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Abstract: The problem of feature selection in data mining is an important real-world problem that 
involves multiple objectives to be simultaneously optimized. In order to tackle this problem this work 
proposes a multiobjective genetic algorithm for feature selection based on the wrapper approach. The 
algorithm’s main goal is to find the best subset of features that minimizes both the error rate and the 
size of the tree discovered by a classification algorithm, namely C4.5, using the Pareto dominance 
concept. 
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1. Introduction 

Data mining emerged from the need for converting records stored in large databases into useful, 
interesting and comprehensible knowledge. Data mining is typically performed on real-world 
databases that had been created for purposes other than learning [7]. Many of these databases have 
irrelevant attributes that may be harmful for the data mining process, and so they should be removed. 
After all, no matter how “intelligent” a data mining algorithm is, it will fail to discover high-quality 
knowledge if it is applied to low-quality data [6]. 

Attribute selection is an important preprocessing step of the knowledge discovery process, and its 
main goal is to discover a subset of attributes that are relevant for the target data mining task. In this 
paper we address the task of classification, where the goal is to predict the class of an example (a 
record) based on the values of the predictor attributes for that example. In this context, attribute 
selection involves two important goals: minimize both the error rate of the classification algorithm and 
the complexity of the knowledge discovered by that algorithm. Note that these objectives often 
conflict with one another, and they normally are non-commensurable – i.e., they measure different 
aspects of the target problem. Hence, we propose a multi-objective GA for attribute selection, where 
both objectives are “simultaneously” minimized, by using the concept of Pareto dominance [2].  

The basic idea of multi-objective optimization is to return to the user, as the result of the problem-
solving algorithm, a set of optimal solutions (rather than a single solution) by taking both objectives 
into account, without a priori assigning greater priority to one objective or the other. The ultimate 
choice about which solution should be used in practice is left to the user, which can use his/her 
background knowledge and experience to choose the “best” solution for his/her needs a posteriori, 
among all the returned optimal solutions. In other words, in a multi-objective optimization framework 
the user has the advantage of being able to choose the solution representing the best trade-off between 
conflicting objectives a posteriori, after examining a set of high-quality solutions returned by the 
multi-objective problem-solving algorithm. Intuitively, this is better than forcing the user to choose a 
trade-off between conflicting goals a priori, which is what is done when a multiobjective optimization 
problem is transformed into a single-objective one. 



2. Attribute Selection 

Attribute selection can be cast as a search where ideally the algorithm has to find the smallest subset of 
features with the best classification accuracy considering a target database. At a high level of 
abstraction any algorithm for feature selection can be divided into two parts: the search method and 
the evaluation function used to measure the quality of attribute subsets.  

There are at least three groups of search methods: exponential, randomized and sequential and. 
Exhaustive search belongs to the first group (generating an exponential number of candidate 
solutions), and genetic algorithms (GA) to the second one. Forward Sequential Selection (FSS) is in 
the third group, and it is a very popular algorithm due to its simplicity. FSS starts with an empty set of 
selected attributes and adds one attribute at a time to that set until a stopping criterion is met – e.g., 
until the quality of the current set of selected attributes cannot be improved by adding another attribute 
to that set. 

Considering the evaluation function, attribute selection algorithms may be based on two approaches: 
the filter or the wrapper approach. This classification is independent of the search strategy used by the 
attribute selection method. It depends on whether or not the evaluation function uses the target data 
mining algorithm (which will be eventually applied to the ultimate set of selected attributes) to 
evaluate the quality of a candidate attribute subset. In the filter approach the attribute selection method 
does not use the data mining algorithm, whereas in the wrapper approach the attribute selection 
method uses the data mining algorithm to evaluate the quality of a candidate attribute subset. Note that 
in the wrapper approach the data mining algorithm is used as a black box. 

The wrapper approach tends to obtain a predictive accuracy better than the filter approach, since it 
finds an attribute subset “ customized”  for a given data mining algorithm. However, the wrapper 
approach is considerably more computationally expensive than the filter approach, since the former 
requires many runs of the data mining algorithm.  
 

3. Multiobjective Optimization 

Real world problems often involve multiple objectives that should be simultaneously optimized. 
Unlike simple optimization, multiobjetive optimization considers that there is no single solution that is 
optimum with respect to all objectives. So it generates a set of solutions with different trade-offs 
among the objectives. This set of solutions is found using the Pareto dominance concept. The basic 
idea is that a given solution x1 dominates another solution x2 if and only if [2]: 

1. Solution x1 is not worse than solution x2 in any of the objectives; 

2. Solution x1 is strictly better than solution x2 in at least one of the objectives. 

Figure 1 shows an example of possible solutions found for a multiobjective attribute selection 
problem. The solutions that are not dominated by any other are considered Pareto-optimal solutions, 
and they are represented by the dotted line in Figure 1. Note that solution A has a small tree size but a 
large error rate. Solution B has a large tree size but a small error rate. Assuming that minimizing both 
objectives is important, one cannot say that solution A is better than B, nor vice-versa. On the other 
hand, solution C is clearly not a good solution, since it is dominated, for instance, by B. 

