user. However, the selection of

the optimal number of parents (dependencies) that a variable in the network
can have (in addition to having the class as a parent node) is automatically
carried out in ABC-Miner [19]. To create a candidate solution, an ant starts
with the network structure of Näıve-Bayes, where every variable has only the
class variable as its parent. Then the ant expands that structure into a BAN
structure by adding edges to the network. The selection of the edges is performed
according to a probabilistic state transition formula that involves the pheromone
amount and the heuristic function value – measured by the conditional mutual
information [19] – of the edges. An edge is valid to be added to the BN classifier
being constructed if its inclusion does not create a directed cycle and does not
exceed the limit of k parents (chosen by the current ant).

After the ant adds a valid edge to the current candidate solution (BN clas-
sifier), all the invalid edges are eliminated from the construction graph. The ant
keeps adding edges to the current solution until no valid edges are available.
When the structure is finished, the CPT of each variable is computed, produc-
ing a complete BN classifier. Then the quality of the solution is evaluated and
all the edges become available for constructing further candidate solutions. The
ABC-Miner algorithm evaluates the quality of the candidate constructed BN
classifier using a measure of predictive accuracy [19], since the goal is to build a
BN only for predicting the value of a specific class attribute, unlike conventional
BN learning algorithms whose scoring function does not distinguish between the
input (predictor) and the class attributes.

4 The Proposed ABC-Miner+ Extension

The motivation behind our proposed extension is the following. As mentioned
in the previous section, the structure of the BAN models constructed by ABC-
Miner has two limitations. First, it assumes that the class variable has depen-
dency relationships with all the input variables (the case’s attributes), which
means that the state of each input variable affects the posterior probability of
the class values, and consequently the class prediction. This assumption is not
necessarily valid in all applications domains. In some domains, some attributes
are irrelevant, or at least not directly related, to the prediction of the target
class. Including these irrelevant attributes in the computation of the posterior
probability of the class values, according to Equation 2, can be disadvantageous,
and may lead to incorrect predictions.

Second, in the BAN classifier constructed by ABC-Miner, the relationship
between the class and all the input variables is always a type of “causal” rela-
tionship, that is, the class variable can only be a parent of an input variable.
Such a property limits the flexibility of the algorithm to learn. Nonetheless,
in real-world domains, some input variables are “causes” (parents) of the class
variable, whereas others are “effects” (children) of the same class variable. For
example, in a cancer diagnosis domain, the state of the smoker variable can be
considered a cause of the state of the Cancer class variable, while the state of
the X-Ray variable can be considered an effect of the class variable.

Accordingly, we propose ABC-Miner+, which extends the ABC-Miner algo-
rithm to learn more flexible BN classifier structures, where it is not necessary
to have a (direct) dependency relationship between the class variable and each
of the input variables. This means that an input variable may not have a direct
connection (edge) to the class node in the network, or an input variable may
not even be presented in the network. In this case, our proposed ABC-Miner+
performs an embedded feature selection during the construction of the BN clas-
sifier. In addition, ABC-Miner+ allows the type of dependency (edge) between
the class and the input variables to vary from “causal” to “effect” relationships,
where the class variable can be a parent or a child of an input node.

The advantage of allowing this kind of edges in the BN model is the possi-
bility of capturing new conditional (in)dependency-relationships. For example,
if X and Y are input variables that are unconditionally independent of the class
variable C, then X and Y should be parents to C. This kind of (in)dependency-
relationship cannot be modeled by a BAN structure. Such a flexible BN classifier
structure should better represent the dependency-relationships between the in-
put variables, with respect to the class variable, and lead to higher classification
accuracy. The produced model is the Markov blanket of the class variable, which
consists of the class node’s parents, the class node’s children, and the parents of
class node’s children. Algorithm 1 shows the outline of ABC-Miner+.

Algorithm 1 Pseudo-code of ABC-Miner+.

