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The G-protein coupled receptor (GPCR) superfamily fulfils various metabolic functions and
interacts with a diverse range of ligands. There is a lack of sequence similarity between the six
classes that comprise the GPCR superfamily. Moreover, most novel GPCRs found have low
sequence similarity to other family members which makes it difficult to infer properties from
related receptors. Many different approaches have been taken towards developing efficient and
accurate methods for GPCR classification, ranging from motif-based systems to machine learn-
ing as well as a variety of alignment-free techniques based on the physiochemical properties of
their amino acid sequences. This review describes the inherent difficulties in developing a GPCR
classification algorithm and includes techniques previously employed in this area.
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1 Introduction

The G-protein coupled receptors (GPCRs) form a large and
diverse multigene superfamily of integral membrane pro-
teins that are involved in many important physiological
functions [1–3]. GPCRs are responsible for the transduction
of endogenous extracellular signals into an intracellular re-
sponse. The binding of a ligand on the cell surface causes the

GPCR to become active and subsequently bind and activate
ubiquitous guanine nucleotide-binding regulatory (G) pro-
teins within the cytosol. The GPCR protein’s association with
the heterotrimeric G-protein complex causes the GDP bound
to the Ga subunit to be exchanged for GTP. The Ga-GTP
complex then dissociates from the Gb subunitg, freeing the
Ga subunit to couple to an effector enzyme. An extremely
heterogeneous set of molecules can act as GPCR ligands
including ions, hormones, neurotransmitters, peptides, and
proteins. Sensory GPCRs can also be activated by stimuli
such as light, taste, or odour. More than one type of GPCR
can interact with more than one kind of G-protein, creating a
complex system involving a variety of mechanisms. GPCRs
control and/or affect physiological processes as diverse as
neurotransmission, cellular metabolism, secretion, cellular
differentiation, and inflammatory responses [4]. Mutations
in GPCR-coding genes have been linked to over 30 human
diseases including retinitis pigmentosa, hypo- and hyper-
thyroidism, nephrogenic diabetes insipidus, as well as sev-
eral fertility disorders [5].

The GPCR superfamily is a common target for ther-
apeutic drugs and approximately 50% of all marketed drugs
are targeted towards a GPCR [6]. Roughly speaking, ligands
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may be divided into agonists, which directly activate the
receptor, and antagonists, which interfere with the process of
activation, usually by inhibiting the action of agonists. Ago-
nists and antagonists may be further divided into full and
partial, the latter only producing a partial physiological re-
sponse in comparison to the former. A conventional view of
the interaction is that antagonists function by blocking the
endogenous ligand’s binding site, although recent data sug-
gest that some forms of antagonism can be “permissive”,
allowing some but not all receptor-mediated signals to be
blocked [7]. This would suggest that there are different forms
of agonism and antagonism whereby some GPCR-mediated
signals are enhanced whilst others are suppressed.

There are inherent difficulties in providing a compre-
hensive classification system for the GPCR superfamily [8].
Even the choice of appropriate nomenclature has proved
contentious. The term “family” has long been used to
describe groupings with the GPCRs. The definition of family
relies not just upon the possession of sequence similarity,
but also embraces a corresponding set of structural, func-
tional, and evolutionary features. However, there is no over-
arching term which includes the whole set of GPCR
sequences. The real issue here is a more subtle semantic one.
Evolutionary relationships between different GPCR groups
are not certain; some receptors may have arisen through
convergent evolution to adopt a particular structural scaffold,
and may not be homologous. Given such uncertainty, the
term superfamily may be ambiguous and equivocal in this
context. Another, less well-used term is “clan” [9]. This term
makes use of a looser, more inclusive definition of “kinship”
that recognizes convergent as well as divergent evolutionary
processes. However, we retain use of the term superfamily to
encompass both homologous and likely nonhomologous
protein families and superfamilies; use of “clan” may have
been appropriate, but because this term has not been widely
adopted we deprecate its use to avoid further confusion over
nomenclature.

One of the first GPCR superfamily classification systems
was introduced by Kolakowski [10] for the now defunct
GCRDb database. GPCRs were divided into seven families,
designated A–F and O, derived from original standard simi-
larity searches. This system was further developed by Vriend
et al. [11] for the GPCR database (GPCRDB) database. The
GPCRDB database divides the superfamily into six classes.
These are the Class A rhodopsin-like, which account for over
80% of all GPCRs, Class B secretin-like Class C metabotropic
glutamates, Class D pheromones, Class E cAMP receptors
and the Class F frizzled/smoothened family (see Table 1).
Class A is the largest of the human GPCR subtypes. There
are at least 286 human nonolfactory Class A receptors, the
majority of which bind peptides, biogenic amines, or lipid-
like substances [12]. The receptors binding endogenous
peptides have an import role in mediating the effects of a
wide variety of neurotransmitters, hormones, and paracrine
signals. The receptors that bind biogenic amines, e.g., nor-
epinephrine, dopamine, and serotonin, are very commonly

Table 1. Class A, rhodopsin-like, which account for over 80% of
all GPCR; Class B, secretin-like; Class C, metabotropic
glutamates; Class D, pheromones; Class E, cAMP
receptors; and the Class F frizzled/smoothened family

GPCRDB family Protein family description

Class A Rhodopsin-like
Class B Secretin-like
Class C Metabotropic glutamates/pheromone
Class D Fungal Pheromone
Class E cAMP receptors
Class F Frizzled/Smoothened

modulated by drugs. Pathological conditions, including Par-
kinson’s disease, schizophrenia, drug addiction, and mood
disorders are examples of where imbalances in the levels of
biogenic amines cause altered brain functions. Class B
receptors bind the large peptides such as secretin, para-
thyroid hormone, glucagon, glucagon-like peptide, calcito-
nin, vasoactive intestinal peptide, growth hormone releasing
hormone, and pituitary adenylyl cyclase activating protein
[13]. Metabotropic glutamate receptors (mGluRs), a type of
glutamate receptor, are activated through an indirect meta-
botropic process. Like all glutamate receptors, mGluRs bind
to glutamate, an amino acid that functions as an excitatory
neurotransmitter. In humans, mGluRs are found in pre- and
postsynaptic neurons in synapses of the hippocampus, cere-
bellum, and the cerebral cortex, as well as other parts of the
brain and in peripheral tissues. Pheromones are used by
organisms for chemical communication [14] and cAMP
receptors are part of chemotactic signalling systems [15].
Frizzled receptors are necessary for Wnt binding while the
smoothened receptor mediates hedgehog signalling [16, 17].
The six different classes can further be divided into sub-
families and sub–subfamilies based upon the function of the
GPCR protein and the specific ligand that it binds.

