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Abstract. Rule induction is one of the techniques most useeitract knowl-
edge from data, since the representation of knayeleas if/then rules is very
intuitive and easily understandable by problem-donexperts. Existing rule
induction algorithms have beananually designed. In this era of increasing
automation, Genetic Programming (GP) representsveeiful tool for auto-
matically evolving computer programs. This work pomees a genetic pro-
gramming algorithm for automatically evolving ruleduction algorithms.
Hence, the evolved rule induction algorithm widl, & large extent, be free from
the human biases that are implicitly incorporatedurrent manually-designed
algorithms (such as the typical use of a greedyckemethod). This is a very
ambitious, adventurous goal, which, if succesdiill, pave the way for a new
generation of more robust, considerably less greabtyinduction algorithms.
In particular, an automatically evolved rule indant algorithm can be de-
signed to cope with attribute interaction bettantlturrent greedy rule induc-
tion algorithms, which will tend to lead to an imped performance in com-
plex data sets.

1 Introduction

“...We consider this trend to increase the automatioscience to be both inevitable
and desirable ...”. With these words King et al [t6hcluded their article about a
new “robot scientist” for scientific discovery. Thgstem works with biological data,
and automatically generates hypotheses to explmergations, plans and physically
executes experiments to test the hypotheses - asialgoratory robot, and interprets
the results to falsify hypotheses inconsistent withdata.

A task can be automated by programming a machirfelltmwv, step by step, the
process a trained human would follow to executehitaining, at the end, the same or
similar results. Despite the significant progresstie automation of data analysis
tasks, it should be noted that the design of a madearning or data mining algo-
rithm is still an essentiallpnanualtask. This holds true even for the above-mentioned
robot scientist, where the machine learning alporitised by the robot was manually
designed by the researchers.



In this era of increasing automation, it seems lijime ask the question: why not
going one step further? Why not using a computegiam to produce, as its output,
a full machine learning algorithm? This is the iguting topic of this paper, which
proposes to develop a Genetic Programming (GPYitligo for automatically evolv-
ing a rule induction algorithm.

GP is a powerful tool for automatically evolvingneputer programs. In general,
the program evolved by GP can produce the saméic@oloumans use to solve the
target problem, or something completely new, pestzgiter than the “conventional”
manually-designed solution.

GP can be defined as “the direct evolution of paows or algorithms for the pur-
pose of inductive learning” [2]. GP is a kind ofolwtionary algorithm (EA) that uses
a set of functions and terminals, related to th@aia of the problem to be solved, to
represent candidate solutions for the problem. Nbekess, while in most kinds of
EAs an individual corresponds to a solution for @aeticular problem instance, in
GP an individual should correspond to a generalipes for solving a given kind of
problem. GP also uses a fithess function to evaltia quality of the candidate solu-
tions, and the principle of natural selection toleg better and better candidate solu-
tions to the target problem. GP will be reviewedgttion 3.

Rule induction is one of the methods most usedxtraet knowledge from data.
Although there are many other methods, like instdrizased learning (e.g. k-nearest
neighbor), statistical techniques (e.g. naive balassifier), neural networks and
support vector machines [28], they do not normityrn to the user, as the output of
the system, comprehensible knowledge. Thereforke, induction algorithms are
widely used because the representation of knowledgéthen rules is very intuitive
and easily understandable by problem-domain experts

In addition to the previously cited methods tha&t aften used for classification, in
the last few years there has been extensive résaanog GP for rule induction [12],
[29]. However, the GP algorithms used in that kofdresearch, like many others
proposed in the literature, do not really evolvenpater programs. The outputs of
those GPs are sets of rulgsecificto a given database, and cannot be applied to other
databases. Hence, in the context of data miningh&Pbeen widely used for other
purposes than evolvingenericcomputer programs or algorithms for inductive learn
ing — which, despite being the original goal of @Gstill a very open problem.

This work proposes a GP algorithm for automaticeilplving a rule induction al-
gorithm. The motivation for this goal is as follaws

All current rule induction algorithms were manuallgveloped by a human being,
and so they inevitably incorporate a human biagalicular, the idea of developing
greedy algorithms was partially derived from thassical view of concepts in cogni-
tive psychology [11]. According to this classicaéw, categories are defined by a
small set of attributes. All members of a categgrgre these defining attributes, and
no non-member shares them. In general the defiaftriputes are supposed to be
largely independent (uncorrelated) of each othiee.-there is little or no attribute
interaction. (By attribute interaction we mean: sider three attributes Y, pand X,
where Y is the goal (class) attribute to be predicind X and X are predictor at-
tributes. X and X interact when the direction or magnitude of thiatrenship
between Y and Xdepends on the value of p11].)