Begin
BNCfinal = ϕ;STRbsf = ϕ;
sets = trainingSet.Split(); /* split training set into learning and validation sets */
learningSet = sets[0]; validationSet = sets[1];
Initialize(); t = 1;
repeat

STRtbest = ϕ; /* an empty network structure */
for i = 1 → colony size do

STRi = FindRelationshipTypes(anti); /* create a candidate solution */
LearnParameters(STRi, learningSet);
if Quality(STRi, validationSet) > Quality(STRtbest, validationSet)
then

STRtbest = STRi;
end if

end for
UpdatePheromone(STRtbest);
if Quality(STRtbest, validationSet) > Quality(STRbsf , validationSet) then

STRbsf = STRtbest;
end if t = t+ 1;

until t = max iterations or Convergence();
STRfinal = PerformLocalSearch(STRbsf);
BNCfinal = ExecuteABCMiner(STRfinal); /* extend the final structure */
return BNCfinal;
End

ABC-Miner+ executes in two sequential phases. First, it finds the dependency
relationship type between the class variable and each of the input variables. Sec-
ond, it finds the dependency relationships among the input variables. Each step
is considered a different ACO procedure and has a different construction graph.
In the first phase, the product is a BN structure STR that defines the edges
only between the input variables and the class variable, if any exists, and does
not contain edges between the input variables. The decision components in the
construction graph of the first phase are a set of relationship types between pairs
of variables (attributes). More precisely, there are three decision components for
each variable, representing the various relationship types that the variable can
have with the class node: 1) “cause”, where the class is a parent of the variable,
2) “effect”, where the class is a child of the variable, and 3) “none”, where there
is no relationship between the class and the variable in the network, so that the
algorithm can perform variable (feature) selection.

The idea is to find the best edges between the class and the input variables.
Each anti constructs a candidate solution (BN structure), via the FindRelation-
shipTypes() method, as follows. For each input variable, anti probabilistically
selects a relationship type, according to the pheromone amounts currently as-
sociated to the decision components in the construction graph, and adds its
corresponding directed edge to the current candidate BN structure STRi. Note
that no edge is added between a variable and the class node in the case of se-
lecting the “none” relationship type. The method returns a complete candidate
solution (i.e. a BN structure where all the relationships between the class and
the input variables are defined) before the BN parameters are learnt, and then
the quality of the solution is evaluated. The algorithm learns the BN parameters
using the learning set (containing 70% of the training cases), while the quality
is evaluated on a validation set (containing the remaining 30% of the training
cases), in order to try avoiding over-fitting to the training set. The quality of a
candidate solution is evaluated as a BN classifier, using classification accuracy
(Equation 3), before the iteration-best STRtbest is used to perform pheromone
update. The best-so-far STRbsf structure undergoes local search, and the opti-
mized STRfinal structure is produced to be used in the next phase.

Accuracy =
|Correctly Classified Cases|

|V alidation Set|
(3)

In the second phase, the best constructed and optimized STRfinal structure
of the BN is extended to a complete class Markov blanket, by finding the de-
pendency relationships among the input variables. Note that the BN structure
discovered in the first step contains no edges between the input variables. To
include this type of edge in the network structure, we execute the original ABC-
Miner algorithm in this phase. However, in the context of ABC-Miner+, the
solution creation procedure starts with the STRfinal structure constructed in
the previous phase, rather than a Näıve-Bayes structure as in the original ABC-
Miner algorithm. The process of extending the BN structure to a candidate class
Markov blanket, which takes place in the second phase of ABC-Miner+, is de-
scribed in Algorithm 2. The algorithm shows just the process for each ant, for the

sake of simplicity, since the overall pseudo-code of ABC-Miner has been already
described in [19].

Algorithm 2 ABC-Miner+’s Second Phase: Ant Solution Creation Procedure.

Begin CreateSolution(ant) /* initialize the candidate Markov blanket solution with
the structure of STRfinal discovered in phase 1 */
MB ← STRfinal ;
k = ant.SelectMaxParents();
while GetV alidEdges() ̸= ϕ do

{i→ j} = ant.SelectEdgeProbablistically();
MB = MB ∪ {i→ j};
RemoveInvalidEdges(MB, k);

end while
MB.LearnParameters(learningSet);
return MB;
End

The execution of the procedure shown in Algorithm 2 is more efficient than its
corresponding solution creation procedure in the original ABC-Miner algorithm
in several ways. First, the search space of this procedure in the context of ABC-
Miner+ is smaller than the search space in context of the original ABC-Miner.
The reason is that, in ABC-Miner, the initial structure is the Näıve-Bayes’ struc-
ture, where all the input variables are children of the class variable, so all the
candidate edges between the input variables are available for selection by an ant
(i.e. any variable can be a parent to any other variable). On the other hand, in
ABC-Miner+, the initial structure has some input variables as parents of the
class variable, and others are not even related to the class variable. In this case,
the candidate edges available for selection to be added to the network are only
the edges that satisfy two conditions, namely: the edge is connecting two input
variables (rather than connecting an input variable to the class), and the edge
is pointing to a child node of the class node. The algorithm does not consider
adding edges between the class variable’s parents because these edges do not
affect the predictions (posterior probability calculation) of the BN classifier.