There are approximately 60 “orphan” GPCR proteins that
show the sequence properties of Class A rhodopsin-like
receptors but for which there are no defined ligands or
functions (Gloriam et al., unpublished). There are also many
orphan receptors within the Class B family. Most orphan
GPCRs have relatively low sequence similarity to well char-
acterised GPCRs with known functions and/or known
ligands; it is therefore often difficult to infer information
about their function. It is possible that many of these orphan
receptors have ligand-independent properties, specifically
the regulation of ligand-binding GPCRs on the cell surface
[18]. This was first suggested when a study of the Class C
metabotropic g-aminobutyric acid B (GABAB) receptor
showed that it was a heterodimer composed of two subunits,
B1 and B2 [19]. GABAB1 was responsible for the binding of
the ligand while the GABAB2 subunit promotes the efficient
transport of GABAB1. It is also possible that many of the
orphan receptors are also responsible for the regulation of
nonorphan GPCR cell surface expression, in either a positive
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[20] or negative way [21]. If this is true then the relative
expression of orphan and nonorphan GPCR proteins could
be an important factor for the regulation of cell signaling.
There has also been considerable interest in the tendency of
GPCRs to form higher order oligomers in living cells [22].
Dimeric ligands linked by spacer arms have been used to
identify the importance of coexpression of certain GPCR
subtypes, indicating that the formation of these oligomers is
a crucial part of GPCR signaling, although the extent to
which oligomerisation occurs across the whole GPCR
superfamily remains uncertain.

It is possible to identify a receptor’s natural ligand by
various experimental techniques such as the use of antag-
onistic antibodies, application of antisense DNA technolo-
gies, and transgenic animal studies. However, in order to
focus such work, there are various initial in silico approaches
able to characterize a GPCR sequence and forecast its
potential function. Despite the diversity of the superfamily,
certain commonalties remain within all GPCRs. All proteins
within the GPCR superfamily contain seven highly con-
served transmembrane segments (of 25–35 consecutive resi-
dues) which display a high degree of hydrophobicity. Seg-
ments can be located by a method of analysis similar to the
sequence similarity search. Identifying the transmembrane
regions [TM1–7] also identifies the remaining structure of
the GPCR. This sequence will contain the three extracellular
loops [EL1-3], three intracellular loops [IL1-3] as well as the
protein termini. It can therefore be divided into the following
regions:

N terminus-TM1-IL1-TM2-EL1-TM3-IL2-TM4-EL2-TM5-
IL3-TM6-EL3-TM7-C terminus.

The transmembrane segments form seven a-helices in a
flattened two-layer structure known as the transmembrane
bundle, a structure common to all GPCRs [23]. In line with
the characteristics of most related groups of proteins, the
GPCR superfamily shows a far greater degree of structural
conservation than it does conservation of sequence. We
review here the various computational techniques used to
classify GPCRs. These approaches have application not only
in discovering and characterizing novel protein sequences
but also in better understanding the interrelatedness appar-
ent between known members of the GPCR superfamily.

2 Sequence based approach

One of the central dogmas of bioinformatics is that there is
always a strong relation between a protein’s sequence and its
structure and function. This would imply a novel protein’s
function could be best determined by its sequence similarity
to a known protein. It is remarkable that in spite of the high
degree of structural similarity within the GPCR superfamily
(the seven conserved transmembrane helices), there is a low
degree of sequence identity, suggesting that the various clas-
ses may have originated independently during evolution.
What is known is that GPCRs with the same ligands can

bind to different G proteins and equally GPCRs that bind the
same G protein can bind completely different ligands [24]. It
is also established that, for some GPCRs, two receptors may
bind the same ligand and the same G protein while having
less than 25% sequence similarity. Conversely, proteins such
as melanocortin, lysophosphatidic acid, and sphingosine 1-
phosphate receptors all have a degree of sequence similarity
but unrelated functions. Clearly, this is a challenging – that is
to say difficult and complex – area in which to work. For-
tunately, the importance of the GPCR as physiological agents
and drug targets more than justifies our efforts in addressing
this challenge. Here we outline various approaches that have
been used to develop GPCR classification algorithms and
attempt to highlight the strengths and weaknesses of the
various approaches.

2.1 BLAST

The most obvious and straightforward approach to char-
acterizing a protein is to run a standard basic local alignment
search tool (BLAST) search [25]. The degree of relatedness is
calculated by generating gapped alignments of the protein
sequences with estimates of concomitant statistical signifi-
cance. The program assigns a probability score for each
position in an alignment that is based on the frequency with
which that substitution is known to occur among consensus
blocks within related proteins. The output will list proteins
closely resembling the submitted sequence in descending
order of expectation or “E” values (the E-value is a measure of
the reliability of the S score, a calculation of the similarity of
the query to the sequence shown). The lower the E value, the
more significant the score and thus the higher the predicted
relatedness is between the submitted sequence and the
database entry. For a GPCR query sequence, it is likely that
many of the proteins that show a high degree of sequence
identity will also be GPCR gene/protein sequences. BLAST
searches have been used to identify novel GPCR proteins in
cases where there has been moderate yet detectable sequence
similarity to known GPCR sequences. This, however, makes
the technique of limited use for the GPCR superfamily
where there is a low degree of sequence similarity between
the six families.

2.2 Motif approach

While BLAST searches tend to identify generic, global simi-
larities between protein sequences, a motif-based approach
focuses on specific, length-restricted traits unique to families
or subfamilies. Joost and Methner were able to suggest
potential functions for a number of orphan receptors by
producing multiple alignments of Class A GPCRs [26]. Chou
and coworkers have shown that within the amine receptor
subfamily, there is a strong correlation between the different
subgroups and their amino acid composition [27–29]. Pro-
tein family databases are developed using multiple sequence
alignment of the family of interest and identifying the most
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conserved regions to be the basis of family motifs. PROSITE
[30] characterises families with a single conserved region.
More accurate are the diagnostic GPCR “fingerprints”, which
have been developed based on common patterns of con-
servation within the seven transmembrane regions [31, 32].
Rather than a single motif, the method identifies several
short conserved regions within the sequence group analysed
that then comprise the fingerprint. Subfamily and sub–sub-
family level fingerprints are derived from segments within
the TM regions, parts of the loops and parts of the N- and C-
termini. This allows false positives to be more readily deter-
mined as the sequence will tend to lack several of the motifs.
The fingerprint approach can also be used to design protein
“signatures” at different levels of the GPCR superfamily. The
database PRINTS [33] contains over 270 GPCR fingerprints
and has been demonstrated to identify similarities between
receptors with low sequence similarity. Interestingly, at the
class level, the majority of the motifs are found in the extra-
cellular loops while at the subfamily level, the majority are
located within the intracellular loops. Huang et al. [34] also
found the highest degree of conservation within the GPCRs
occurs within the TM3 region, in particular the “DRY” motif
that is common amongst amine receptors (although there
are over 100 Class A proteins in which the motif is absent).
However, as the number of known members for a family
expands, it has become harder to precisely define the finger-
prints. Understandably, it is also often the case that very aty-
pical GPCR sequences cannot easily be identified using the
fingerprint method.