 



 
Fig. 1: Example of Pareto dominance in a two-objective problem [2] 

4. The Proposed Multiobjective GA for Attribute Selection 

A genetic algorithm (GA) is a search algorithm inspired by the principle of natural selection. The basic 
idea is to evolve a population of individuals, where each individual is a candidate solution to a given 
problem. Each individual is evaluated by a fitness function, which measures the quality of its 
corresponding solution. At each generation (iteration) the fittest (the best) individuals of the current 
population survive and produce offspring resembling them, so that the population gradually contains 
fitter and fitter individuals – i.e., better and better candidate solutions to the underlying problem. For a 
comprehensive review of GAs in general the reader is referred to [5]. For a comprehensive review of 
GAs applied to data mining the reader is referred to [6]. 

This work proposes a multiobjective genetic algorithm (GA) for attribute selection. Our motivation for 
developing a GA for attribute selection, in a multiobjective optimization framework, was that: (a) GAs 
are a robust search method, capable of effectively exploring the large search spaces often associated 
with attribute selection problems; (b) GAs perform a global search [5], [4], so that they tend to cope 
better with attribute interaction than greedy search methods [6], which is also an important advantage 
in attribute selection; and (c) GAs already work with a population of candidate solutions, which makes 
them naturally suitable for multiobjective problem solving, where the search algorithm is required to 
consider a set of optimal solutions at each iteration.  

The goal of the proposed GA is to find a subset of relevant attributes that leads to a reduction in both 
the classification error rate and the complexity (size) of the rule set discovered by a data mining 
algorithm (improving the comprehensibility of discovered knowledge). In this paper the data mining 
algorithm is C4.5 [8], a very well-known decision tree algorithm. The proposed GA follows the 
wrapper approach, evaluating the quality of a candidate attribute subset by using the target 
classification algorithm (C4.5). Hence, the fitness function of the GA is based on the error rate and on 
the size of the decision tree built by C4.5. These two criteria (objectives) are to be minimized 
according to the concept of Pareto dominance.  

4.1 Individual Encoding and Fitness Function 

In the proposed GA, each individual represents a candidate subset of selected attributes, out of all 
original attributes. Each individual consists of M genes, where M is the number of original attributes 
in the data being mined. Each gene can take on the value 1 or 0, indicating that the corresponding 
attribute occurs or not (respectively) in the candidate subset of selected attributes. 

The fitness function measures the quality of a candidate attribute subset represented by an individual. 
The fitness of an individual consists of two quality measures: (a) the error rate of C4.5; and (b) the size 
of the decision tree built by C4.5. Both (a) and (b) are computed by running C4.5 with the individual’s 
attribute subset only, and by using a hold-out method to estimate C4.5’s error rate, as follows. First, 
the training data is partitioned into two mutually-exclusive data subsets, the building subset and the 
validation subset. Then we run C4.5 using as its training set only the examples (records) in the 
building subset. Once the decision tree has been built, it is used to classify examples in the validation 
set. The two components of the fitness vector are then the error rate in the validation set and the size 
(number of nodes) of the tree built by C4.5.  



4.2 Selection Method and Genetic Operators 

At each generation, selection is performed as follows. First the GA selects all the non-dominated 
individuals (the Pareto front) of the current population. These non-dominated individuals are passed 
unaltered to the next generation by elitism [1]. Let N be the population size, and let Nelit be the number 
of individuals reproduced by elitism, where Nelit d (N / 2).. Then the other N - Nelit individuals to 
reproduce are chosen by performing N - Nelit times a tournament selection procedure, as follows.  

First, the GA randomly picks k individuals from the current population, where k is the tournament 
size, a user-specified parameter which was set to 2 in all our experiments. Then the GA compares the 
fitness values of the two individuals playing the tournament and selects as the winner the one with the 
best fitness values. The selection of the best individual is based on the concept of Pareto dominance, 
taking into account the two objectives to be minimized (error rate and decision tree size). Given two 
individuals I1 and I2 playing a tournament, there are two possible situations. The first one is that one of 
the individuals dominates the other. In this case the former is selected as the winner of the tournament.  

The second situation is that none of the individuals dominates the other. In this case, as a tie-breaking 
criterion, we compute an additional measure of quality for each individual by taking both objectives 
into account. Following the principle of Pareto dominance, care must be taken to avoid that this tie-
breaking criterion assigns greater priority to any of the objectives. Hence, we propose the following 
tie-breaking criterion. For each of the two individuals Ii, i=1,2, playing a tournament, the GA 
computes Xi as the number of individuals in the current population that are dominated by Ii, and Yi as 
the number of individuals in the current population that dominate Ii. Then the GA selects as the winner 
of the tournament the individual Ii with the largest value of the formula: Xi - Yi. Finally, if I1 and I2 
have the same value of the formula Xi - Yi (which is rarely the case), the tournament winner is chosen 
at random. This tie-breaking criterion is also used to reduce the elitist set size when Nelit > (N / 2). 

