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Abstract. Rule induction is one of the techniques most used to extract knowl-
edge from data, since the representation of knowledge as if/then rules is very 
intuitive and easily understandable by problem-domain experts. Existing rule 
induction algorithms have been manually designed. In this era of increasing 
automation, Genetic Programming (GP) represents a powerful tool for auto-
matically evolving computer programs. This work proposes a genetic pro-
gramming algorithm for automatically evolving rule induction algorithms. 
Hence, the evolved rule induction algorithm will, to a large extent, be free from 
the human biases that are implicitly incorporated in current manually-designed 
algorithms (such as the typical use of a greedy search method). This is a very 
ambitious, adventurous goal, which, if successful, will pave the way for a new 
generation of more robust, considerably less greedy rule induction algorithms. 
In particular, an automatically evolved rule induction algorithm can be de-
signed to cope with attribute interaction better than current greedy rule induc-
tion algorithms, which will tend to lead to an improved performance in com-
plex data sets. 

1   Introduction 

“…We consider this trend to increase the automation of science to be both inevitable 
and desirable …”. With these words King et al [16] concluded their article about a 
new “robot scientist” for scientific discovery. The system works with biological data, 
and automatically generates hypotheses to explain observations, plans and physically 
executes experiments to test the hypotheses - using a laboratory robot, and interprets 
the results to falsify hypotheses inconsistent with the data. 

A task can be automated by programming a machine to follow, step by step, the 
process a trained human would follow to execute it, obtaining, at the end, the same or 
similar results. Despite the significant progress in the automation of data analysis 
tasks, it should be noted that the design of a machine learning or data mining algo-
rithm is still an essentially manual task. This holds true even for the above-mentioned 
robot scientist, where the machine learning algorithm used by the robot was manually 
designed by the researchers. 



In this era of increasing automation, it seems timely to ask the question: why not 
going one step further? Why not using a computer program to produce, as its output, 
a full machine learning algorithm? This is the intriguing topic of this paper, which 
proposes to develop a Genetic Programming (GP) algorithm for automatically evolv-
ing a rule induction algorithm. 

GP is a powerful tool for automatically evolving computer programs. In general, 
the program evolved by GP can produce the same solution humans use to solve the 
target problem, or something completely new, perhaps better than the “conventional” 
manually-designed solution. 

GP can be defined as “the direct evolution of programs or algorithms for the pur-
pose of inductive learning” [2]. GP is a kind of evolutionary algorithm (EA) that uses 
a set of functions and terminals, related to the domain of the problem to be solved, to 
represent candidate solutions for the problem. Nevertheless, while in most kinds of 
EAs an individual corresponds to a solution for one particular problem instance, in 
GP an individual should correspond to a general “recipe” for solving a given kind of 
problem. GP also uses a fitness function to evaluate the quality of the candidate solu-
tions, and the principle of natural selection to evolve better and better candidate solu-
tions to the target problem. GP will be reviewed in Section 3. 

Rule induction is one of the methods most used to extract knowledge from data. 
Although there are many other methods, like instanced based learning (e.g. k-nearest 
neighbor), statistical techniques (e.g. naïve bayes classifier), neural networks and 
support vector machines [28], they do not normally return to the user, as the output of 
the system, comprehensible knowledge. Therefore, rule induction algorithms are 
widely used because the representation of knowledge as if/then rules is very intuitive 
and easily understandable by problem-domain experts. 

In addition to the previously cited methods that are often used for classification, in 
the last few years there has been extensive research using GP for rule induction [12], 
[29]. However, the GP algorithms used in that kind of research, like many others 
proposed in the literature, do not really evolve computer programs. The outputs of 
those GPs are sets of rules specific to a given database, and cannot be applied to other 
databases. Hence, in the context of data mining, GP has been widely used for other 
purposes than evolving generic computer programs or algorithms for inductive learn-
ing – which, despite being the original goal of GP, is still a very open problem. 

This work proposes a GP algorithm for automatically evolving a rule induction al-
gorithm. The motivation for this goal is as follows. 