Holden and Freitas 2006 [35] classified GPCRs using
three different kinds of motifs: PROSITE patterns, PRINTS
fingerprints and InterPro [36] entries. InterPro is a motif-
based approach that combines the sequence profiles of the
PRINTS, PROSITE and Pfam databases. Three different
GPCR datasets were created; each dataset used one of the
three types of motifs as attributes. The number of GPCR
proteins and the number of attributes in each dataset was as
follows: 338 proteins and 281 attributes when using Finger-
prints; 194 proteins and 127 attributes when using PROSITE
patterns; and 584 proteins and 448 attributes when using
entries from the InterPro database. In order to classify
GPCRs the authors used a swarm intelligence algorithm - a
relatively new type of adaptive learning algorithm. The algo-
rithm discovers IF-THEN classification rules of the form: IF
,a certain set of motifs is present in the protein. THEN ,pre-
dict a certain class., where the type of motifs used in the rule
antecedent (IF part) can be either PROSITE patterns, or Fin-
gerprint signatures or InterPro entries, depending on the
dataset being analysed. Hence, the goal of the swarm intelli-
gence algorithm is to find the best possible combination of
motifs to put in the antecedent of a rule, in order to create
rules with the highest possible predictive accuracy. The pre-
dictive accuracy of a rule is the percentage of proteins that
have the class predicted by the rule among all the proteins
that have the set of motifs specified in the rule antecedent.
The best results were obtained by using Fingerprint and

InterPro attributes while the predictive accuracy of PROSITE
patterns was relatively poor. The best classification accuracy
at the level of GPCR classes (families) was 89.6% and 86.3%
using Fingerprints and InterPro attributes respectively. Sub-
stantially lower accuracy rates were obtained for deeper levels
of the class hierarchy.

2.3 GPCR repertoire

Various methods have been used to identify the total number
of GPCRs (the so-called “repertoire”) in the human genome.
The increasing refinement of the human genome assembly
has allowed for more sophisticated in silico analysis to be
undertaken. The Human Genome Project used a combina-
tion of protein families and protein domains to estimate that
there are 616 GPCR sequences belonging to Classes A, B and
C. A motif-based approach was used whereby InterPro esti-
mated the total number of rhodopsin-like GPCRs to be 569
[37]. Takeda and colleagues extracted approximately 950
ORFs from the human genome that had 200–1500 amino
acid residues similar to those of GPCRs [38].

Another sequence-based approach has been used to
develop an alternative classification system to the six GPCR
families [8]. The GRAFS classification system was developed
using phylogenetic analysis [39]. GRAFS divides the GPCR
superfamily into the Glutamates, Rhodopsins, Adhesions, Friz-
zled/Taste 2 and Secretin families (GRAFS) [40] (see Table 2).
The authors of the GRAFS classification system constructed
a roadmap of all known human GPCR and separated func-
tional genes from pseudogenes. The process, which has been
iterated and improved several times, has also led to the dis-
covery of several new GPCRs [26, 41–43]. The GPCR reper-
toires of several other species have also been published,
including mouse [44], rat [45], chicken [46], pufferfish [47]
and mosquito [48]. The GRAFS GPCR families arose before
the chordate lineage diverged from the lineage leading to
nematodes as the nematode Caenorhabditis elegans has more
than 100 receptors belonging to the GRAFS GPCR families

Table 2. The human GPCR families according to the GRAFS
nomenclature, designations in other classification sys-
tems and the number of functional members in human

GRAFS
family

Designation
in GPCRDB

Number human members

Glutamate C 22 (including taste type 1
receptors)

Rhodopsin A 284 (1388 olfactory receptors)
Adhesion B 33
Frizzled F 11
Secretin B 15
Taste 2 – 25

The GRAFS classification system is the only system in which the
Adhesion and Secretin families are recognized as separate
families.
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[49]. In parallel to the GRAFS families, other GPCR families
have arisen and/or evolved in specific lineages/species, such
as the plant MLO receptors [50], the yeast STE2 and STE3
receptors which recognize mating factors [51], the nematode
chemosensory receptors [52], the insect gustatory receptors
[53] and mammalian vomeronasal receptors involved in
pheromone recognition [54]. GPCRs in fungi, plants and
animals have no sequence similarity, except for one Adhesion-
like GPCR found in thale cress (Arabidopsis thaliana) [55].
The lack of sequence similarity between GPCR families
makes the question of a common origin speculative.

3 Hidden Markov models

Compared to motif-based prediction, a more computation-
ally sophisticated, if not necessarily a more effective,
approach to the GPCR classification problem is the use of
Hidden Markov models (HMMs), which derive scores based
on statistical analysis. An HMM is a statistical model where
the system being modeled is assumed to be a Markov process
with unknown parameters. In a regular Markov model, the
state is directly visible to the observer, and therefore the state
transition probabilities are the only parameters. In a Hidden
Markov model, the state is not directly visible, but variables
influenced by the state are visible. The aim of the HMM is to
determine the hidden parameters from the parameters that
are observable. The extracted model parameters can then be
used to perform further analysis of data that were not part of
the training process. HMMs are widely used in bioinfor-
matics, particularly in sequence alignment and in generating
profiles for protein families. An HMM profile can also be
used for searching sequence databases for new members of a
given protein family. The PROSITE database contains pro-
files, position-specific scoring matrices, for several GPCR
families while the Pfam database [56] contains an extensive
collection of HMM profiles for both GPCR families and
domains. Another application of HMMs is protein topology
prediction using secondary structure sequences. HMMs
have been used to identify the transmembrane regions of the
GPCR in order to identify and characterize a putative GPCR
sequence. Apart from discriminating GPCRs from
nonGPCRs, TM prediction is often used as a precursor to
classification. Some of the more commonly used and better
known programs are adumbrated in Sections 3.1–3.3.

3.1 Hidden Markov model for topology prediction

(HMMTOP)

HMMTOP method (http://www.enzim.hu/hmmtop/) is
based on the principle that the topology of the TM regions is
determined by the maximum divergence of amino acid
composition [57]. The method is based on the hypothesis
that the differences between the amino acid distributions in
the various structural parts are the main driving force in the
folding of the membrane proteins. This means the topology

of TM proteins may be determined by the amino acid com-
positions of the various structural parts by showing max-
imum differences, rather than by enforcing specific compo-
sitions in these parts. The difference between two distribu-
tions can be characterized by a divergence function. The sum
of the divergence values between the distribution of amino
acids in the different structural parts and the distribution of
residues in the whole protein is used to measure differences
in the amino acid distributions of the structural parts. This
sum differs only in one constant from the log-likelihood.
Thus, the topology of membrane proteins can be determined
if their amino acid sequences can be segmented into specific
regions in such a way that the product of the relative fre-
quencies of the amino acids of these segments along the
amino acid sequence should be maximal.

