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Abstract. In the last few years, the data mining community has proposed a 
number of objective rule interestingness measures to select the most interesting 
rules, out of a large set of discovered rules. However, it should be recalled that 
objective measures are just an estimate of the true degree of interestingness of a 
rule to the user, the so-called real human interest. The latter is inherently 
subjective. Hence, it is not clear how effective, in practice, objective measures 
are. More precisely, the central question investigated in this paper is: “how 
effective objective rule interestingness measures are, in the sense of being a 
good estimate of the true, subjective degree of interestingness of a rule to the 
user?” This question is investigated by extensive experiments with 11 objective 
rule interestingness measures across eight real-world data sets. 

1   Introduction 
Data mining essentially consists of extracting interesting knowledge from real-

world data sets. However, there is no consensus on how the interestingness of 
discovered knowledge should be measured. Indeed, most of the data mining literature 
still avoids this thorny problem and implicitly interprets “interesting” as meaning just 
“accurate” and sometimes also “comprehensible”. Although accuracy and 
comprehensibility are certainly important, they are not enough to measure the real, 
subjective interestingness of discovered knowledge to the user. Consider, e.g., the 
classic example of the following rule: IF (patient is pregnant) THEN (patient is 
female). This rule is very accurate and comprehensible, but it is not interesting, since 
it represents an obvious pattern. As a real-world example, [8] reports that less than 
1% of the discovered rules were found to be interesting to medical experts. It is also 
possible that a rule be interesting to the user even though it is not very accurate. For 
instance, in [9] rules with an accuracy around 40%-60% represented novel knowledge 
that gave new insights to medical doctors. Hence, there is a clear motivation to 
investigate the relationship between rule interestingness measures and the subjective 
interestingness of rules to the user – an under-explored topic in the literature. 

Rule interestingness measures can be classified into two broad groups: user-driven 
(subjective) and data-driven (objective) measures. User-driven measures are based on 
comparing discovered rules with the previous knowledge or believes of the user. A 
rule is considered interesting, or novel, to the extent that it is different from the user’s 
previous knowledge or believes. User-driven measures have the advantage of being a 
direct measure of the user’s interest in a rule, but they have a twofold disadvantage. 
First, they require, as input, a specification of the user’s believes or previous 



knowledge – a very time-consuming task to the user. Second, they are strongly 
domain-dependent and user-dependent. To avoid these drawbacks, the literature has 
proposed more than 40 data-driven rule interestingness measures [5], [7], [3]. These 
measures estimate the degree of interestingness of a rule to the user in a user-
independent, domain-independent fashion, and so are much more generic. Data-
driven measures have, however, the disadvantage of being an indirect estimate of the 
true degree of interestingness of a rule to the user, which is an inherently subjective 
interestingness. 

This begs a question rarely addressed in the literature: how effective data-driven 
rule interestingness measures are, in the sense of being a good estimate of the true, 
subjective degree of interestingness of a rule to the user? The vast majority of works 
on data-driven rule interestingness measures ignore this question  because they do not 
even show the rules to the user. A notable exception is the interesting work of [5], 
which investigates the effectiveness of approximately 40 data-driven rule 
interestingness measures, by comparing their values with the subjective values of the 
user’s interest – what they called real human interest. Measuring real human interest 
involves showing the rules to the user and ask her/him to assign a subjective 
interestingness score to each rule. Therefore, real human interest should not be 
confused with the above-mentioned user-driven rule interestingness measures.  

This paper follows the same general line of research. We investigate the 
effectiveness of 11 data-driven rule interestingness measures, by comparing them 
with the user’s subjective real human interest. Although we investigate a smaller 
number of rule interestingness measures, this paper extends the work of [5] by 
presenting results for eight data sets, whereas [5] did experiments with just one 
medical data set, a limitation from the point of view of generality of the results.  