All current rule induction algorithms were manually developed by a human being, 
and so they inevitably incorporate a human bias. In particular, the idea of developing 
greedy algorithms was partially derived from the classical view of concepts in cogni-
tive psychology [11]. According to this classical view, categories are defined by a 
small set of attributes. All members of a category share these defining attributes, and 
no non-member shares them. In general the defining attributes are supposed to be 
largely independent (uncorrelated) of each other - i.e. there is little or no attribute 
interaction. (By attribute interaction we mean: consider three attributes Y, X1 and X2, 
where Y is the goal (class) attribute to be predicted and X1 and X2 are predictor at-
tributes. X1 and X2 interact when the direction or magnitude of the relationship 
between Y and X1 depends on the value of X2 [11].) 



This view is not currently the most acceptable in cognitive psychology, but it did 
influence the development of early rule induction algorithms, which were based on 
selecting one-attribute-value-at-a-time, in a greedy fashion, ignoring attribute interac-
tions. A machine-developed algorithm could completely change this kind of algo-
rithm bias, since “its bias” would be very different from the kind of algorithm bias 
imposed by a human algorithm designer. In particular, a machine-developed rule 
induction algorithm could cope better with attribute interaction, avoiding the greedy 
strategy of the vast majority of human-developed algorithms. This is important, be-
cause many complex real-world data sets are plagued by attribute interaction prob-
lems [9], [23], [24]. 

We emphasize that the automatic design of a full rule induction algorithm is a very 
ambitious, adventurous goal, which, if successful, will pave the way for a new gen-
eration of more robust, considerably less greedy rule induction algorithms. In particu-
lar, summarizing the above discussion, an automatically-evolved algorithm will, to a 
large extent, be free from the human biases that are implicitly incorporated in current 
manually-designed rule induction algorithms. This is expected to lead to an improved 
performance in complex data sets plagued by strong attribute interactions. 

The remainder of this paper is organized as follows. Section 2 presents a survey of 
rule induction algorithms. Section 3 presents the main concepts of Genetic Program-
ming, and Section 4 explains how the concepts of Sections 2 and 3 can be joined to 
automatically evolve a rule induction algorithm. Section 5 presents the conclusions 
and research directions to be followed. 

2   A Survey of Rule Induction Algorithms 

Rule induction algorithms, like most concept learners, were designed to acquire gen-
eral concepts from a set of training examples. In the context of the well-known classi-
fication task, which is the focus of this paper, each training example is represented by 
a set of predictor attributes and a goal (or class) attribute. The algorithm tries to find 
relationships between the predictor and the goal attributes, creating a model that can 
be later used to predict the value of the goal attribute of new examples. 

In the case of rule induction algorithms, the classification model is represented by 
a set of rules. A rule has the format IF cond1 AND cond2 … THEN conseq, where 
the conditions in the antecedent are described by associations between attributes and 
their values, and the consequent represents the predicted value for the goal attribute. 

Research about rule induction algorithms has been carried out for more than 30 
years. During this period, many inductive learners were developed. Almost all of 
them follow one of the three most common strategies used to induce rules from data 
[19]. The first strategy consists of generating a decision tree, using the divide and 
conquer strategy, and then extracting one rule for each leaf node of the tree, as in 
C4.5 Rules [21]. The second strategy is separate and conquer [28], found in the AQ 
algorithms [18], CN2 [5] and RIPPER [7]. The third is the use of evolutionary algo-
rithms, like genetic algorithms and genetic programming, to extract rules from data, 
such as GABIL [8], and the GP algorithms described in [12] and [29]. Some hybrid 
algorithms combining the first two techniques can also be found, like in PART [10]. 



The divide and conquer strategy [3], used by decision tree algorithms, constructs a 
decision tree using a top down, greedy search. It evaluates all the predictor attributes 
to verify how well each of them, individually, classifies the examples in the training 
set. The best attribute is selected as the root of the tree. For each possible value of the 
chosen attribute a sub-tree is generated. For each sub-tree, the next attribute is chosen 
considering only the examples of the training set whose attributes values satisfy the 
condition associated with the corresponding branch of the tree. The process is recur-
sively repeated until a stopping criterion is satisfied, e.g., until all examples in a leaf 
node belong to the same class or until the number of examples in a leaf node is 
smaller than a user-defined threshold. The class predicted by each leaf is determined 
by the most common class value found among the examples at that leaf. 