This view is not currently the most acceptable agritive psychology, but it did
influence the development of early rule inductidgoathms, which were based on
selecting one-attribute-value-at-a-time, in a gyekghion, ignoring attribute interac-
tions. A machine-developed algorithm could comgyethange this kind of algo-
rithm bias, since “its bias” would be very diffetefnom the kind of algorithm bias
imposed by a human algorithm designer. In particudamachine-developed rule
induction algorithm could cope better with attrigunteraction, avoiding the greedy
strategy of the vast majority of human-developegbathms. This is important, be-
cause many complex real-world data sets are plabyeattribute interaction prob-
lems [9], [23], [24].

We emphasize that the automatic design of a fidl induction algorithm is a very
ambitious, adventurous goal, which, if successdill, pave the way for a new gen-
eration of more robust, considerably less greetlyinduction algorithms. In particu-
lar, summarizing the above discussion, an automitievolved algorithm will, to a
large extent, be free from the human biases thaingplicitly incorporated in current
manually-designed rule induction algorithms. Tkigxpected to lead to an improved
performance in complex data sets plagued by stattnigpute interactions.

The remainder of this paper is organized as folld®etion 2 presents a survey of
rule induction algorithms. Section 3 presents tlanneoncepts of Genetic Program-
ming, and Section 4 explains how the concepts ofi@es 2 and 3 can be joined to
automatically evolve a rule induction algorithm.c8en 5 presents the conclusions
and research directions to be followed.

2 A Survey of Rulelnduction Algorithms

Rule induction algorithms, like most concept leasnevere designed to acquire gen-
eral concepts from a set of training exampleshédontext of the well-known classi-
fication task, which is the focus of this papetetraining example is represented by
a set of predictor attributes and a goal (or clasisipute. The algorithm tries to find
relationships between the predictor and the gaebates, creating a model that can
be later used to predict the value of the goalbatte of new examples.

In the case of rule induction algorithms, the dfastion model is represented by
a set of rules. A rule has the formatdénd1AND cond2... THEN conseq where
the conditions in the antecedent are describedsbgciations between attributes and
their values, and the consequent represents tdéctme value for the goal attribute.

Research about rule induction algorithms has beened out for more than 30
years. During this period, many inductive learneexe developed. Almost all of
them follow one of the three most common strategie to induce rules from data
[19]. The first strategy consists of generatingegision tree, using the divide and
conquer strategy, and then extracting one ruleefmh leaf node of the tree, as in
C4.5 Rules [21]. The second strategy is separatecanquer [28], found in the AQ
algorithms [18], CN2 [5] and RIPPER [7]. The thiedthe use of evolutionary algo-
rithms, like genetic algorithms and genetic prograng, to extract rules from data,
such as GABIL [8], and the GP algorithms describefll2] and [29]. Some hybrid
algorithms combining the first two techniques ckso &e found, like in PART [10].



The divide and conquer strategy [3], used by degisiee algorithms, constructs a
decision tree using a top down, greedy searchialuates all the predictor attributes
to verify how well each of them, individually, ckfies the examples in the training
set. The best attribute is selected as the rotiteofree. For each possible value of the
chosen attribute a sub-tree is generated. For ®witree, the next attribute is chosen
considering only the examples of the training shose attributes values satisfy the
condition associated with the corresponding brasfctime tree. The process is recur-
sively repeated until a stopping criterion is dad; e.g., until all examples in a leaf
node belong to the same class or until the numbexxamples in a leaf node is
smaller than a user-defined threshold. The clasdigted by each leaf is determined
by the most common class value found among the pbesnat that leaf.

After the tree is generated, it is mapped to aofetles, creating a new rule for
each of the tree paths from the root to a leafeiAthis step, the rules should be re-
fined, to avoid the major problem of decision trepresentation: the replicate subtree
problem [13]. This problem arises because decisiea learning algorithms cannot
represent overlapping rules. Consequently, in scases, the same subtree has to be
learnt many times in different points of the tré@éis problem also tends to make
decision trees less comprehensible and more contipdexsets of rules.