Second, in the Markov blanket produced by ABC-Miner+, the size of the
CPT for the variables that do not have the class variable as parent is relatively
smaller compared to the CPT of the BN classifiers produced by ABC-Miner,
where the class node has to be a parent to all the variables, besides their other
parents. Smaller CPT size means less computational time.

Note that in the case of a Markov blanket (MB) classifier, both causal (par-
ent) variables, and the effect (child) variables of the class variable are used to
compute the posterior probability P (c|x) of class c given case x, along with the
parents of the class node’s children, according to the following formula:

P (c|x) ∝ P (c|Parents(c))
∏
v∈m

P (xv|Parents(Xv),MB), (4)

where m is the set of the input variables that have the class variable as parent.

5 Experiments and Computational Results

We compared the performance of our proposed ABC-Miner+ with two other BN
classifier algorithms. The first one is basically the first phase of the ABC-Miner+
algorithm, where the BN classifiers produced have a structure only with the
relationships between the class and the input variables, without discovering the
dependency relationships among the input variables. The algorithm is denoted
as ABC. The second algorithm is the original ABC-Miner, which produces BN
classifiers with the structure of a BAN (where the class variable is a parent of all
the input variables). The evaluation criteria consist of the following three types
of performance measures: predictive accuracy (in general the most important
criterion in the classification task of data mining), model size (measured by the
total number of the edges in the network), and the running time.

The performance of the algorithms was evaluated using 18 public-domain
datasets from the University of California at Irvine (UCI) dataset repository.
The main characteristics of the datasets are shown in the URL in [1]. The exper-
iments were carried out using the well-known stratified 10-fold cross validation
procedure [20]. Since the ACO algorithms are stochastic, we run each 10 times –
using a different random seed to initialize the search each time – for each of the
10 iterations of the cross-validation procedure. As for the parameter configura-
tions, we set colony size to 10 and max iterations to 1000. Note than in the
case of ABC-Miner+, each phase is allocated half of the total maximum number
of iterations (i.e. 500 iterations in our experiments).

Table 1 shows the experimental results of the algorithms in three parts,
one for each type of performance measure: predictive accuracy, model size, and
running time. The entries in the table represent the mean values obtained by
10-fold cross validation. For each performance measure, the best result for each
dataset is underlined.

In terms of predictive accuracy, the extended ABC-Miner+ algorithm ob-
tained the best results in 14 out of 18 datasets, while ABC-Miner and ABC
obtained the best results in 5 and 3 datasets, respectively. ABC-Miner+ out-
performed ABC-Miner in 13 datasets plus 1 tie, while ABC outperformed ABC-
Miner in 3 datasets. It is interesting to notice that ABC, which is only the
first phase of ABC-Miner+ can find the best BN classification model in some
datasets, and in those datasets the second phase of ABC-Miner+ does not im-
prove its performance. This can be noticed in datasets hayes, monk and pima,
where ABC and ABC-Miner+ have the same predictive performance and almost
the same model (size).

We used the matched-pair samples Wilcoxon Signed-Rank statistical test [9]
to compare the predictive accuracies of ABC-Miner+ and ABC-Miner, where
the samples are the datasets. According to the Wilcoxon test, the Z-value is
-2.2012, and the p-value is 0.0139. Therefore, the results of ABC-Miner+ are
statistically significantly better at the 5% significance level.

T
a
b
le

1
.
R
es
u
lt
s
o
f
p
re
d
ic
ti
v
e
a
cc
u
ra
cy

(%
),
B
N

si
ze

(n
u
m
b
er

o
f
ed

g
es
),
a
n
d
ru
n
n
in
g
ti
m
e
(i
n
se
co
n
d
s)

fo
r
th
e
th
re
e
A
C
O
-b
a
se
d
B
ay
es
ia
n

cl
a
ss
ifi
ca
ti
o
n
a
lg
o
ri
th
m
s.