After the tree is generated, it is mapped to a set of rules, creating a new rule for 
each of the tree paths from the root to a leaf. After this step, the rules should be re-
fined, to avoid the major problem of decision tree representation: the replicate subtree 
problem [13]. This problem arises because decision tree learning algorithms cannot 
represent overlapping rules. Consequently, in some cases, the same subtree has to be 
learnt many times in different points of the tree. This problem also tends to make 
decision trees less comprehensible and more complex than sets of rules. 

The separate and conquer strategy generates sets of rules, instead of decision trees. 
It learns a rule from a training set, removes from it the examples covered by the rule, 
and recursively learns another rule that covers the remaining examples, until all ex-
amples are covered. It is the most common strategy used for rule induction algo-
rithms, and the methods based on this approach differ from each other in four main 
points: the representation of the candidate rules, the search mechanisms used to ex-
plore the space of candidate rules, the way the candidate rules are evaluated and the 
pruning method, although the last one can be absent. Note that this strategy is also 
greedy, learning one rule at a time, and it typically generates a rule by adding (remov-
ing) one condition at a time to (from) a current partial rule, as will be discussed later. 

Evolutionary algorithms (EA) are a completely different approach by comparison 
with the previous ones. Instead of using a greedy search, they use a global search to 
evolve a population of candidate solutions (each of them representing a rule or a set 
of rules), and explore the search space using the principle of natural selection (repro-
duction of the best individuals, i.e. of the best rules) and “genetic” operators (loosely 
inspired by natural genetics) such as crossover and mutation. 

Comparing the three strategies presented above, EAs have the advantage of per-
forming a more global search, avoiding one of the biggest problems of the greedy 
search: be trapped in a local optimal solution. In the context of a learning problem, 
this global search makes EAs cope better with attribute interaction [9], [12], [20]. On 
the other hand, EAs have the disadvantage that they are usually considerably slower 
than conventional, greedy rule induction algorithms. 

Although the majority of separate and conquer methods use a hill climbing ap-
proach, it is not difficult to extend them to use less greedy methods, like a beam 
search or a best-first search, improving the way they cope with attribute interaction. 
However, searching more exhaustively the search space increases the chances that the 
discovered rules overfit the training data. Studies reported in [22], [26] verified in 
different domains that a large beam width can lead to worse results than small ones. 



We now describe in more detail separate and conquer algorithms, since this is the 
kind of algorithm that will be automatically evolved by the GP proposed in this work. 
The separate and conquer approach was chosen because it is simple and easy to adapt, 
the generated rules are usually simpler and more comprehensible than those generated 
by divide and conquer methods, and it is more efficient (faster) than the EA-based 
approach. 

2.1 Separate and Conquer Algorithms 

As mentioned before, most of the rule induction algorithms based on the divide and 
conquer approach differ from each other with respect to four points, which will be 
discussed in the next items: the representation of the candidate rules, the search 
mechanism used to explore the space of candidate rules, the way the created rules are 
evaluated and the pruning method. 

The representation of the candidate rules. The rule representation has a significant 
influence in the learning process, since some concepts can be easily expressed in one 
representation but hardly expressed in others. In particular, rules can be represented 
using propositional or first order logic. Propositional rules are composed by selectors, 
which are associations between pairs of attribute-values, like age > 10, salary < 2000 
or sex = male. CN2, C4.5 rules, and RIPPER are examples of propositional rule 
algorithms. First order rules are more sophisticated, and can express relations 
between two attributes, generating rules with conditions such as x > y. FOIL, REP 
and PROGOL use this representation. 

When using a first order representation, the concepts are usually represented as 
Prolog relations, like father(x,y). Methods that use this Prolog representation are 
classified as Inductive Logic Programming (ILP) systems [17]. ILP uses the same 
principles of rule induction algorithms, essentially replacing the concepts of condi-
tions and rules by literals and clauses. In addition, ILP techniques allow the user to 
incorporate background knowledge about the problem, which helps to focus the 
search in promising areas of the search space. 

Moreover, the rule sets generated to describe a concept can be ordered or unor-
dered. Ordered rule sets are also know as decision lists. In the context of large rules 
sets, ordered rules are usually considered more difficult to understand than unordered 
ones, since in order to comprehend the last rule of a list all the previous ones must 
also be taken in consideration [5]. Since the knowledge generated by rule induction 
algorithms is usually analysed and validated by an expert, rules at the end of the list 
become very difficult to understand, particularly in very long lists. Hence, unordered 
rules are often favoured over ordered ones. 