2  Objective (Data-Driven) Rule Interestingness Measures 
This work involves 11 objective rule interestingness measures – all of them used to 

evaluate classification rules. Due to space limitations we mention here a brief 
definition of each of those measures – which are discussed in more detail in the 
literature. The measures defined by formulas (1)–(8) [5], [7] are based on the 
coverage and accuracy of a rule. Their formulas are expressed using a notation where 
A denotes the rule antecedent; C denotes the rule consequent (class); P(A) denotes the 
probability of A – i.e., the number of examples satisfying A divided by the total 
number of examples; P(C) denotes the probability of C; “¬A” and “¬C” denote the 
logical negation of A and C. The measures defined by formulas (9)-(11) [2] use the 
same notation of A and C to denote a rule’s antecedent and consequent, but they also 
involve heuristic principles based on variables other than a rule’s coverage and 
accuracy.  

The Attribute Surprisingness measure – formula (9) – is based on the idea that the 
degree of surprisingness of an attribute is estimated as the inverse of its information 
gain. The rationale for this measure is that the occurrence of an attribute with a high 
information gain in a rule will not tend to be surprising to the user, since users often 
know the most relevant attributes for classification. However, the occurrence of an 
attribute with a low information gain in a rule tends to be more surprising, because 
this kind of attribute is usually considered little relevant for classification. In formula 



(9), Ai denotes the attribute in the i-th condition of the rule antecedent A, m is the 
number of conditions in A, and #classes is the number of classes.  

Φ-Coefficiente = (P(A,C)-P(A)P(C))/√P(A)P(C)(1-P(A))(1-P(C)) (1) 

Odds Ratio = P(A,C)P(¬A,¬C)/P(A,¬C)P(¬A,C) (2) 

Kappa=(P(A,C)+P(¬A,¬C)-P(A)P(C)-P(¬A)P(¬C)) 

                                  / (1-P(A)P(C)-P(¬A)P(¬C)) 

(3) 

Interest = P(A,C)/(P(A)*P(C)) (4) 

Cosine = P(A,C) / √(P(A)*P(C)) (5) 

Piatetsky-Shapiro’s = P(A,C)-P(A)P(C) (6) 

Collective Strength = ((P(A,C)+P(¬A,¬C))/(P(A)P(C)+P(¬A)P(¬C))) *  

                                     ((1-P(A)P(C) – P(¬A)P(¬C))/(1-P(A,C)-P(¬A,¬C)) 

(7) 

Jaccard = P(A,C) / (P(A)+ P(C) – P(A,C) (8) 
                                                          m 

Attribute Surprisingness = 1 – ( ( Σ InfoGain(Ai) / m ) / log2(#classes) ) 
                                                     i=1 

(9) 

MinGen = N / m (10) 

InfoChange-ADT = IAB1 - IABo (11.1) 

IABo = (- Pr(X|AB) log 2 Pr(X|AB) +  (- Pr(¬X |AB) log 2 Pr(¬X |AB))) (11.2) 

IAB1 = – Pr(X|AB) [log 2 Pr(X|A) + log 2 Pr(X|B)] 
                                 – Pr(¬X |AB) [log 2 Pr(¬X|A)+ log 2 Pr(¬X|B)] 

(11.3) 

The MinGen measure – formula 10 –considers the minimum generalizations of the 
current rule r and counts how many of those generalized rules predict a class different 
from the original rule r. Let m be the number of conditions (attribute-value pairs) in 
the antecedent of rule r. Then rule r has m minimum generalizations. The k-th 
minimum generalization of r, k=1,...m, is obtained by removing the k-th condition 
from r. Let C be the class predicted by the original rule r (i.e., the majority class 
among the examples covered by the antecedent of r) and Ck be the class predict by the 
k-th minimum generalization of r (i.e., the majority class of the examples covered by 
the antecedent of the k-th minimum generalization of r). The system compares C with 
each Ck, k=1,…, m, and N is defined as the number of times where C is different from 
Ck. 