3.2 Transmembrane Hidden Markov model

(TMHMM)

The TMHMM Server (version 2.0; http://www.cbs.dtu.dk/
services/TMHMM/) predicts the location of transmembrane
helices by dividing a protein sequence into the most probable
distribution compared to known GPCRs [58]. The program
uses a novel method to model and predict the location and
orientation of a helices in membrane-spanning proteins. It is
based on a HMM with an architecture that corresponds to a
biological system. The close mapping between the biological
and computational states allows the program to infer which
parts of the model architecture are important to capture the
information that encodes the membrane topology, and also
to obtain a better understanding of the mechanisms and
constraints involved. Models are estimated both by max-
imum likelihood and a discriminative method. Any evidence
of there being seven clearly defined TM regions within the
sequence might be a good indication of it being a GPCR
protein. The output details each of the TM regions within the
sequence identified by the HMM. This method consistently
displays a high false positive rate. However, it has been
observed that when the HMMTOP and TMHMM programs
are used in combination they have a higher overall success
rate (0.819) than when they are used separately (0.808 and
0.762, respectively) (see Table 3). Many proteins with seven
transmembrane regions are incorrectly predicted as having
six or eight TM regions. This is a potential weakness of the
program because the alignment of the transmembrane
regions must be correct for there to be an accurate compar-
ison made between sequences. There is a variant on the
TMHMM program called 7TMHMM, which can applied to
GPCR prediction and always requires the identification of
seven transmembrane regions within the sequence [59].

3.3 GPCRHMM

The GPCRHMM program implements an HMM that speci-
fically recognises GPCRs based on TM topology-related fea-
tures. Wistrand et al. [60] found distinct loop length patterns
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Table 3. Topology prediction using various membrane prediction programs

TM topology
prediction method

Predicted
as 7tm

7-tms pre-
dicted as

7-tms Other-tms 6 or 8 tms Other-tms Sensitivity Specificity Success Rate

HMMTOP 1941 368 455 106 0.776 0.841 0.808
TMHMM 1725 323 547 230 0.689 0.842 0.762
MEMSAT 1453 425 621 428 0.581 0.774 0.760
SOSUI 1217 309 941 344 0.486 0.798 0.623
TMAP 944 389 1074 484 0.377 0.708 0.517
Combinatorial
HMMTOP 1 TMHMM 2114 546 245 143 0.845 0.795 0.819

HMMTOP and TMHMM are observed to be more accurate when combined than when used separately (adapted from Inoue et al. 2005 [58]

and differences in amino acid composition between cytosolic
loops, extracellular loops, and membrane regions. In their
analysis, 13 Pfam families from GPCRDB were selected and
analysed alongside the nonGPCR families of bacter-
iorhodospin and protein kinase. A combination of UniProt
annotation, TM prediction tools and profile HMMs were
used to identify the membrane and loop regions. The helices
were calculated as having a median length between 22–24
amino acids while the loops were assigned much more vari-
able length. However, the length of the first intracellular loop
appears to be much more conserved than the length of the
second and third. HMMs were generated for each defined
region of the structure. Similarities were observed within the
amino acid compositions of the three extracellular loops and
also within the compositions of the three intracellular loops.
The N- and C-termini were judged to be too variable to be of
use to the analysis but it was observed that the profile of the
C-terminal regions adjacent to the intracellular loops was
quite different from the global C-terminal profile. The Sen-
sitivity (True Positive Proportion) and Specificity (True
Negative Proportion) values are shown in Table 4. Other
transmembrane prediction programs include TMpred,
which uses a combination of several statistical preference
matrices, derived from an expert-compiled dataset of mem-
brane proteins [61], TopPred II [62], PRED-TMR2 [63],
TMHMM 2.0 [64], and TM Finder [65].

4 Support vector machines (SVMs)

SVMs are machine-learning algorithms based on statistical
learning theory. In two-class problems, an SVM maps the
input vectors (data points representing protein descriptions)
into a higher dimensional feature space and then constructs
the optimal hyperplane to separate the classes, while avoid-
ing overfitting. This form of classification is known as linear
classification. However, it is a powerful form of classification
because, although it is linear in the higher dimensional fea-
ture, it is nonlinear in the original attribute space of the input

Table 4. The sensitivity and specificity for various transmem-
brane prediction programs (adapted by Wistrand et al.
[60])

Sensitivity (%) Specificity (%)

GPCRHMM
Global Score . 15 94.4 99.07
Global Score . 5 93.7 99.72
Global Score . 0 92.8 100

HMMTOP
7TM 79.3 98.89
6–8 TM 95.4 91.13

Phobius
7TM 79.6 98.79
6–8 TM 94.8 90.2
QFC 95.5 88.6
7TMHMM 93.5 90

vectors. The optimal hyperplane is the one with a maximum
distance to the closest data point from each of the two clas-
ses. The distance is called the margin, and the optimal
hyperplane is called the maximal margin hyperplane. Find-
ing the maximal margin is important because, if another
data point is added to the data (corresponding to a data point
in the test set), it is easier to classify it correctly when there is
a greater separation between the two classes. The input vec-
tors closest to the optimal hyperplane are called the support
vectors. Although SVMs are more commonly used to solve
two-class problems, this technique has been applied to the
classification of GPCR data with more than two classes by
running the algorithm multiple times (once for each class).

4.1 GPCR subfamily classifier

The GPCR Subfamily Classifier algorithm (http://
www.soe.ucsc.edu/research/compbio/gpcr-subclass/) trans-
forms protein sequences into fixed-length feature vectors in
order to apply SVM to the data [66]. The algorithm learns to
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distinguish between subfamily members and nonmembers
by making several passes through a training set. The trained
SVM can then be used to make a prediction for a novel protein
sequence. Unfortunately, the program has not been updated
since March 2002 and does not incorporate sequences or
classes discovered since that time into the algorithm.

4.2 Pred-GPCR

Pred-GPCR (http://athina.biol.uoa.gr/bioinformatics/
PRED-GPCR/) [67, 68] was developed as a fast Fourier
transform with SVMs on the basis of the hydrophobicity of
the amino acid sequence. The program was trained using
403 sequences from 17 subfamilies from GPCR Classes B, C,
D, and F. Quantitative descriptions of the proteins relating to
hydrophobicity, bulk and electronic properties were used
based upon the hydrophobicity model, composition–polar-
ity–volume (c–p–v) model and the electron–ion interaction
potential (EIIP) model. Three different hydrophobicity scales
– the Kyte-Doolittle Hydrophobicity (KDHF), Mandell Hy-
drophobicity (MHF), and Fauchére Hydrophobicity (FHF) –
were used. When using the FHF hydrophobicity scale, the
technique achieved an overall accuracy of 93.3% and a Mat-
thew’s correlation coefficient of 0.95. However, the range of
accuracies between the subfamilies varied between 66.7 and
100%. Also, the relative composition of the dataset is un-
usual with 105 of the 403 sequences coming from the friz-

zled/smoothened family and the majority of the subfamilies
containing 10–20 sequences. The sequences were trans-
formed firstly into numerical representations of the
sequence based upon the EIIP values and then secondly, into
the frequency domain using the discrete Fourier transform,
a method by which sequences of different length can be
normalized. The output of these transforms is used as the
input for the SVM. In the case of a n-class classification
problem where n . 2, as is the case for the GPCR families,
each ith SVM, i = 1,. . .,n, was trained. All samples in the ith
subfamily were given the label “1” and all other samples
were given the label “21” (these are referred to as one-vs.-rest
SVMs). The results in Table 5 indicate that the technique is
extremely effective. However, as mentioned earlier, the data-
set had an unusual class distribution. One hundred and five
of the 403 sequences came from the frizzled/smoothened
family and in general there was a small number (less than
20) of sequences per subgroup. An intrinsic limitation of any
supervised learning (classification) algorithm is that a classi-
fication model constructed from a training set can only have
a chance of good predictive accuracy on a test set that is
derived from the same (or at least similar) probability dis-
tribution as the training set. Given the unusual class dis-
tribution in the training set used in this work, it seems un-
likely that the classification model would have a very high
predictive accuracy if applied to a large set of GPCR se-
quences with a more usual class distribution.