The Search Mechanism. The search mechanism is composed by a search strategy 
and a search method. Broadly speaking, there are three kinds of search strategies, 
namely bottom-up, top-down or bi-directional strategy.  

A bottom-up strategy starts the search with a very specific rule, and iteratively 
generalizes it [14]. A top-down one, in contrast, starts with the most general rule and 



iteratively specializes it. A bi-directional search is allowed to generalize or specialize 
the candidate rules, according to the situation. 

The most common strategy used by separate and conquer algorithms is the top-
down one. The algorithm starts with a rule that covers all the training examples, and 
iteratively specializes it while some rule quality measure is optimized. This technique 
is used by algorithms of the AQ family, CN2, and Foil, among others. DLG [13] is 
one of the few algorithms that uses propositional logic and a bottom-up approach. 
SWAP-1 [27] follows the bi-directional strategy. 

Regarding to the search method, greedy and beam search are the most commonly 
applied methods, although best-first and stochastic methods can also be used. Greedy 
search is the most popular method. Greedy algorithms create a rule using one attrib-
ute, generalize/specialize it, evaluate the extended rules created by the generaliza-
tion/specialization operation, and keep just the best extended rule. This process is 
repeated until a stopping criterion is satisfied. Although they are fast and easy to 
implement, they have the well-known myopia problem: at each rule extension step, 
they make the best local choice, and cannot backtrack if later in the search the chosen 
path is not good enough to discriminate examples belonging to different classes. As a 
result, they do not cope well with attribute interaction. 

Beam search methods try to eliminate the drawbacks of greedy algorithms select-
ing, instead of 1, the b best extended rules at each iteration, where b is the width of 
the beam. Hence, they explore a larger portion of the search space than greedy meth-
ods, coping better with attribute interaction. Nevertheless, learning problems involv-
ing very complex attribute interactions (like parity problems [25]) are still a very 
difficult problem for beam search algorithms. 

Rule Evaluation. The way the candidate rules are evaluated can change completely 
the regions of the search space that are being explored. There are many heuristics 
current used by rule induction algorithms, each one with their own advantages and 
disadvantages. Fürnkranz [13] classified these evaluation heuristics in 4 categories: 

 
1. Heuristics that favor rules that cover as many positive examples and as few 

negative examples as possible. Some examples of these heuristics are accu-
racy, information content, entropy, Laplace estimate, etc. 

2. Heuristics that measure the complexity of the candidate solutions, like rule 
length, positive coverage or minimum description length. 

3. Heuristics based on gain, which compute the difference in the value of some 
heuristic function measured between the current rule and its predecessor, 
such as information gain or coverage gain. 

4. Weighted heuristics, which combines the previously described heuristics or 
adjusts the behavior of a single heuristic in a certain direction, e.g., J-
measure and weighted information gain. 



Pruning Methods. Combining the three elements discussed above, one can have 
many rule induction algorithms. But current methods, besides these elements, have 
other means to generate simpler and more accurate rules. Almost all of them 
implement a pruning technique, which helps to avoid over-fitting and to handle noisy 
data. These pruning techniques can be used during the production of the rules (pre-
pruning) or in a post processing step (post-pruning). 

Pre-pruning methods try to stop the refinement of the rules before they become too 
specific or over-fit the data. A statistical significance test is one of the criteria used to 
stop rule generalization/specification. It compares the observed class distribution 
among examples satisfying the rule with the expected distribution that would result if 
the rule had selected examples randomly. Other pruning criteria are minimum purity, 
encoding length restriction and cutoff stopping criterion [13]. 

Post-pruning methods try to improve the learned model after it has been con-
structed. It removes rules or rule conditions from the model, preserving or improving 
the predictive accuracy in the training set. Among the most used post-pruning tech-
niques are reduced pruning error (REP) [4] and GROW [6]. 

I-REP and its improved version, RIPPER, are well known rule induction methods, 
and they work integrating pre- and post-pruning techniques. Their rule pruning tech-
niques follow the same principles of REP, but they prune each rule after it is created, 
instead of waiting for the complete model to be generated. 