InfoChange-ADT (Adapted for Decision Trees) is a variation of the InfoChange 
measure proposed by [4]. Let A → C be a common sense rule and A, B → ¬ C be an 
exception rule. The original InfoChange measure computes the interestingness of an 
exception rule based on the amount of change in information relative to common 
sense rules. In formulas (11.1), (11.2) and (11.3), IABo denotes the number of bits 
required to describe the specific rule AB → C in the absence of knowledge 
represented by the generalized rules A → C and B → C, whereas IAB1 is the 



corresponding number of bits when the relationship between C and AB is rather 
described by the two rules A → C and B → C. One limitation of the original 
InfoChange measure is that it requires the existence of a pair of exception and 
common sense rules, which is never the case when converting a decision tree into a 
set of rules – since the derived rules have mutually exclusive coverage. In order to 
avoid this limitation and make InfoChange useful in our experiments, the new version 
InfoChange-ADT is introduced in this paper, as follows. A path from the root to a 
leaf node corresponds to an exception rule. The common sense rule for that exception 
rule is produced by removing the condition associated with the parent node of the leaf 
node. This produces a common sense rule which is “the minimum generalization” of 
the exception rule. Even with this modification, InfoChange-ADT still has the 
limitation that its value cannot always be computed, because sometimes the minimum 
generalization of an exception rule predicts the same class as the exception rule, 
violating the conditions for using this measure.  

For all the 11 rule interestingness measures previously discussed, the higher the 
value of the measure, the more interesting the rule is estimated to be.  

3  Data Sets and Experimental Methodology 
In order to evaluate the correlation between objective rule interestingness 

measures and real, subjective human interest, we performed experiments with 8 data 
sets. Public domain data sets from the UCI data repository are not appropriate for our 
experiments, simply because we do not have access to any user who is an expert in 
those data sets. Hence, we had to obtain real-world data sets where an expert was 
available to subjectively evaluate the interestingness of the discovered rules. Due to 
the difficult of finding available real-world data and expert users, our current 
experiments involved only one user for each data set. This reduces the generality of 
the results in each data set, but note that the overall evaluation of each rule 
interestingness measure is (as discussed later) averaged over 8 data sets and over 9 
rules for each data set, i.e. each of the 11 measures is evaluated over 72 rule-user 
pairs. The 8 data sets are summarized in Table 1. Next, we describe the five steps of 
our experimental methodology. 

Table 1. Characteristics of data sets used in the experiments 

Data Set Nature of Data # Examp. # Attrib. 
CNPq1 Researchers’ productivity (# publications), data 

from the Brazilian Research Council (CNPq) 
5690 23 

ITU Patients in Intensive Care Unit 7451 41 
UFPR-CS Students’ performance in comp. sci. admiss. exam 1181 48 
UFPR-IM Students’ performance in info. manag. admis. exam 235 48 
UTP-CS Comp. Sci. students’ end of registration 693 11 
Curitiba Census data for the city of Curitiba, Brazil 843 43 
Londrina Census data for the city of Londrina, Brazil 4115 42 
Rio Branco Census data for city of Rio Branco do Ivai, Brazil 223 43 

Step 1 – Discovery of classification rules using several algorithms 
We applied, to each data set, 5 different classification algorithms. Three of them 

are decision-tree induction algorithms (variants of C4.5 [6]), and two are genetic 



algorithms (GA) that discover classification rules. In the case of the decision tree 
algorithms, each path from the root to a leaf node was converted into an IF-THEN 
classification rule as usual [6]. A more detailed description of the 5 algorithms can be 
found in [1], where they are referred to as default C4.5, C4.5 without pruning, 
“double C4.5”, “Small-GA”, “Large-GA”. The Rule Interestingness (RI) measures 
were applied to each of the discovered rules (after all the classification algorithms 
were run), regardless of which classification algorithm generated that rule.  
Step 2 – Ranking all rules based on objective rule interestingness measures 