The separate and conquer strategy generates getegfinstead of decision trees.
It learns a rule from a training set, removes fiibthe examples covered by the rule,
and recursively learns another rule that coversréngaining examples, until all ex-
amples are covered. It is the most common stratesgyl for rule induction algo-
rithms, and the methods based on this approacérditm each other in four main
points: the representation of the candidate rukes,search mechanisms used to ex-
plore the space of candidate rules, the way thdidate rules are evaluated and the
pruning method, although the last one can be abbkte that this strategy is also
greedy, learning one rule at a time, and it typyogénerates a rule by adding (remov-
ing) one condition at a time to (from) a currenttighrule, as will be discussed later.

Evolutionary algorithms (EA) are a completely diffet approach by comparison
with the previous ones. Instead of using a greedych, they use a global search to
evolve a population of candidate solutions (eacthefn representing a rule or a set
of rules), and explore the search space usingriheiple of natural selection (repro-
duction of the best individuals, i.e. of the bades) and “genetic” operators (loosely
inspired by natural genetics) such as crossovenartdtion.

Comparing the three strategies presented above,hB®ea the advantage of per-
forming a more global search, avoiding one of tiggést problems of the greedy
search: be trapped in a local optimal solutionthi@ context of a learning problem,
this global search makes EAs cope better withbaitei interaction [9], [12], [20]. On
the other hand, EAs have the disadvantage thatareeysually considerably slower
than conventional, greedy rule induction algorithms

Although the majority of separate and conquer nathase a hill climbing ap-
proach, it is not difficult to extend them to usesd greedy methods, like a beam
search or a best-first search, improving the way ttope with attribute interaction.
However, searching more exhaustively the searctesipareases the chances that the
discovered rules overfit the training data. Studiggorted in [22], [26] verified in
different domains that a large beam width can teaslorse results than small ones.



We now describe in more detail separate and corgjgerithms, since this is the
kind of algorithm that will be automatically evotvéy the GP proposed in this work.
The separate and conquer approach was chosen bécsusimple and easy to adapt,
the generated rules are usually simpler and mare@oehensible than those generated
by divide and conquer methods, and it is more ieffic(faster) than the EA-based
approach.

2.1 Separateand Conquer Algorithms

As mentioned before, most of the rule inductionodthms based on the divide and
conquer approach differ from each other with respedour points, which will be
discussed in the next items: the representatiothefcandidate rules, the search
mechanism used to explore the space of candidkg®, the way the created rules are
evaluated and the pruning method.

The representation of the candidate rules. The rule representation has a significant
influence in the learning process, since some quBeaean be easily expressed in one
representation but hardly expressed in othersaltiqular, rules can be represented
using propositional or first order logic. Propamital rules are composed by selectors,
which are associations between pairs of attribalaees, likeage > 1Q salary < 2000

or sex = male CN2, C4.5 rules, and RIPPER are examples of witipoal rule
algorithms. First order rules are more sophistibateand can express relations
between two attributes, generating rules with ciomol such ax > y. FOIL, REP
and PROGOL use this representation.

When using a first order representation, the cotscape usually represented as
Prolog relations, like father(x,y). Methods thatukhis Prolog representation are
classified as Inductive Logic Programming (ILP)teyss [17]. ILP uses the same
principles of rule induction algorithms, essengialeplacing the concepts of condi-
tions and rules by literals and clauses. In addjtitP techniques allow the user to
incorporate background knowledge about the problemmch helps to focus the
search in promising areas of the search space.

Moreover, the rule sets generated to describe aepdrcan be ordered or unor-
dered. Ordered rule sets are also know as dedisisnIn the context of large rules
sets, ordered rules are usually considered mafieudifto understand than unordered
ones, since in order to comprehend the last rule st all the previous ones must
also be taken in consideration [5]. Since the kieolge generated by rule induction
algorithms is usually analysed and validated bygpert, rules at the end of the list
become very difficult to understand, particulamyviery long lists. Hence, unordered
rules are often favoured over ordered ones.