Pre-pruning techniques are more efficient (faster) than post-pruning techniques, 
but post-pruning usually finds models with higher accuracy and simpler rules than 
pre-pruning. Intuitively, this is due to the fact that post-pruning has more information 
(the complete learned model) available to make decisions, and so it tends to be less 
“shortsighted” than pre-pruning. In any case, many post-pruning techniques are still 
greedy, by removing one condition at a time from a rule. 

2.2 A Generic Specification of Rule Induction Algorithms 

The concepts described in the previous section represent the essential elements of a 
rule induction algorithm. Considering these elements, it is possible to specify a gen-
eral, high-level pseudo-code describing rule induction algorithms based on the sepa-
rate and conquer approach. This task was previously executed by Fürnkranz [13], 
which proposed the generic pseudo-code shown in Algorithm 1 for separate and con-
quer rule induction algorithms: 
 
Procedure SeparateAndConquer (Examples) 
Theory = ∅ 
While POSITIVE(Examples) ≠ ∅ 
   Rule = FindBestRule(Examples) 
   Covered = Cover(Rule, Examples) 
   If RuleStoppingCriterion(Theory, Rule, Examples) 
  Exit while 
   Examples = Examples \ Covered 
   Theory = Theory ∪ Rule 
Theory = PostProcess (Theory) 
return(Theory) 



 
Procedure FindBestRule(Examples) 
InitRule = InitializeRule(Examples) 
InitVal = EvaluateRule(InitRule) 
BestRule = <InitVal, InitRule> 
Rules = {BestRule} 
While Rules ≠ ∅ 
   Candidates = SelectCandidates(Rules, Examples) 
   Rules = Rules \ Candidates 
   For Candidate ∈ Candidates 

Refinements = RefineRule(Candidate, Examples) 
For Refinement ∈ Refinements 
   Evaluation = EvaluateRule(Refinement, Examples) 
   unless StoppingCriterion(Refinement, Evalua-
tion, Examples) 
  New Rule = <Evaluation, Refinement> 
  Rules = InsertSort(NewRule, Rules) 
  If NewRule > BestRule 
    NewRule = BestRule 

   Rules = FilterRules(Rules, Examples) 
return(BestRule) 

Algorithm 1: A general pseudo-code for rule induction algorithms [13] 

The vast majority of rule induction algorithms that follow the separate and conquer 
approach can be instantiated following the pseudo-code of Algorithm 1. Below we 
describe how this pseudo-code can be implemented to originate the 4 basic elements 
of rule induction algorithms. 

1. Search mechanism – This involves both the search strategy and the search 
method. The search strategy is implemented through the procedures: 
• InitializeRules, which specifies if the initial rule should be a very ge-

neric rule (with an empty antecedent), a very specific rule (derived 
from a “seed” example) or another possibility in between those two. 

• RefineRules, which determines if the current rule should be general-
ized or specialized, where the chosen operation should be consistent 
with the kind of initial rule specified in the InitializeRules procedure. 

The search method(s) is(are) defined using SelectCandidates and Fil-
terRules.  
• SelectCandidates – This procedure selects the subset of rules that will 

be generalized/specialized. A somewhat generic way of specifying 
this procedure consists of referring to a beam search. Then a specific 
search method can be obtained by instantiating the parameter b, the 
beam width. For instance, if b is set to 4, the best 4 rules will be se-
lected to be refined. Note that a greedy search method can be ob-
tained by setting the parameter b to 1. 

• FilterRules – This procedure can use either the same search method 
as SelectCandidates or a different search method. The specification 
of the search method can be done in similar ways in both procedures. 



2. Representation of candidate rules –This element is implemented by the 
RefineRules procedure, since it determines which kind of conditions can 
be added to the candidate rules. 

3. Rule Evaluation – This element is directly defined by the procedure 
EvaluateRule, which determines the rule-quality measure that will be used 
in rule evaluation. 

4. Pruning Methods – This element is determined by two procedures, 
namely StoppingCriterion, which implements pre-pruning methods – i.e., 
it determines when to stop refining the rules – and PostProcessing, which 
implements post-pruning methods. 

 
This general pseudo-code summarizes, in a very concise fashion, the general struc-

ture of the vast majority of rule induction algorithms manually designed by machine 
learning researchers. Hence, this “prior knowledge” could be given to a GP algo-
rithm, which would work out how to automatically develop new rule induction algo-
rithms based on this information, as explained in Section 4. 