For each data set, all classification rules discovered by the 5 algorithms are ranked 
based on the values of the 11 objective RI measures, as follows. First, for each rule, 
the value of each of the 11 RI measures is computed. Second, for each RI measure, all 
discovered rules are ranked according to the value of that measure. I.e., the rule with 
the best value of that RI measure is assigned the rank number 1, the second best rule 
assigned the rank number 2, and so. This produces 11 different rankings for the 
discovered rules, i.e., one ranking for each RI measure. Third, we compute an 
average ranking over the 11 rankings, by assigning to each rule a rank number which 
is the average of the 11 rank numbers originally associated with that rule. This 
average rank number is then used for the selection of rules in the next step. 
Step 3 – Selection of the rules to be shown to the user 

Table 2 shows, for each data set, the total number of rules discovered by all the 5 
algorithms applied to that data set. It is infeasible to show a large number of 
discovered rules to the user. Hence, we asked each user to evaluate the subjective 
degree of interestingness of just 9 rules out of all rules discovered by all algorithms. 
The set of 9 rules showed to the user consisted of: (a) the three rules with the lowest 
rank number (i.e., rules with rank 1, 2, 3, which were the three most interesting rules 
according to the objective RI measures); (b) the three rules with the rank number 
closest to the median rank (e.g., if there are 15 rules, the three median ranks would be 
7, 8, 9); and (c) the three rules with the highest rank number (least interesting rules). 
The selection of rules with the lowest, median and highest rank numbers creates three 
distinct groups of rules which ideally should have very different user-specified 
interestingness scores. The correlation measure calculated over such a broad range of 
different objective ranks is more reliable than the correlation measure that would be 
obtained if we selected instead 9 rules with very similar objective ranks. 

Table 2. Total number of discovered rules for each data set 

Data 
Set: 

CNPq1 ITU UFPR-
CS 

UFPR-
IM 

UTP-
CS 

Curitiba Londrina Rio Branco 
do Ivai 

# Rules: 20,253 6,190 1,345 232 2,370 1,792 1,261 486 

Step 4 – Subjective evaluation of rule interestingness by the user 
For each data set, the 9 rules selected in step 3 were shown to the user, who 

assigned a subjective degree of interestingness to each rule. The user-specified score 
can take on three values, viz.: <1> – the rule is not interesting, because it represents a 
relationship known by the user; <2> – the rule is somewhat interesting, i.e., it 
contributes a little to increase the knowledge of the user; <3> – the rule is truly 
interesting, i.e., it represents novel knowledge, previously unknown by the user. 



Step 5 – Correlation between objective and subjective rule interestingness 
We measured the correlation between the rank number of the selected rules – 

based on the objective RI measures – and the subjective RI scores – <1>, <2>, <3> – 
assigned by the user to those rules. As a measure of correlation we use the Pearson 
coefficient of linear correlation, with a value in [–1...+1], computed using SPSS. 

4  Results 
Table 3 shows, for each data set, the correlation between each objective RI 

measure and the corresponding subjective RI score assigned by the user. These 
correlations are shown in columns 2 through 9 in Table 3, where each column 
corresponds to a data set. To interpret these correlations, recall that the lower the 
objective rank number the more interesting the rule is estimated to be, according to 
the objective RI measure; and the higher the user’s subjective score the more 
interesting the rule is to the user. Hence, an ideal objective RI measure should behave 
as follows. When a rule is assigned the best possible subjective score (<3>) by the 
user, the RI measure should assign a low rank number to the rule. Conversely, when a 
rule is assigned the worst possible subjective score (<1>) by the user, the RI measure 
should assign a high rank number to the rule. Therefore, the closer the correlation 
value is to –1 the more effective the corresponding objective RI measure is in 
estimating the true degree of interestingness of a rule to the user. In general a 
correlation value ≤ –0.6 can be considered a strong negative correlation, which means 
the objective RI measure is quite effective in estimating the real human interest in a 
rule. Hence, in Table 3 all correlation values ≤ –0.6 are shown in bold. 