The Search Mechanism. The search mechanism is composed by a searchgstrate
and a search metho@roadly speaking, there are three kinds of seatctegjies,
namely bottom-up, top-down or bi-directional stepte

A bottom-up strategy starts the search with a \spgcific rule, and iteratively
generalizes it [14]. A top-down one, in contragdyts with the most general rule and



iteratively specializes it. A bi-directional searishallowed to generalize or specialize
the candidate rules, according to the situation.

The most common strategy used by separate and epmdgorithms is the top-
down one. The algorithm starts with a rule thatezevall the training examples, and
iteratively specializes it while some rule qualitgasure is optimized. This technique
is used by algorithms of the AQ family, CN2, andlFamong others. DLG [13] is
one of the few algorithms that uses propositiongid and a bottom-up approach.
SWAP-1 [27] follows the bi-directional strategy.

Regarding to the search method, greedy and beamhsage the most commonly
applied methods, although best-first and stochaséithods can also be used. Greedy
search is the most popular method. Greedy algosithr@ate a rule using one attrib-
ute, generalize/specialize it, evaluate the exténuées created by the generaliza-
tion/specialization operation, and keep just thet lextended rule. This process is
repeated until a stopping criterion is satisfiedthdugh they are fast and easy to
implement, they have the well-known myopia probl@neach rule extension step,
they make the best local choice, and cannot baxkifdater in the search the chosen
path is not good enough to discriminate examplésnigeng to different classes. As a
result, they do not cope well with attribute intdian.

Beam search methods try to eliminate the drawbatkseedy algorithms select-
ing, instead of 1, thb best extended rules at each iteration, wieieethe width of
the beam. Hence, they explore a larger portiomefsearch space than greedy meth-
ods, coping better with attribute interaction. Nwveless, learning problems involv-
ing very complex attribute interactions (like parfiroblems [25]) are still a very
difficult problem for beam search algorithms.

Rule Evaluation. The way the candidate rules are evaluated can ehemmpletely
the regions of the search space that are beingmxpl There are many heuristics
current used by rule induction algorithms, each with their own advantages and
disadvantages. Furnkranz [13] classified theseuatiah heuristics in 4 categories:

1. Heuristics that favor rules that cover as maositive examples and as few
negative examples as possible. Some examples ¢ theuristics are accu-
racy, information content, entropy, Laplace estamatc.

2. Heuristics that measure the complexity of thedidate solutions, like rule
length, positive coverage or minimum descriptiamglé.

3. Heuristics based on gain, which compute thesdifice in the value of some
heuristic function measured between the currerg ard its predecessor,
such as information gain or coverage gain.

4. Weighted heuristics, which combines the previodsscribed heuristics or
adjusts the behavior of a single heuristic in ataderdirection, e.g., J-
measure and weighted information gain.



Pruning Methods. Combining the three elements discussed above, anehave
many rule induction algorithms. But current methookssides these elements, have
other means to generate simpler and more accutdés. rAlmost all of them
implement a pruning technique, which helps to awidr-fitting and to handle noisy
data. These pruning techniques can be used durengroduction of the rules (pre-
pruning) or in a post processing step (post-pruning

Pre-pruning methods try to stop the refinemenhefrules before they become too
specific or over-fit the data. A statistical sigo#ince test is one of the criteria used to
stop rule generalization/specification. It compatbe observed class distribution
among examples satisfying the rule with the expmkdistribution that would result if
the rule had selected examples randomly. Otheripgueriteria are minimum purity,
encoding length restriction and cutoff stoppinderion [13].

Post-pruning methods try to improve the learned ehadter it has been con-
structed. It removes rules or rule conditions fribi® model, preserving or improving
the predictive accuracy in the training set. Amang most used post-pruning tech-
nigues are reduced pruning error (REP) [4] and GROW

I-REP and its improved version, RIPPER, are wetiwn rule induction methods,
and they work integrating pre- and post-pruninditégues. Their rule pruning tech-
nigues follow the same principles of REP, but theyne each rule after it is created,
instead of waiting for the complete model to beegated.

Pre-pruning techniques are more efficient (fastean post-pruning techniques,
but post-pruning usually finds models with highecwaracy and simpler rules than
pre-pruning. Intuitively, this is due to the fabat post-pruning has more information
(the complete learned model) available to makesitmts, and so it tends to be less
“shortsighted” than pre-pruning. In any case, mpaogt-pruning techniques are still
greedy, by removing one condition at a time frormle.