Table 5. Pred-GPCR physicochemical properties for the GPCR B, C, D, and F Classes with accuracy (ACC) and Matthew’s correlation coef-
ficient (MCC) values (adapted from Guo et al. [70])

Class GPCR subfamily Hydrophobicity
model

c–p–v
model

EIIP
model

ACC (%) MCC ACC MCC ACC MCC

Class B Calcintonin 95 0.97 85 0.91 95 0.97
Corticotrophin releasing factor 100 1 95.7 0.97 95.7 0.97
Glucagon 91.7 0.95 91.7 0.95 58.3 0.75
GHRH 84.6 0.91 76.9 0.87 69.2 0.82
Parathyroid hormone 76.5 0.86 58.8 0.75 52.9 0.71
PACAP 90.9 0.95 81.8 0.9 90.9 0.95
Vasocactive intestinal 85.7 0.92 71.4 0.83 57.1 0.74
Latrophilin 100 1 95 0.97 95 0.97
Methuselah-like protein 61.9 0.76 57.1 0.73 47.6 0.66
Total 87.4 0.92 80.1 0.88 75.5 0.84

Class C Metabotropic glutamate 91.3 0.92 82.6 0.85 91.3 0.92
Calcium-sensing like 66.7 0.79 61.1 0.75 61.1 0.75
GABA-A 95.7 0.97 65.2 0.77 65.2 0.77
Taste receptors 91.7 0.95 91.7 0.95 66.7 0.8
Total 87.8 0.91 75.8 0.83 76.8 0.84

Class D Fungal pheromone A-factor 87.5 0.91 93.8 0.95 50 0.63
Fungal pheromone B-factor 100 1 100 1 100 1
Total 95.8 0.97 97.9 0.98 83.3 0.88

Class F Frizzled 100 1 100 1 100 1
Smoothened 90.9 0.95 90.9 0.95 90.9 0.95
Total 99 0.99 99 0.99 99 0.99

Total 91.6 0.94 86 0.91 82.7 0.88
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4.3 GPCRsClass

GPCRsClass [69] is another SVM-based program that con-
centrates on the Class A aminergic receptor subfamily. In the
first round of analysis, an SVM was generated to distinguish
amines from all other GPCRs. Then multiclass SVMs were
set up to classify amines into the acetylcholine, adreno-
receptor, dopamine, and serotonin sub–subfamilies. Again,
the one-vs.-the-rest SVM was used to predict the ith class.
The SVM requires patterns of fixed length for training and
testing. The sequences were transformed to fixed length for-
mat by measuring the amino acid and dipeptide composi-
tions, giving vectors of 20 and 400 dimensions, respectively.
The dipeptide composition proved to be far more reliable
than the amino acid, scoring 99.7% accuracy at discriminat-
ing amine from nonGPCRs and 92% are discriminating be-
tween the four sub–subfamilies. A similar method involving
amino acid, dipeptide, and tripeptide compositions [70]
claimed to get 98% accuracy at the Class level. GPCRClass
gave 94% accuracy at the class level when tested with the
same dataset.

4.4 GPCRPred

Similar to GPCRClass, the program determines firstly whe-
ther a sequence is or is not a GPCR, to which classes it
belong and then, if it is a Class A, to which subfamily it
belongs [71]. The dataset used contained 692 Class A
sequences, 56 Class B, 16 Class C, 11 Class D, and 3 Class
E. The vectors were based upon the dipeptide composition.
Again, the one-vs.-rest SVM was used to characterize each
Class and subfamily. GPCR vs. nonGPCR sequences
showed 99.5% accuracy, the Class prediction showed 97.3%
accuracy and the subfamily step showed on average 85%
accuracy.

5 GPCR to G protein coupling specificity

It is known that each GPCR subtype couples to a subset of G
proteins within a given cell. Much research has been dedi-
cated to understanding the GPCR-G protein coupling speci-
ficity. This is important in understanding the physiological
mechanisms underlying the response mediated through the
activation of a specific GPCR. The Gs and Gi/o classes are
responsible for the stimulation and inhibition of adenylate
cyclase, respectively, while the Gq/11 family activates phos-
pholipase C enzymes. These three families constitute the
major functional class of G proteins. It is known that the
specificity of the interaction with the GPCR is determined by
the interaction with the a chain of the G protein. As is the
case for the extracellular ligands, no specific sequence motifs
have been discovered that determined coupling specificity.
Understanding GPCR to G protein coupling is thus an alter-
native route to classifying GPCRs.

5.1 Predicting GPCR to G protein coupling specificity

with HMM

Sgourakis et al. [72] developed a method to predict coupling
specificity to GPCR proteins using HMMs. The program
focused on the three intracellular loops and C-terminus of
the GPCR protein in order to identify commonly occurring
patterns. One hundred and three receptors for which non-
promiscuous coupling had been determined were grouped
into three functional classes and divided up into transmem-
brane and loop regions using the 7TMHMM program
(http://ep.ebi.ac.uk/GPCR/) [58]. Having identified the
intracellular loop and C-terminal regions, pattern discovery
was carried out using the program Sequence Pattern
Exhaustive Search (SPEXS), a sequence pattern discovery
tool that looks for sequence patterns occurring most often in
sequences or for patterns over- or under-represented in sub-
datasets as compared to other sets of sequences [72]. Over
4000 patterns were discovered in the specified regions and
the probability of any given pattern appearing in another
group was also calculated. The pattern score was calculated
as the inverse of the probability of occurring. Combinations
of patterns are used to determine specificity. For a submitted
sequence the number of combinations was calculated and if
more than 30% belong to a given G protein group then it was
declared as a putative prediction. Unfortunately, 20% of the
dataset showed a very low number of matches, suggesting
that the developed patterns were not sufficient to describe
the three G protein subsets. Multiple alignment of the inner
domains of the training set also showed the three groups to
be indistinct. All three groups were shown to have a low
sensitivity (,0.40) and a high specificity (.0.9) but no spe-
cific statistical analysis was carried out.