In columns 2 through 9 of Table 3, the values between brackets denote the ranking 
of the RI measures for each data set (column). That is, for each data set, the first rank 
(1) is assigned to the smallest (closest to –1) value of correlation in that column, the 
second rank (2) is assigned to the second smallest value of correlation, etc. Finally, 
the last column of Table 3 contains the average rank number for each RI measure – 
i.e., the arithmetic average of all the rank numbers for the RI measure across all the 
data sets. The numbers after the symbol “±” are standard deviations. 

Two cells in Table 3 contain the symbol “N/A” (not applicable), rather than a 
correlation value. This means that SPSS was not able to compute the correlation in 
question because the user’s subjective RI scores were constant for the rules evaluated 
by the user. This occurred when only a few rules were shown to the user. In general 
each correlation was computed considering 9 rules selected shown to the user, as 
explained earlier. However, in a few cases the value of a given objective RI measure 
could not be computed for most selected rules, and in this case the rules without a 
value for an objective RI measure were not considered in the calculation of the 
correlation for that measure. For instance, the N/A symbol in the cell for InfoChange-
ADT and data set UFPR-CS is explained by the fact that only 2 out of the 9 selected 
rules were assigned a value of that objective RI measure, and those two rules had the 
same subjective RI score assigned by the user.  

As shown in Table 3, the strength of the correlation between an objective RI 
measure and the user’s subjective RI score is quite dependent on the data set. In three 
data sets – namely UFPR-CS, UTP-CS and UFPR-IM – the vast majority of the 



objective RI measures were quite effective, having a strong correlation (≤ –0.6, 
shown in bold) with the user’s true degree of interestingness in the rules. On the other 
hand, in each of the other five data sets there was just one objective RI measure that 
was effective, and in most cases the effective measure (with correlation value shown 
in bold) was different for different data sets. Correlation values that are very strong (≤ 
–0.9) are rarer in Table 3, but they are found for five RI measures in the UFPR-CS 
data set, and for one or two RI measures in three other data sets.  

Table 3. Correlations between objective rule interestingness measures and real human interest; 
and ranking of objective rule interestingness measures based on these correlations 

Data Set 
Rule interestingness 
measure ITU 

UFP
R-CS 

UTP-
CS 

Curiti
ba 

UFP
R-IM 

Lond
rina 

CNP
q1 

Rio 
Bran 

Avg. 
Rank 

Φ-Coefficient 
-0.63  
(1) 

-0.91 
(4) 

-0.69 
(7) 

-0.17 
(5) 

-0.97 
(2) 

0.01 
(4) 

-0.48 
(4) 

0.45 
(10) 

4.63 
±2.8 

Infochange-ADT (*) 
-0.18 
(10) N/A 

-0.17 
(11) 

-0.70 
(1) 

-1.00 
(1) 

-0.54 
(2) 

0.15 
(8) 

-1.00 
(1) 

4.86 
±4.6 

Kappa 
-0.44  
(6) 

-0.94 
(3) 

-0.74 
(5) 

-0.12 
(6) 

-0.87 
(4) 

0.12 
(5) 

-0.18 
(7) 

-0.56 
(3) 

4.88 
±1.5 

Cosine 
-0.55  
(3) 

-0.79 
(6) 

-0.93 
(2) 

-0.49 
(2) 

-0.81 
(7) 

0.37 
(8) 

-0.64 
(1) 

0.79 
(11) 

5.00 
±3.6 

Piatesky Shapiro 
-0.45  
(5) 

-0.95 
(1) 

-0.68 
(8) 

-0.09 
(9) 

-0.87 
(5) 

0.19 
(7) 

-0.49 
(3) 

-0.55 
(4) 

5.25 
±2.7 

Interest 
-0.40  
(8) 

-0.77 
(7) 

-0.85 
(3) 