2.2 A Generic Specification of Rule Induction Algorithms

The concepts described in the previous sectioresept the essential elements of a
rule induction algorithm. Considering these elersgeittis possible to specify a gen-
eral, high-level pseudo-code describing rule iniductalgorithms based on the sepa-
rate and conquer approach. This task was previoersdguted by Furnkranz [13],
which proposed the generic pseudo-code shown iorilgn 1 for separate and con-
quer rule induction algorithms:

Procedur e Separ at eAndConquer (Exanpl es)
Theory = O
VWi | e PCSI Tl VE(Exanpl es) # O
Rul e = Fi ndBest Rul e( Exanpl es)
Covered = Cover (Rul e, Exanpl es)
I f Rul eStoppingCriterion(Theory, Rule, Exanples)
Exit while
Exampl es = Exanpl es \ Covered
Theory = Theory O Rule
Theory = Post Process (Theory)
return(Theory)



Procedur e Fi ndBest Rul e( Exanpl es)
InitRule = InitializeRul e( Exanpl es)
InitVal = Eval uateRul e(InitRule)
BestRule = <InitVal, InitRule>

Rul es = {Best Rul e}

VWiile Rules # [
Candi dat es = Sel ect Candi dat es(Rul es, Exanpl es)
Rul es = Rul es \ Candi dat es
For Candi date O Candi dat es
Ref i nements = Refi neRul e( Candi date, Exanpl es)

For Refinenent O Refinenents
Eval uati on = Eval uat eRul e( Ref i nenent, Exanpl es)
unl ess StoppingCriterion(Refinenent, Eval ua-
tion, Exanpl es)
New Rul e = <Eval uati on, Refinenent>
Rul es = I nsert Sort(NewRul e, Rul es)
If NewRul e > BestRule
NewRul e = Best Rul e
Rul es = FilterRul es(Rul es, Exanpl es)
return(Best Rul e)

Algorithm 1: A general pseudo-code for rule induction algorithi&j

The vast majority of rule induction algorithms tlaltow the separate and conquer
approach can be instantiated following the psewsttef Algorithm 1. Below we
describe how this pseudo-code can be implementeddmate the 4 basic elements
of rule induction algorithms.

1. Search mechanism — This involves both the sesrategy and the search
method. The search strategy is implemented thrthuglprocedures:

» InitializeRules which specifies if the initial rule should be ery ge-
neric rule (with an empty antecedent), a very djpecile (derived
from a “seed” example) or another possibility itvibeen those two.

* RefineRuleswhich determines if the current rule should baagal-
ized or specialized, where the chosen operationldhme consistent
with the kind of initial rule specified in theitializeRulesprocedure.

The search method(s) is(are) defined usBejectCandidatesnd Fil-

terRules

» SelectCandidates This procedureelects the subset of rules that will
be generalized/specialized. A somewhat generic afagpecifying
this procedure consists of referring to a beamcsedrhen a specific
search method can be obtained by instantiatingpéinameteib, the
beam width. For instance, lifis set to 4, the best 4 rules will be se-
lected to be refined. Note that a greedy searcthadetan be ob-
tained by setting the parameteto 1.

* FilterRules— This procedure can use either the same search thetho
as SelectCandidatesr a different search method. The specification
of the search method can be done in similar way®ih procedures.



2. Representation of candidate rules —This elerseihplemented by the
RefineRuleprocedure, since it determines which kind of ctods can
be added to the candidate rules.

3. Rule Evaluation — This element is directly definby the procedure
EvaluateRulewhich determines the rule-quality measure thilthei used
in rule evaluation.

4. Pruning Methods — This element is determinedtwy procedures,
namelyStoppingCriterion which implements pre-pruning methods — i.e.,
it determines when to stop refining the rules — BodtProcessingwhich
implements post-pruning methods.

This general pseudo-code summarizes, in a veryisofashion, the general struc-
ture of the vast majority of rule induction algbrits manually designed by machine
learning researchers. Hence, this “prior knowledgellld be given to a GP algo-
rithm, which would work out how to automaticallyw##op new rule induction algo-
rithms based on this information, as explainedenti®n 4.