3.   Overview of Genetic Programming 

Evolutionary Algorithms (EAs) are stochastic search methods inspired by the Dar-
winian concepts of evolution and survival of the fittest. They became very popular in 
many kinds of problems, like function optimization and several machine learning 
tasks, due to their domain-independent nature and their robust global search mecha-
nism - with its associated implicit parallelism and noise tolerance [1], [15].  

In essence, an EA evolves a population of individuals, where each individual is a 
candidate solution for the target problem. At each generation, the individuals are 
evaluated according to a fitness function. The best individuals are selected to repro-
duce, and undergo crossover and mutation procedures in order to produce new off-
spring (new candidate solutions) that inherit some features from their parents. The 
evolutionary process is iteratively performed until a stopping criterion is satisfied, 
such as a maximum number of generations is reached or an optimal solution is found.  

Four major kinds of EA are genetic algorithms, genetic programming, evolutionary 
strategies and evolutionary programming [1]. This section briefly discusses genetic 
programming (GP), which is the main kind of EA designed to evolve programs.  

Hence, GP is a kind of EA where the individuals being evolved are computer pro-
grams. As defined by Banzhaf [2], GP is “the direct evolution of programs or algo-
rithms for the purpose of inductive learning”. 

When designing a GP system, some elements have to be considered: the set of 
functions and terminals that will be used to create the GP population, the representa-
tion of the individuals, and the fitness function used to measure the quality of the 
candidate solutions. In addition, crossover and mutation operators have to be de-
signed according to the individual's representation, and a method for selection of the 
best individuals has to be implemented. The next sections explain the main concepts 
involved in the design of these elements. 



3.1 Functions and terminals 

The functions and terminals are the primitives with which a program in GP is built. 
Terminals provide a value to the system while functions process a value already in the 
system [2]. 

The terminals are usually constants, variables and/or zero-argument functions. The 
function set can be composed of many types of functions. The most common ones are 
the boolean and arithmetical functions, but the function set can also have conditional 
and/or loop statements and subroutines. The subroutines allow any kind of operation 
to be added to the function set. 

No matter which or how many functions there are in the function set, all of them 
have to respect the closure property. This property states that every function has to be 
able to handle all the values it receives as input. Thus a division operator, for exam-
ple, has to be modified to cope with division by zero – this is often implemented by 
making the operator return a given value, rather than an error, in case of division by 
zero. 

Although the programmer has a lot of freedom to choose the function set, it should 
not have many functions, because the more functions the greater the search space. 

3.2 Individual Representation 

Recall that GP algorithms evolve a population of individuals, where each individual 
represents a solution for the target problem. If we are developing, for example, a GP 
for discovering rules in a specific data set, each GP individual will represent a set of 
candidate rules for that data set. There are two types of representations that are most 
used in the literature [2]: the first one represents an individual as a linear structure and 
the second as a tree. 

A linear representation is simply a sequence of commands that are executed from 
left to right, while in a tree representation the execution of the tree is usually made in 
postfix order (reading the leftmost node of the tree). These conventions can be 
changed depending on the functions included in the function set. 

Figure 1 shows individual representations using linear and tree-based genomes for 
a regression problem (where the goal would be to find the equation of the curve with 
the best fit to a set of data points). In the example of that figure the individuals repre-
sent the candidate solution (equation) x2 + 2. In this example, x and 2 are terminals, 
and *  and +  are functions. 

3.3 Fitness function and Selection Methods 

After the GP population is initialized (usually randomly), individuals are evaluated 
using a fitness function. This function measures how well the individual solves the 
target problem. It is used to determine which individuals will reproduce and have 
parts of their genetic material (i.e., parts of their candidate solution) passed onto the 
next generation. 



 

Figure 1: Examples of tree-based and linear-based individual representation 

The better the fitness of an individual, the higher the probability of that individual 
being selected for reproduction. There are many selection methods, such as fitness-
proportional selection, ranking selection and tournament selection. Tournament selec-
tion, for example, randomly gets a pre-defined number of individuals from the popu-
lation and simulates a tournament among them. Typically, the individual with the best 
fitness is declared the winner of the tournament and is therefore selected for repro-
duction, crossover and mutation. 

3.4 Crossover and Mutation Operators  

Crossover swaps genetic material (parts of candidate solutions) between two indi-
viduals, whereas mutation replaces some part of the genetic material of an individual 
with a new randomly-generated genetic material. These two operations are applied 
with user-specified probabilities. The basic idea of these operators is as follows. 