5.2 GRIFFIN

Both an SVM and an HMM are used to predict coupling
specificity in G-protein and receptor interaction feature
finding instrument (GRIFFIN) [24]. The program features
both ligand and G protein prediction capabilities in the same
algorithm, suggesting that there is a relationship between
the identity of the extracellular ligand and the type of G pro-
tein it stimulates which appears to transcend the identity of
the GPCR transducing the signal. The training dataset was
composed of opsins and olfactory receptors from Class A as
well as receptors from GPCR Classes B, C, and F. Using an
HMM, the subfamilies can be differentiated according to G
protein type. All of the GPCRs used in the dataset bind to one
of the three G proteins (Gi/o, Gq/11, or Gs) mentioned pre-
viously. Instead of using transmembrane prediction soft-
ware, the TM regions of the GPCRs were determined
through conventional multiple alignment. From this, an
HMM profile of multiple GPCR binding to a given ligand
was generated. The SVM classifies the vector representations
of GPCRs using the maximal margin hyperplane. Each G
protein is compared to the rest of the data set using the one-
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vs.-the-rest procedure. At the first stage, a query sequence is
searched against the HMM profiles of the defined GPCR
classes. If the computed HMM profile score is larger than the
threshold of a certain subfamily then the processes is stopped
and the sequence is assigned to that subfamily. If not, the
program compares the scores of the three trained SVMs (with
the Gs, the Gi/o, and the Gq/11 profiles) and assigns the GPCR
to the class of the SVM with the largest score. The average
discrimination sensitivities and specificities were 87 and 88%
for Gi/o, 85 and 84% for Gq/11, and 85 and 89% for Gs, respec-
tively (see Table 6). This showed a higher overall sensitivity
and specificity than Moller et al. [59]. However, there is no
indication as to how the dataset would accommodate a poorly
aligned sequence or protein that showed low sequence simi-
larity to the GPCRs used to generate the HMM profiles.

6 Alignment free methods

In most cases, conventional bioinformatics techniques
determine information about a protein sequence through
alignment or by comparing the sequence to previously
determined motifs. While this approach is certainly valid, it
may not necessarily be the most effective form of analysis
when dealing with the problem of GPCR identification.
Firstly, the sequence of the GPCR superfamily varies be-
tween 290–834 amino acids in length, meaning that many of
the subfamilies cannot be effectively aligned without signifi-
cant manual correction. It is also important to bear in mind
that the conventional GPCR classification system is based
not on sequence similarity but by the ligand to which the

receptor is bound. Alignment-independent classification
systems use the physiochemical properties of amino acids to
determine differences between protein sequences.

6.1 Proteochemometrics

Proteochemometrics is a technique whereby twenty-six
separate physicochemical properties of the protein are used
to calculate five empirical “z” values for all twenty amino
acids [74]. The z1 value accounts for the amino acid’s lipo-
philicity and is determined by TLC variables, log P values and
the nonpolar surface area. A large negative value corre-
sponds to a lipophilic amino acid, whilst a large positive
value corresponds to a polar/hydrophilic amino acid. Steric
properties are accounted for by the z2 values which sum-
marizes the residue’s steric bulk/polarisability. In this case, a
large negative value corresponds to a lower molecular weight
and small surface area while a large positive value corre-
sponds to a higher molecular weight and large surface area.
The z3 value describes the polarity of the amino, this is
determined by the log P values and nonpolar surface area. A
lipophilic amino acid corresponds to a large negative value
while a polar/hydrophilic amino acid has a large positive
value. The electronic effects, determined by electronegativity,
heat of formation, electrophilicity, are described by the z4-5
values. These five values are calculated for each amino acid
in the sequence, generating a matrix that provides a purely
numerical description of the protein’s character. AutoCross
Covariance (ACC) is used to normalize the uneven size of the
z matrices and then principal component analysis (PCA) and
partial least squares (PLS) are carried out in order to provide

Table 6. Average discrimination sensitivities and specificities for the three G protein families (adapted from Yabuki
et al. [24]

G-protein n Sensitivity Specificity Number of Best kernel
type crossvalidations function

Gi/o 61 77 78.3 4 RBF
Gq/11 47 68.1 72.7 4 RBF
Gs 24 83.3 95.2 4 RBF

G-protein n Sensitivity Specificity Number of Best kernel
type crossvalidations function

Gi/o 61 91.8 94.9 4 Polynomial
Gq/11 47 93.6 89.8 4 Polynomial

Family G-protein Sensitivity Specificity Threshold of
type bit score

Opsin Gt 99.7 100 153.9
Olfactory Golf 100 100 151.2
Class B Gs 100 100 68
Class C Gi/o 93.5 100 1054.6

Gq/11 100 100 1325.3
Frizzled Unclear 100 100 168.7
Smoothened Unclear 100 100 627.6
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a classification system for the various classes of protein. Key
to the ACC approach is balancing the two factors of max-
imum lag, L, and the degree of normalization, p. The L value
is a summation, over the sequence, of the product of z values
for all pairs of two amino acids separated by the defined lag
value. The value is then normalized by the number of terms
in the summation. Optimal parameter values for the dataset
are determined by trying various combinations and asses-
sing their total classification accuracy. Using the proteo-
chemometrics method, Lapnish et al. developed a model with
an accuracy of 0.76 for a diverse set of amine GPCRs.

6.2 Self-organising maps (SOMs)

SOMs [75] can be used for GPCR classification using z
values. SOMs are artificial neural networks (ANNs) that per-
form unsupervised learning (in this case, clustering) to dis-
criminate one protein family from another. Unlike PCA,
which relies upon establishing linear relations, SOMs can
accommodate nonlinear relations into their algorithms. The
SOMs can locate samples from an input space to particular
“neurons” in a 2-D lattice through an adaptive process. Each
neuron is fully connected to the input space and has a
synaptic weight vector for the connection. The output space
is 50 by 50 neurons on a square lattice. The learning process
causes closely located neurons to become responsive to
similar input data. Sequences from the same family are
expected to form a cluster although it cannot be assumed
that the clusters will be visually recognized on the SOM out-
put map. In order to make a family map, it is necessary to
determine a family area that contains the most frequent
“activator” family samples. The feature map used for GPCR
classification was amended to include an objective border
between clusters, developing a map to clearly distinguish
each family. The overall performance of the map can be
assessed using the sensitivity and specificity values as well as
calculating the total accuracy of prediction. Otaki et al.
reported a 97.4% precision at classifying 12 Class A sub-
families using SOMs.

6.3 Quasi-predictor feature classifier

Kim et al. also used physicochemical information as the
basis of a predictive technique [76, 77]. The classification
method places sequences in a “feature space” and creates
discrimination functions that classify the sequences into
specific categories. Here, the feature space uses statistical
measures of physicochemical properties and then a linear
discriminant function to extract a potential GPCR
sequence from a genome. The Quasi-predictor Feature
Classifier (QFC) algorithm was designed to statistically
characterize the differentiating features of the physico-
chemical properties of protein sequences using heuristic
data reduction principles. The parameters derived from the
characterization were then used to screen databases for
novel GPCRs. The training data set was generated from

750 GPCRs from the GPCRDB (no information was given
about Class distribution but it may be assumed the major-
ity were Class A) and 1000 randomly chosen nonGPCR
proteins of 200–1000 amino acids in length (it is also not
stated how many of these were transmembrane proteins).
The amino acid properties examined were the Goldman
Engelman Steitz (GES) hydropathy, the Kyte-Doolittle
index, polarity, pI, molecular weight, solubility, and the
alpha helix index. The values were also normalized using
the Sliding Windows Recogniser, a technique similar to
lags used in the AutoCross Covariance approach, except
that the separated values (defined here by a “window”) are
summed rather than multiplied. Window lengths of 13–16
amino acids were shown to be more effective than lengths
of 32 and 64 amino acids. An independent test set of 100
GPCRs and 100 nonGPCRs was classified with an accuracy
of 99%. When tested against 530 ion channels proteins
(transmembrane but not GPCRs), the algorithm achieved
an accuracy of 96.4%. It was suggested that the lack of
reliance on motifs and sequence similarity had allowed the
techniques to avoid the pitfalls of biased sampling. How-
ever, the QFC algorithm was shown to have a higher false
positive rate than most motif-based techniques, suggesting
that the technique would benefit from another stage of fil-
tering.