3. Overview of Genetic Programming

Evolutionary Algorithms (EAs) are stochastic seansbthods inspired by the Dar-
winian concepts of evolution and survival of thgefit. They became very popular in
many kinds of problems, like function optimizatiamd several machine learning
tasks, due to their domain-independent nature leid tobust global search mecha-
nism - with its associated implicit parallelism amaise tolerance [1], [15].

In essence, an EA evolves a population of indiMgluahere each individual is a
candidate solution for the target problem. At eagemeration, the individuals are
evaluated according to a fitness function. The befividuals are selected to repro-
duce, and undergo crossover and mutation proceduresier to produce new off-
spring (new candidate solutions) that inherit sdeatures from their parents. The
evolutionary process is iteratively performed umtiktopping criterion is satisfied,
such as a maximum number of generations is reamhad optimal solution is found.

Four major kinds of EA are genetic algorithms, gengrogramming, evolutionary
strategies and evolutionary programming [1]. Thastion briefly discusses genetic
programming (GP), which is the main kind of EA desid to evolve programs.

Hence, GP is a kind of EA where the individualsngegvolved are computer pro-
grams. As defined by Banzhaf [2], GP is “the diregblution of programs or algo-
rithms for the purpose of inductive learning”.

When designing a GP system, some elements have twoisidered: the set of
functions and terminals that will be used to createGP population, the representa-
tion of the individuals, and the fithess functiosed to measure the quality of the
candidate solutions. In addition, crossover andatiant operators have to be de-
signed according to the individual's representatiomd a method for selection of the
best individuals has to be implemented. The nestizes explain the main concepts
involved in the design of these elements.



3.1 Functions and terminals

The functions and terminals are the primitives withich a program in GP is built.
Terminals provide a value to the system while fioms process a value already in the
system [2].

The terminals are usually constants, variablesaarmbro-argument functions. The
function set can be composed of many types of fonst The most common ones are
the boolean and arithmetical functions, but thecfiom set can also have conditional
and/or loop statements and subroutines. The subesuallow any kind of operation
to be added to the function set.

No matter which or how many functions there ar¢him function set, all of them
have to respect the closure property. This propedies that every function has to be
able to handle all the values it receives as inpaus a division operator, for exam-
ple, has to be modified to cope with division byaze this is often implemented by
making the operator return a given value, rathan thn error, in case of division by
zero.

Although the programmer has a lot of freedom tooslecthe function set, it should
not have many functions, because the more functlmngreater the search space.

3.2 Individual Representation

Recall that GP algorithms evolve a population afividuals, where each individual
represents a solution for the target problem. Ifane developing, for example, a GP
for discovering rules in a specific data set, e@€hindividual will represent a set of
candidate rules for that data set. There are tywestyf representations that are most
used in the literature [2]: the first one represent individual as a linear structure and
the second as a tree.

A linear representation is simply a sequence oframs that are executed from
left to right, while in a tree representation tixeeution of the tree is usually made in
postfix order (reading the leftmost node of theelreThese conventions can be
changed depending on the functions included irfithetion set.

Figure 1 shows individual representations usingdimand tree-based genomes for
a regression problem (where the goal would beno fihe equation of the curve with
the best fit to a set of data points). In the exanop that figure the individuals repre-
sent the candidate solution (equatiof} 2. In this examplex and2 are terminals,
and* and+ are functions.

3.3 Fitness function and Selection M ethods

After the GP population is initialized (usually domly), individuals are evaluated
using a fitness function. This function measurew hieell the individual solves the
target problem. It is used to determine which imdirals will reproduce and have
parts of their genetic material (i.e., parts ofitleandidate solution) passed onto the
next generation.
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Figure 1. Examples of tree-based and linear-based indiVidymesentation

The better the fithess of an individual, the higtier probability of that individual
being selected for reproduction. There are mangcsieh methods, such as fitness-
proportional selection, ranking selection and tamment selection. Tournament selec-
tion, for example, randomly gets a pre-defined neindf individuals from the popu-
lation and simulates a tournament among them. &jigicdhe individual with the best
fitness is declared the winner of the tournamert isntherefore selected for repro-
duction, crossover and mutation.

3.4 Crossover and Mutation Operators

Crossover swaps genetic material (parts of canglidatutions) between two indi-
viduals, whereas mutation replaces some part ofjtimetic material of an individual
with a new randomly-generated genetic material.s€htsvo operations are applied
with user-specified probabilities. The basic idéthese operators is as follows.