Crossover re-combines the genetic material of two parent individuals (which have 
been previously selected, as discussed in section 3.3), in order to produce two new 
children. If the individuals are represented by trees, randomly-selected subtrees are 
swapped between the two parents. In the case of linear genomes, randomly-selected 
linear segments of code are swapped. 

Unlike crossover, mutation acts on a single parent individual of the population. It 
randomly selects a subtree of the tree-based genome or a segment of code in linear 
genomes and replaces it by a new randomly-generated subtree or code segment. 

Both crossover and mutation operations can be implemented in many ways – see 
[2] for a detailed review of these operators. 

4.   Designing a Genetic Programming Algorithm for Automatically 
Evolving Rule Induction Algorithms 

As mentioned earlier, this work proposes the use of GP to automatically evolve a rule 
induction algorithm. The most important aspects of the design of a new GP algorithm 
to solve this problem are: a) the definition of a function set and a terminal set suitable 
for representing a candidate rule induction algorithm, b) the design of a fitness func-



tion suitable for evaluating a rule induction algorithm. These aspects are discussed in 
the next subsections. 

4.1 The Function Set and the Terminal Set 

The function set will be divided into two subsets. The first one will have functions 
that control the processing flow of the algorithm being evolved (like IF-THEN state-
ments and FOR/WHILE loops), and the second one will include functions that are 
specific to rule induction algorithms. 

This second subset of functions will be developed in two stages. In the first stage, 
very general, high-level functions will be used. This set of general functions will be 
based on pseudo-codes that specify a base algorithm for rule induction, and that can 
be instantiated to produce virtually any method based on the separate and conquer 
approach. A general pseudo-code with this characteristic was already designed by 
[13], as reviewed in subsection 2.2, and it will be used as a starting point for this task. 
In this first phase, functions like selectCandidates(rules,examples), refineRule(rule) 
and evaluateRule(rule) will compose the function set. In a second stage, these general 
functions will be refined, and replaced by lower level ones, such as calculateInforma-
tionGain(r), generateContingenceTable(r), setBeamWidth(b), countCoveredExam-
ples(r), etc. 

The terminal set will be composed by a set of reserved words of programming lan-
guages, such as “if, while, for, repeat”, a set of operators, like “+, =, - >, <”, a set of 
variables, some delimiters like “( , )”  and a set of constants, that will be used to set the 
values of the parameters of some functions, like the width of the beam search. 

In our system, each individual will correspond to a candidate rule induction algo-
rithm. An individual will be represented by a tree structure, and grammar-based GP 
will be used to evolve the rule induction algorithm. In essence, grammar-based GP is 
a kind of GP where a grammar’s set of production rules is used to create the initial 
population of individuals and genetic operators produce new individuals respecting 
the grammar’s production rules [29]. Grammar-based GP is highly recommended 
when one has some kind of prior knowledge of the problem domain to guide the GP 
search. Hence, in our system each individual will consists of a derivation tree, created 
by applying the production rules defined in the grammar. An example of a fragment 
of an individual is shown in Figure 2. 

In Figure 2, the productions of the grammar appear in bold, and the terminal sym-
bols in italic. The functions belonging to the function set, as FindBestRule, are speci-
fied through grammar productions.  

The derivation tree of Figure 2 represents the code 
“while (PositiveExamples <> 0) 
       Rule = FindBestRule… 
endwhile”, 

which would be part of a larger individual representing an entire rule induction algo-
rithm. Note that FindBestRule is not a terminal, and will be also extended. 

 



 

Figure 2: Fragment of an Individual, represented as a derivation tree 

4.2 Fitness Evaluation 

We emphasize that the goal of this paper is to evolve a generic rule induction algo-
rithm, rather than just a rule set for a particular data set. This implies that the fitness 
function has to involve a measure of performance (e.g. predictive accuracy) of an 
individual (a candidate rule induction algorithm) across many data sets. Also, after 
the GP has run, the best evolved rule induction algorithm will have its performed 
evaluated on a separate set of data sets (unseen during the training of the GP). 