-0.44 
(3) 

-0.87 
(6) 

-0.61 
(1) 

0.28 
(9) 

-0.22 
(7) 

5.50 
±2.8 

Collective Strength  
-0.44  
(7) 

-0.94 
(2) 

-0.66 
(9) 

-0.10 
(7) 

-0.88 
(3) 

0.19 
(6) 

0.35 
(10) 

-0.56 
(2) 

5.75 
±3.1 

Jaccard 
-0.49  
(4) 

-0.69 
(8) 

-0.93 
(1) 

-0.10 
(8) 

-0.30 
(9) 

0.41 
(9) 

-0.45 
(5) 

-0.52 
(5) 

6.13 
±2.9 

Odds Ratio  
-0.59  
(2) 

-0.91 
(5) 

-0.85 
(4) 

-0.28 
(4) N/A 

0.48 
(10) 

0.43 
(11) 

0.19 
(9) 

6.43 
±3.5 

MinGen 
-0.36  
(9) 

-0.60 
(9) 

-0.71 
(6) 

0.00 
(10) 

0.36 
(10) 

-0.22 
(3) 

-0.53 
(2) 

-0.23 
(6) 

6.88 
±3.1 

Attsurp 
0.42 
(11) 

-0.46 
(10) 

-0.54 
(10) 

0.63 
(11) 

-0.62 
(8) 

0.59 
(11) 

-0.37 
(6) 

-0.10 
(8) 

9.38 
±1.9 

(*) Although InfoChange-ADT obtained the second best rank overall, it was not 
possible to compute the value of this measure for many discovered rules (see text).  

Consider now the average rank number of each measure shown in the last column 
of Table 3. The RI measures are actually in increasing order of rank number, so that, 
overall, across the eight data sets, the most effective RI measure was the Φ-
Coefficient, with an average rank of 4.63. However, taking into account the standard 
deviations, there is no significant difference between the average rank of Φ-
Coefficient and the average rank of the majority of the measures. The only measure 
which performed significantly worse than Φ-Coefficient was Attribute 
Surprisingness, the last in the average ranking. 

There is, however, an important caveat in the interpretation of the average ranking 
of InfoChange-ADT. As explained earlier, there are several rules where the value of 



this RI measure cannot be computed. More precisely, out of the 9 rules selected to be 
shown to the user for each data set, the number of rules with a value for InfoChange-
ADT varied from 2 to 5 across different data sets. This means that the average rank 
assigned to InfoChange-ADT is less reliable than the average rank assigned to other 
measures, because the former was calculated from a considerably smaller number of 
samples (rules). In particular, the correlation value of InfoChange-ADT was –1 (the 
best possible value) in two data sets, viz. UFPR-IM and Rio Branco, and in both data 
sets only 2 out of the 9 selected rules had a value for InfoChange-ADT. 

5 Conclusions and Future Research 
The central question investigated in this paper was: “how effective objective rule 
interestingness measures are, in the sense of being a good estimate of the true, 
subjective degree of interestingness of a rule to the user?” This question was 
investigated by measuring the correlation between each of 11 objective rule 
interestingness measures and real human interest in rules discovered from 8 different 
data sets. Overall, 31 out of the 88 (11 × 8) correlation values can be considered 
strong (correlation ≥ 60%). This indicates that objective rule interestingness measures 
were effective (in the sense of being good estimators of real human interest) in just 
35.2% (31 / 88) of the cases. There was no clear “winner” among the objective 
measures – the correlation values associated with each measure varied considerably 
across the 8 data sets. 

A research direction would be to try to predict which objective rule interestingness 
measure would be most correlated with real human interest for a given target data set, 
or to predict the real human interest in a rule using a combination of results from 
different objective measures. This could be done, in principle, using a meta-learning 
framework, mining data from previously-computed values of the correlation between 
objective interestingness measures and subjective human interest for a number of 
rules that have been previously evaluated by a given user.  
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