Crossover re-combines the genetic material of tew@ipt individuals (which have
been previously selected, as discussed in sect®)n iB order to produce two new
children. If the individuals are represented byes$ierandomly-selected subtrees are
swapped between the two parents. In the case edrligenomes, randomly-selected
linear segments of code are swapped.

Unlike crossover, mutation acts on a single paimhtzidual of the population. It
randomly selects a subtree of the tree-based geworaesegment of code in linear
genomes and replaces it by a new randomly-genesatstee or code segment.

Both crossover and mutation operations can be imgieéed in many ways — see
[2] for a detailed review of these operators.

4. Designing a Genetic Programming Algorithm for Automatically
Evolving Rule I nduction Algorithms

As mentioned earlier, this work proposes the usePfto automatically evolve a rule
induction algorithm. The most important aspectthefdesign of a new GP algorithm
to solve this problem are: a) the definition oliadtion set and a terminal set suitable
for representing a candidate rule induction algaonitb) the design of a fithess func-



tion suitable for evaluating a rule induction aifun. These aspects are discussed in
the next subsections.

4.1 The Function Set and the Terminal Set

The function set will be divided into two subséike first one will have functions
that control the processing flow of the algoritheing evolved (like IF-THEN state-
ments and FOR/WHILE loops), and the second one indglude functions that are
specific to rule induction algorithms.

This second subset of functions will be developethio stages. In the first stage,
very general, high-level functions will be used.isTket of general functions will be
based on pseudo-codes that specify a base algdidgthmle induction, and that can
be instantiated to produce virtually any methodelasn the separate and conquer
approach. A general pseudo-code with this chaiatitewas already designed by
[13], as reviewed in subsection 2.2, and it willlsed as a starting point for this task.
In this first phase, functions like selectCandidétales,examples), refineRule(rule)
and evaluateRule(rule) will compose the function kea second stage, these general
functions will be refined, and replaced by lowerdkones, such as calculatelnforma-
tionGain(r), generateContingenceTable(r), setBeadthth), countCoveredExam-
ples(r), etc.

The terminal set will be composed by a set of reskivords of programming lan-
guages, such asf,"while, for, repedt a set of operators, like “+, =, - >, <", a sdt o
variables, some delimiters lik¢ ;')” and a set of constants, that will be used to et th
values of the parameters of some functions, likentfdth of the beam search.

In our system, each individual will correspond toamdidate rule induction algo-
rithm. An individual will be represented by a treteucture, and grammar-based GP
will be used to evolve the rule induction algorithim essence, grammar-based GP is
a kind of GP where a grammar’s set of productidesis used to create the initial
population of individuals and genetic operatorsdpie new individuals respecting
the grammar’s production rules [29]. Grammar-ba&dl is highly recommended
when one has some kind of prior knowledge of thabl@m domain to guide the GP
search. Hence, in our system each individual witisists of a derivation tree, created
by applying the production rules defined in thengmaar. An example of a fragment
of an individual is shown in Figure 2.

In Figure 2, the productions of the grammar apjre#old, and the terminal sym-
bols in italic. The functions belonging to the ftino set, as FindBestRule, are speci-
fied through grammar productions.

The derivation tree of Figure 2 represents the code

“while (PositiveExamples <> 0)
Rule = FindBestRule...
endwhilé,
which would be part of a larger individual repretsmym an entire rule induction algo-
rithm. Note that FindBestRule is not a terminal] avill be also extended.



Posifive Example s

Figure 2: Fragment of an Individual, represented as a déowdtee

4.2 Fitness Evaluation

We emphasize that the goal of this paper is tovevalgeneric rule induction algo-
rithm, rather than just a rule set for a particwata set. This implies that the fithess
function has to involve a measure of performancg. (eredictive accuracy) of an
individual (a candidate rule induction algorithngr@ss many data sets. Also, after
the GP has run, the best evolved rule inductioréign will have its performed
evaluated on a separate set of data sets (unseag the training of the GP).