P
re
d
ic
ti
v
e
A
cc
u
ra
cy

M
o
d
el

S
iz
e

R
u
n
n
in
g
T
im

e

D
a
ta
se
t

A
B
C
-M

in
er

A
B
C

A
B
C
-M

in
er
+

A
B
C
-M

in
er

A
B
C

A
B
C
-M

in
er
+

A
B
C
-M

in
er

A
B
C

A
B
C
-M

in
er
+

b
a
l
a
c
e

7
7
.5

7
5
.8

8
2
.4

6
.5

3
.1

5
.1

4
0

1
0

3
5

b
r
e
a
s
t
-
w

9
2
.7

9
0
.4

9
5
.8

2
3
.6

8
.3

1
4
.8

5
4
0

1
3
0

2
8
0

c
a
r

9
7
.2

8
6
.7

9
8
.1

1
4
.5

6
.0

1
1
.2

4
8
0

2
4
0

3
1
0

c
o
n
t
r
a
c
e
p
t
i
v
e

6
6
.5

7
5
.0

7
6
.7

1
8
.7

7
.2

1
0
.4

2
2
0

1
5
0

5
5
0

c
r
e
d
i
t
-
a

8
6
.5

8
1
.8

8
4
.2

2
3
.6

1
0
.3

1
5
.3

2
3
0

1
4
0

2
1
0

c
r
e
d
i
t
-
g

7
1
.7

7
0
.2

7
3
.8

2
8
.2

1
1
.2

1
8
.5

5
2
0

1
2
0

5
0
0

d
e
r
m
a
t
o
l
o
g
y

9
9
.1

9
6
.9

9
8
.4

3
4
.6

1
7
.4

2
6
.6

4
4
0

2
4
0

4
5
0

g
l
a
s
s

9
3
.3

8
7
.6

9
1
.3

1
1
.5

3
.0

4
.1

1
4
0

9
0

1
1
0

h
a
y
e
s
-
r
o
t
h

8
0
.0

8
0
.2

8
0
.2

1
2
.7

6
.0

7
.3

6
0

1
0

3
0

h
e
a
r
t
-
c

8
3
.4

7
4
.6

8
6
.9

1
8
.4

1
0
.2

2
1
.3

5
1
0

2
5
0

4
8
0

i
n
f

8
2
.4

7
8
.7

8
5
.7

5
.1

3
.0

4
.2

2
0

1
0

1
3

i
o
n
o
s
p
h
e
r
e

9
6
.2

9
2
.3

9
6
.8

2
1
.6

2
0
.4

2
5
.5

5
6
0

2
0
0

3
1
0

m
o
n
k

6
5
.2

7
4
.2

7
4
.2

1
7
.4

6
.3

6
.3

3
0

1
0

5
0

n
u
r
s
e
r
y

9
8
.2

9
4
.7

9
6
.7

2
2
.6

6
.0

1
4
.6

4
3
0

2
9
0

3
2
0

p
i
m
a

7
7
.8

8
1
.4

8
1
.4

7
.4

3
.0

3
.1

1
6

1
0

1
8

s
o
y
b
e
a
n

9
5
.6

9
2
.9

9
5
.6

2
1
.8

1
8
.4

2
8
.6

4
2
0

1
8
0

3
6
0

t
i
c
-
t
a
c
-
t
o

8
6
.4

8
5
.6

8
6
.8

2
7
.8

8
.0

9
.6

3
6
0

1
6
0

3
2
0

v
o
t
e

9
4
.8

9
4
.3

9
5
.6

3
4
.6

1
2
.4

1
5
.6

4
0
0

2
8
0

2
8
0

In terms of model size, ABC obviously produces the smallest BN models,
whose sizes are lower limits for the sizes of the models produced by ABC-Miner+,
since the second phase of that algorithm can only add (and not remove) more
edges to the BNs learnt by ABC. Moreover, the maximum number of the edges
in a BN produced by ABC equals to the number of the input attributes (if all
the input variables have relationships to the class), which is also the minimum
number of edges that a BAN produced by ABC-Miner may have (if the local
search procedure removed all the edges between the input variables and reduced
the BAN to a Näıve-Bayes structure).

Besides, in terms of model size ABC-Miner+ outperformed the original ABC-
Miner in all the datasets, producing BN classification models with fewer edges.
The feature selection process implicitly performed by our extended algorithm
can be easily noticed in the results of ABC. In some datasets, such as breast-w,
credit-a, credit-g, and dermatology, the number of edges in the model pro-
duced by ABC-Miner+ is less than the number of input attributes in the corre-
sponding dataset. This means that the produced BN classification model does
not have all the input variables related to the class variable.

In terms of running time, as expected, ABC took the least amount of time
to finish its execution in all the datasets. On the other hand, the two-phase
ABC-Miner+ algorithm achieved a shorter execution time than ABC-Miner in
14 datasets. The reason behind that, as explained in Section 4, is that the first
phase of the ABC-Miner+ algorithm reduced the search space for the second
phase, after producing a BN structure with different dependency relationship
types defined between the input and the class variables, and the first phase
(ABC) does not consume a large amount of time, as shown in the results.