7 Miscellaneous classification

7.1 GPCR classification tree

Huang’s GPCR classification tree [78] is a decision tree that
divided up 4395 sequences into Classes, Subfamilies, sub–
subfamilies and types. A total of 39 subfamilies and 93 sub–
subfamilies were discovered in this way. Each protein is
represented by a vector of 20 values, where each ith value,
i = 1,. . .,20, represents the percentage of the ith amino acid
in the composition of the protein’s sequence. The kth protein
Xk is explicitly formulated as:

Xk ¼

Xk; 1
Xk; 2
:
:
:
Xk; 20

2
6666664

3
7777775
; k ¼ 1; 2 . . . N

where N is the total number of proteins in the dataset. The
program used the C4.5 algorithm, which is a divide and
conquer approach that splits the training sets into subsets
based upon the amino acid compositions of the proteins.
Each splitting point becomes a node in the decision tree.
This choice of when to split is made by selecting the amino
acid composition feature that best discriminates among the
classes to be predicted, and then splitting the training data
according to the values of the chosen feature. The division
continues until the stopping criteria are satisfied. The default
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feature-selection criterion is based on the “information gain
ratio”, which is a measure of how successfully a given feature
separates the data. The technique recorded 86.9% accuracy
for the subfamily level and 81.5% accuracy for the sub–sub-
family level.

7.2 OET-KNN

Optimised evidence-theoretic K-nearest neighbour (OET-
KNN) is a classification method similar to SVMs [79]. The
method was used to classify proteins represented by features
referring to amino acid composition and the order of amino
acids in the protein sequence. This is incorporated into a 20
dimensional amino acid composition vector. The technique
has not been applied specifically to the GPCR Classification
problem but to various transmembrane protein families with
an accuracy .90%.

8 GPCR virtual screening

In the last 15 years, drug discovery has used high-throughput
screening (HTS) to search for molecules with specific bio-
logical activities. The experimental HTS is, however, both
very expensive and time consuming. More recently, it has
been possible to supplement experimental work with in silico
methods that significantly reduce the time and effort
required to identify lead compounds for further optimiza-
tion. So-called virtual screening (VS) is a technique that can
explore large compound databases for drug-like properties by
computational analysis of receptor–ligand interaction. In the
case of GPCRs, there is considerable interest in developing
drug-like small molecules that are agonists or antagonists of
a specific receptor. The synthetic agonists and antagonists
can, in a loose sense, be modeled on the structure and prop-
erties of endogenous GPCR ligands, as they are likely to
share similar characteristics. It is possible to identify GPCR
protein subtypes that have a general affinity for the endoge-
nous antagonists by using synthetic molecules. It is also
possible to use VS to classify the various GPCR subtypes by
identifying subtype specificity through receptor–ligand
interactions.

Exploration of the affinity of a specific ligand for different
GPCRs or of different ligands for the same GPCR can reveal
a lot of information about GPCR identity and function. An
example of this is the Urotension II ligand, an 11 amino acid
peptide that functions as a mammalian vasoconstrictor,
which has been implicated in the regulation of cardiovas-
cular homeostasis [80]. Quantitative structure–activity rela-
tionship (QSAR) studies have suggested that the functional
attribute of the ligands lies in the Trp9-Lys10-Trp11 region.
In particular, it is believed that the position and distance be-
tween the positive ionisable residues relative to the adjacent
aromatic residues may be key to determining the ligands af-
finity [81, 82]. It is desirable to be able to replicate this struc-
ture using a smaller nonconformationally dependent ligand.

To this end, various hexapeptides as well as molecules
showing the benzidine or izide moieties have been developed
to try to replicate the activity of the endogenous ligand. The
selection of a small molecule dataset to be screened against a
GPCR model occurs in several stages. Firstly, filters which
are not specific for the target are applied, removing struc-
tures which are not drug-like, such as reactive compounds
[83]. When general properties of a structure are known (such
as the fact that GPCR agonists and antagonists tend to be
large heterocyclic compounds), it is possible to construct a
pharmacophore to select a manageable number of structures
from a larger dataset. GPCR models have been successfully
used for a number of different GPCR proteins. Potential
antagonists were also discovered for the Neurokinin-1
receptor [84], the alpha1a adrenergic receptors [85], and the
dopamine 3 (D3) subtype receptor [86] using the VS tech-
nique.

8.1 Homology modelling

One of the most effective ways of carrying out VS, other than
via QSAR analysis, is to generate a three dimensional (3-D)
structure of the receptor and then dock a succession of
ligands into its binding groove. Homology modeling is a
technique that takes the amino acid sequence of an
unknown structure and the solved structure of a similar
protein and computationally mutates each amino acid in the
solved structure into the corresponding amino acid from the
unknown structure. The newly generated structure can be
optimized by the use of molecular dynamics simulations.
This technique cannot realistically be used to identify a
GPCR sequence but if the sequence has been classified then
generating a 3-D structure of the protein can be useful in
trying to characterize ligands that might bind the receptor. In
conventional homology modeling, one or more templates
can be used. Therefore, although target and templates are
likely to be correctly aligned if sharing more than 40% iden-
tity, they need to be realigned if they are in the “twilight zone”
sharing less than 30% identity. Unfortunately, due to the
difficulties of overexpression, purification, and concentration
of membrane proteins, there is only one experimentally
determined structure of a GPCR currently available. The
structure is that of bovine rhodopsin which was elucidated to
3.5 Å using X-ray crystallography in 2000 [87]. Therefore,
there are several techniques that try to generate 3-D models
of GPCRs from the primary sequence using a combination
of what is known of their structure – e.g., the seven trans-
membrane regions – and information obtained from the
bovine rhodopsin model. These 3-D structures can then be
used for VS. Very few members of the GPCRs are sufficiently
similar to bovine rhodopsin to have more than 30% sequence
identity; the vast majority are within the “twilight” zone of
less than 30%. Despite this, all GPCRs show a common pat-
tern of hydrophobicity and similarity of structure even when
there is sequence divergence (see Section 1). For this reason,
the bovine rhodopsin structure has frequently been used as
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the basis for GPCR homology modeling and has generated
structures that have successfully been used in VS experi-
ments.