More precisely, the entirget of data setwill be divided into two sets, which we
will refer to as theneta training seaind themeta test sefThe meta training set will
consist of several data sets, each of which wiltlvéded into training and test sets.
In order to compute the fitness of an individu&s, ¢orresponding candidate rule
induction algorithm will be used to discover cléissition rules from each of the
training sets in the meta training set, and theadisred rules will be used to classify
the corresponding test sets in the meta trainingTdes will produce a measure of
predictive accuracy for each data set in the nrataibg set. Those measures will
then be combined (e.g. by computing an arithmet&rage) to compute the overall
measure of predictive accuracy associated withcthradidate rule induction algo-
rithm. This overall measure of accuracy will bediss the fitness value of the indi-
vidual, for the purpose of selection in the evalnéry process. Therefore, the system
will enforce an evolutionary pressure to produceula induction algorithm that is
robust across all the data sets included in tha tnaining set.

The data sets that will compose the meta trainingan be chosen in two different
ways. First, one can choose data sets that arevasel as possible, from many dif-
ferent domains. This will emphasize the generalftthe evolved rule induction algo-
rithm, which was, presumably, the same approacmaaoually design and evaluate
most existing rule induction algorithms. Seconde aould instead favor the evolu-



tion of a rule induction algorithm that is tailoréat one kind of application domain,
by including on the meta training set only data setming from that domain.

Meta Traindrig Set

P Indisridmal #| Interface  Aromacy | Drata cet 1

e | OP i Tava

Finess
.

Induced Foule

Induction &lzorithea o
Drata set 1

Figure 3: Fitness evaluation in the GP for evolving rule iciilon algorithms

This process is illustrated in Figure 3. In ordecompute the individuals’ fithess
values, each individual will be converted into &erinduction algorithm, using an
interface that implements the functions and terisin&the individual in Java code.

At the end of the evolution, the best evolved ruduction algorithm will be
evaluated in another set of data sets, the metaegswhich contains data sets that
werenot used in the GP’s meta training set. Again, eacthefdata sets in the meta
test set will be divided into training and testsséthe evolved rule induction algo-
rithm will be used to discover rules from eachled training sets in the meta test set,
and the discovered rules will be used to clasdify ¢orresponding test sets in the
meta test set, providing the final measure of perémce (predictive accuracy) for the
automatically evolved rule induction algorithm. &y, the performance of the
evolved rule induction algorithm will be comparedhathe performance of other rule
induction algorithms applied to the same metagestThe rule induction algorithms
of WEKA [28] and/or Clementine will be used for cpamison in the experiments.

The experimental methodology just described hagyla tomputational cost. To
tackle this problem, we can implement techniquegdtinice computational costs, such
as using just a subset of the training sets (inntle¢a training set) in the fitness
evaluation — using random training-subset seleatiod/or “intelligent” training sub-
set selection [12].

5 Conclusions

As discussed earlier, this paper proposes to purstery ambitious goal, namely
to automatically design a full rule induction algom. We have identified GP as a
promising paradigm to pursue this goal, since GB alicitly designed to evolve
genericcomputer programs or algorithms for inductive ihéag. However, this origi-
nal goal of GP is still a distant goal, since cati®P algorithms for rule induction are
being used just to evolve a rule set dogiven specificlata set. This project aims to



go much further than this, by developing a GP ferf@rming algorithm induction
rather than justule setinduction.

Hence, this is an adventurous, risky research grojehich, if successful, will
pave the way for a new generation of more robusisiclerably less greedy rule in-
duction algorithms. In particular, an automaticadiyolved algorithm will, to a large
extent, be free from the human biases that areiditiplincorporated in current
manually-designed rule induction algorithms. Tkigxpected to lead to an improved
performance in complex data sets plagued by stattndpute interactions, since con-
ventional greedy rule induction algorithms do nope well with attribute interac-
tions.

This paper has outlined the design of the prop&@®din particular, the paper has
shown that, using prior knowledge in the form of tieneral structure of rule induc-
tion algorithms developed by human designers, wededine a suitable set of func-
tions and terminals that will be used by the GRwvolve rule induction algorithms.
We have also specified how to compute the fitnesstfon value of individuals (can-
didate rule induction algorithms) of the GP popolat using the novel concept of a
“meta training set” — formed byset ofdata sets.

The next steps of this research will consist ohief the design of the GP (a work
which is in hand), implementing it and evaluatihg performance of the evolved rule
induction algorithm. In particular, the automatigadesigned algorithm will be ex-
tensively compared with conventional, manually-geed algorithms, in order to
identify the strengths and weaknesses of the egaigorithm.
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