6 Concluding Remarks

In this paper, we have introduced ABC-Miner+ an extended version of an ACO
algorithm for learning BN classifiers. ABC-Miner+ builds class Markov blanket-
based BN classification models, in which it is not necessary to have an edge
between the class variable and each of the input variables, and the edges between
the class and the input variables may have different directions; unlike ABC-
Miner, which learns BAN models. Empirical results showed that, overall, the
ABC-Miner+ algorithm has an improved performance over the original ABC-
Miner in terms of predictive accuracy, model size, and running time.

As a future research direction, we would like to investigate a different ap-
proach to learn the Markov blankets in a single integrated phase, rather than in
two sequential phases as in ABC-Miner+. Moreover, we would like to try tech-
niques to avoid over-fitting on the learning set during the training phase, like
using different random partitions of learning\validation sets each iteration.

References

1. (UCI Repository of Machine Learning Databases Retrieved Oct 2011 from,
URL:wwwicsuciedu/ mlearn/MLRepositoryhtml)

2. de Campos, L.M., Fernandez-Luna, J.M., Gamez, J.A., Puerta, J.M.: Ant colony
optimization for learning Bayesian networks. International Journal of Approximate
Reasoning 31(3), 291–311 (2002)

3. Cheng, J., Greiner, R.: Learning bayesian belief network classifiers: Algorithms
and system. 14th Biennial Conference of the Canadian Society on Computational
Studies of Intelligence: Advances in Artificial Intelligence pp. 141–151 (2001)

4. Chickering, D.M.: Learning Bayesian Networks is NP-Complete. Advanced Tech-
nologies Division, Microsoft Corporation, Redmond, WA, Technical Repor (1996)

5. Daly, R., Shen, Q., Aitken, S.: Learning bayesian networks: Approaches and issues.
Knowledge Engineering Reviews 26(2), 99–157 (2011)

6. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
7. Friedman, N., Geiger, D., Goldszmidt, M., Provan, G., Langley, P., Smyth, P.:

Bayesian Network Classifiers. Machine Learning 29, 131–163 (1997)
8. Heckerman, D.: A Tutorial on Learning with Bayesian Networks. Studies in Com-

putational Intelligence: Innovations in Bayesian Networks 156, 33–82 (2008)
9. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Per-

spective. Cambridge University Press (2011)
10. Jiang, L., Wang, D., Cai, Z., Yan, X.: Survey of improving näıve-bayes for classifi-

cation. 3rd International Conference on Advanced Data Mining and Applications
(ADMA) pp. 134–145 (2007)

11. Kononenko, I.: Semi-naive bayesian classifier. In: The European working session on
learning on Machine learning. pp. 206–219. EWSL-91, Springer-Verlag, New York,
NY, USA (1991)

12. Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.:
Classification with ant colony optimization. IEEE Transactions on Evolutionary
Computation 11, 651–665 (2007)

13. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data
mining. Machine Learning 82(1), 1–42 (2011)

14. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data Mining with an Ant Colony Opti-
mization Algorithm. IEEE Transactions on Evolutionary Computation 6(4), 321–
332 (2002)

15. Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press
(2000)

16. Pinto, P.C., Nägele, A., Dejori, M., Runkler, T.A., Ao: Using a Local Discovery
Ant Algorithm for Bayesian Network Structure Learning. IEEE Transactions on
Evolutionary Computation 13(4), 767–779 (2009)

17. Salama, K.M., Abdelbar, A.M., Otero, F.E., Freitas, A.A.: Utilizing Multiple
Pheromones in an Ant-based Algorithm for Continuous-Attribute Classification
Rule Discovery. Applied Soft Computing 13(1), 667–675 (2012)

18. Salama, K.M., Abdelbar, A., Freitas, A.A.: Multiple Pheromone Types and Other
Extensions to the Ant-Miner Classification Rule Discovery Algorithm. Swarm In-
telligence 5(3-4), 149–182 (2011)

19. Salama, K.M., Freitas, A.A.: ABC-Miner: an Ant-based Bayesian Classification
Algorithm. International Conference on Swarm Intelligence (ANTS) 7461, 2677–
2694 (2012)

20. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, 3rd edn. (2010)

21. Wu, Y., McCall, J., Corne, D.: Two novel Ant Colony Optimization approaches
for Bayesian network structure learning. International Conference on Evolutionary
Computation (CEC) pp. 1–7 (2010)