More precisely, the entire set of data sets will be divided into two sets, which we 
will refer to as the meta training set and the meta test set. The meta training set will 
consist of several data sets, each of which will be divided into training and test sets. 
In order to compute the fitness of an individual, its corresponding candidate rule 
induction algorithm will be used to discover classification rules from each of the 
training sets in the meta training set, and the discovered rules will be used to classify 
the corresponding test sets in the meta training set. This will produce a measure of 
predictive accuracy for each data set in the meta training set. Those measures will 
then be combined (e.g. by computing an arithmetic average) to compute the overall 
measure of predictive accuracy associated with the candidate rule induction algo-
rithm. This overall measure of accuracy will be used as the fitness value of the indi-
vidual, for the purpose of selection in the evolutionary process. Therefore, the system 
will enforce an evolutionary pressure to produce a rule induction algorithm that is 
robust across all the data sets included in the meta training set. 

The data sets that will compose the meta training set can be chosen in two different 
ways. First, one can choose data sets that are as diverse as possible, from many dif-
ferent domains. This will emphasize the generality of the evolved rule induction algo-
rithm, which was, presumably, the same approach to manually design and evaluate 
most existing rule induction algorithms. Second, one could instead favor the evolu-



tion of a rule induction algorithm that is tailored for one kind of application domain, 
by including on the meta training set only data sets coming from that domain. 

 

 

Figure 3: Fitness evaluation in the GP for evolving rule induction algorithms 

This process is illustrated in Figure 3. In order to compute the individuals’ fitness 
values, each individual will be converted into a rule induction algorithm, using an 
interface that implements the functions and terminals of the individual in Java code.  

At the end of the evolution, the best evolved rule induction algorithm will be 
evaluated in another set of data sets, the meta test set, which contains data sets that 
were not used in the GP’s meta training set. Again, each of the data sets in the meta 
test set will be divided into training and test sets. The evolved rule induction algo-
rithm will be used to discover rules from each of the training sets in the meta test set, 
and the discovered rules will be used to classify the corresponding test sets in the 
meta test set, providing the final measure of performance (predictive accuracy) for the 
automatically evolved rule induction algorithm. Finally, the performance of the 
evolved rule induction algorithm will be compared with the performance of other rule 
induction algorithms applied to the same meta test set. The rule induction algorithms 
of WEKA [28] and/or Clementine will be used for comparison in the experiments. 

The experimental methodology just described has a high computational cost. To 
tackle this problem, we can implement techniques to reduce computational costs, such 
as using just a subset of the training sets (in the meta training set) in the fitness 
evaluation – using random training-subset selection and/or “intelligent” training sub-
set selection [12]. 

5 Conclusions 

As discussed earlier, this paper proposes to pursue a very ambitious goal, namely 
to automatically design a full rule induction algorithm. We have identified GP as a 
promising paradigm to pursue this goal, since GP was explicitly designed to evolve 
generic computer programs or algorithms for inductive learning. However, this origi-
nal goal of GP is still a distant goal, since current GP algorithms for rule induction are 
being used just to evolve a rule set for a given specific data set. This project aims to 



go much further than this, by developing a GP for performing algorithm induction, 
rather than just rule set induction. 

Hence, this is an adventurous, risky research project, which, if successful, will 
pave the way for a new generation of more robust, considerably less greedy rule in-
duction algorithms. In particular, an automatically-evolved algorithm will, to a large 
extent, be free from the human biases that are implicitly incorporated in current 
manually-designed rule induction algorithms. This is expected to lead to an improved 
performance in complex data sets plagued by strong attribute interactions, since con-
ventional greedy rule induction algorithms do not cope well with attribute interac-
tions. 

This paper has outlined the design of the proposed GP. In particular, the paper has 
shown that, using prior knowledge in the form of the general structure of rule induc-
tion algorithms developed by human designers, we can define a suitable set of func-
tions and terminals that will be used by the GP to evolve rule induction algorithms. 
We have also specified how to compute the fitness function value of individuals (can-
didate rule induction algorithms) of the GP population, using the novel concept of a 
“meta training set” – formed by a set of data sets. 

The next steps of this research will consist of refining the design of the GP (a work 
which is in hand), implementing it and evaluating the performance of the evolved rule 
induction algorithm. In particular, the automatically-designed algorithm will be ex-
tensively compared with conventional, manually-designed algorithms, in order to 
identify the strengths and weaknesses of the evolved algorithm. 
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