Conventional homology modeling is of little or no use
if, as is most typically the case, there is low sequence simi-
larity between the unknown protein sequence and the
sequence of the bovine rhodopsin protein. However, the
transmembrane sequences can be docked together using
the bovine rhodopsin structure as a scaffold so that hydro-
phobic faces are orientated into the membrane phase and
hydrophilic faces point into the lumen of the protein.
Hydrophobic profiles of multisequence alignment of
GPCRs can be used to assign helical transmembrane
regions. The programs WHATIF (http://swift.cmbi.kun.nl/
whatif/) [88] and MembStruk [89] can both be used for this
purpose (MembStruk has been validated using the bovine
rhodopsin structure.). This presupposes that the location of
the transmembrane regions has already been determined.
The next stage is to incorporate the extracellular and intra-
cellular loops as well as the termini of the molecule into the
transmembrane scaffold. The loops are harder to model be-
cause not only will there be low sequence similarity be-
tween bovine rhodopsin and the protein sequence but the
respective loops may be of a very different length. It is for
this reason the termini and loops are usually added in an
extended conformation. The program DRAWBRIDGE [90]
builds loop regions onto protein structures using the con-
formational propensities of amino acids to generate novel
candidates for protein loop regions. An alternative to stand-
ard homology modeling is threading assembly requirement
(TASSER). The program combines threading, whereby the
target sequence is threaded through the backbone struc-
tures of a collection of template proteins and a “goodness of
fit” score is calculated for each sequence-structure align-
ment. Ab initio algorithms are used to span the similar and
dissimilar regions [91]. A benchmark test of 2234 PDB pro-
tein structures revealed that approximately two-thirds of
single domain proteins could be modeled with a Ca RMSD
that is within 6.5 Å of the native structure. These improved
threading templates may offer a significant advantage over
traditional homology modeling techniques. Two forms of
TASSER were applied, the first designed to construct a pro-
tein on the basis of it being a membrane protein, the second
without any prior knowledge of the protein’s identity. Out of
907 GPCR sequences tested, 819 appeared to show the cor-
rect global fold. Also, a structural consistency was observed
between GPCRs binding the same or similar ligands. The
collected structures therefore represent a new possibility in
the field of GPCR Classification based upon predicted
structural folds.

A different approach is taken by the PREDICT meth-
od, which combines the properties of protein sequences
with that of their membrane environments [92]. PREDICT
searches through receptor conformations for the most
stable 3-D structure of the transmembrane domain. The
algorithm takes into account the membrane environment,

the membrane lipophilic core and the polar head groups.
Once generated, the structures are ranked by the PRE-
DICT energy score. The process begins with coarse mod-
eling, followed by fine modeling of the most stable coarse
structures generated. The structure then undergoes fur-
ther refinement with molecular dynamics. The VS per-
formed on the structures is evaluated by enrichment fac-
tors, the capacity of an in silico screening procedure to
identify known binders from a background of random
components.

8.2 Molecular docking

3-D VS requires selecting a manageable number of small
molecule candidates from a database such as CHEM-
BRIDGE [93] and docking them using a program like GOLD
[94]. This technique was successfully applied to characterize
the antagonist binding of the CCR1 Chemokine receptor. A
combination of MembStruk [89] and the HierDock program
[95] was used to build a model of CCR1 and dock into it the
BX 471 antagonist [96]. The program generates the trans-
membrane regions and hydrophobic maxima potential for
the target structure before optimizing the translational and
rotational orientation of the side chains. A void space of
BX741, include 14 regions of 76767 Å3 volume, were used
to determine the binding site of BX471. Analysis of the pro-
tein–ligand interaction revealed a strong hydrophobic char-
acter to the groove by which the urea group of the molecule is
able to form hydrogen bonds with water molecules. Valida-
tion of the technique used 35 known CCR1 antagonists
added to 51 000 compounds selectively filtered from the
MayBridge database (http://cds.dl.ac.uk/cds/datasets/org
chem/isis/maybridge.html). The program placed 43% of the
known CCR1 antagonists in the top 2% of predicted binders
and 63% within the top 5%.

9 Conclusion

Examination of the current literature shows that no real
consensus exists for tackling the problem of in silico GPCR
classification. GPCR prediction is a complicated problem
that may be beyond conventional bioinformatics tech-
niques. Classification models based upon motifs are both
simple and comprehensible to the user but have been
observed to have false positive and false negative prediction
rates that are erratic. Models constructed by SVMs or ANNs
are typically opaque to the user but are often more effective.
The alignment-independent methods, while showing some
of the highest overall accuracy, do not allow the user to infer
any information about the protein sequence other than to
which family it likely belongs. Therefore, there is arguably a
trade-off between the accuracy of the predictive technique
and the comprehensibility of its results. A possible way to
combine both accuracy and comprehensibility would be 3-D
VS, which has been shown to be an effective technique for
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characterizing GPCR Classes, subfamilies and sub–sub-
families and the ligands with which they can specifically
interact.

It should be noted that while many of the algorithms
described show a high degree of accuracy, in most cases the
technique has not been assessed independently. Further
benchmarking of the techniques with several different
GPCR datasets seems necessary. It may also be the case that
a technique that is effective at determining GPCRs from
nonGPCRs would be less effective at the class, subfamily or
sub–subfamily level. Different approaches could therefore be
employed at each level of the classification. Furthermore, all
the predictive techniques have hitherto been assessed using
the GPCRDB classification system. Future work in this field
may need to be directed towards training algorithms based
upon alternative classification systems, such as GRAFS, in
order to determine the most comprehensive approach to
classifying the GPCR superfamily.

GPCRs remain important drug targets; they still account
for a significant proportion of global pharmaceutical sales [6,
97]. The pharmaceutical industry is, however, no longer the
engine of unalloyed, ever-increasing profitability that it once
was. During 2006, worldwide sales of prescription medicines
rose by a modest 7% to around $602 billion. Established
pharmaceutical companies all suffer from the inconvenient
coincidence of incipient product droughts, caused, in the
main, by weak or dwindling internal pipelines, coupled to
severe earnings pressures resulting from the expiry of major
remunerative patents on flagship products. In particular,
growth in the traditional markets of Japan, North America,
and Europe has been slowing for several years. In 2004,
North American sales grew at a rate of 8.3% to $235.4 billion,
compared with 11.5% growth from 2002 to 2003. By 2006,
annual sales in North America were $252 billion, increasing
by only 5.7%. Yet, over half of marketed drugs concentrate on
a single class of biological targets: GPCRs. This includes
25% the top 100 drugs, many of which are so-called
blockbusters, each earning over $1 billion a year. Many com-
mentators have questioned the long-term viability of the
blockbuster, suggesting that the already fragmented phar-
maceutical market is moving towards an even more focused
market dominated by a legion of niche products. Because of
their hydrophobic binding site and their vital biological roles
GPCRs remain the ultimate druggable target. While we still
need drugs, we will continue to explore the unique proper-
ties of the GPCR. This review has shown how we will take the
next step on that road allowing us to more fully exploit as
drug targets the as yet untapped potential of the entire GPCR
family.
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