Individuals selected by tournament selection undergo crossover and mutation, in order to create new 
offspring [4]. In essence, crossover consists of swapping bits between two individuals, whereas 
mutation consists simply of flipping the value of a bit. In all our experiments the probabilities of 
crossover and mutation were set to 80% and 1%, respectively. The population size N was set to 100 
individuals, which evolve for 50 generations. These values were used in all our experiments. 

After the individuals of the last generation have been evaluated, the set of non-dominated individuals 
to be returned (as the answer of the GA) is refined by performing an “ internal 10-fold cross-
validation” , i.e., a cross-validation based on the training set only (merging the building and validation 
sets). Only the individuals that are non-dominated in all folds of the cross-validation procedure are 
returned as possible solutions for the attribute selection problem. In some cases, there is no individual 
that is non-dominated in all folds of this internal cross-validation. In this case, the system computes 
the average error rate and tree size of all individuals in all folds and return the non-dominated 
individuals, according to this average result. Note that this internal cross-validation is computationally 
expensive. That is why it is performed only after the last generation, rather than at every generation. 

5. Computational Results 

We have performed experiments with six public-domain, real-world data sets obtained from the UCI 
(University of California at Irvine)’ s data set repository [9]. The number of examples, attributes and 
classes of these data sets is shown in Table 1. 

Table 1. Main characteristics of the data sets used in the experiments 

Data Set # examples # attributes # classes 
Arrhythmia 452 269 16 

Dermatology 366 34 6 
Vehicle 846 18 4 

Promoters 106 57 2 
Ionosphere 351 34 2 

Crx 690 15 2 



 
All the experiments were performed with a well-known stratified 10-fold cross-validation procedure. 
For each iteration of the cross-validation procedure, once the GA run is over we compare the 
performance of C4.5 using all the original attributes with the performance of C4.5 using only the 
attributes selected by the GA. In both runs of C4.5, the decision tree is built using the entire training 
set (9 partitions), and then we measure C4.5’ s error rate in the test set. Therefore, the GA can be 
considered successful to the extent that the attributes subsets selected by it lead to a reduction in the 
error rate and size of the tree built by C4.5, by comparison with the use of all original attributes. 

There is a final point concerning the evaluation of the solutions returned by the GA. As explained 
before, the solution for a multiobjective optimization problem consists of all non-dominated solutions 
(the Pareto front). Hence, each run of the GA outputs the set of all non-dominated solutions (attribute 
subsets) present in the last generation’ s population. In a real-world application, it would be left to the 
user the final choice of the solution to be used in practice. However, in our research-oriented work, 
involving public-domain data sets, no user was available. Hence, in order to evaluate the quality of the 
non-dominated attribute subsets found by the GA in an automatic, data-driven manner – as usual in the 
majority of the data mining and machine learning literature – we measure the error rate and the size of 
the decision tree built by C4.5 using each of the non-dominated attribute subsets returned by the GA.  

In order to compare the proposed multiobjective GA with another multiobjective feature selection 
method, we propose a multiobjective version of forward sequential selection (MOFSS). The method 
follows the same principles of the simple FSS. It starts with an empty set of attributes and at the first 
iteration the solutions with one attribute are evaluated. However, instead of selecting just one best 
solution, a set of non-dominated solutions are selected considering the Pareto dominance principle and 
inserted into a list. The solutions to be evaluated in the next iteration are generated combining each of 
the solutions in the list with each of the remainder attributes. Again, the set of non-dominated 
solutions is selected and inserted into a list, and so on, until no more solutions are included in the list. 

Table 2 shows results comparing the proposed multiobjective GA with C4.5 alone. Table 3 shows 
results comparing the proposed multiobjective FSS with the conventional FSS method. The fourth 
column of Table 2 shows the total number of non-dominated solutions found by the GA. Once these 
solutions (hereafter called GA-found solutions) are obtained, they are compared with the baseline 
solution, i.e., the set of all attributes, corresponding to the use of C4.5 alone. Hence, the last three 
columns of Table 2 show, respectively, the number of GA-found solutions which dominate the 
baseline solution, the number of GA-found solutions which are dominated by the baseline solution and 
the number of GA-found solutions that neither dominate nor are dominated by the baseline solution, 
hereafter referred to as the number of neutral solutions. The columns of Table 3 have an analogous 
meaning. The figures are an average over the 10 iterations of the cross-validation procedure 
(measuring error rate in the test set). The values after the “ r”  symbol represent the standard deviations. 

Table 2. Results comparing the multiobjective GA with C4.5 alone 

Data Set C4.5 alone MOGA solutions 
 Tree size Error rate Total Dominate Dominated Neutral 

Arrhythmia 80.2 
�

 2.1 32.93 
�

 3.11 3.9 
�

 0.54 0.8 
�

 0.38 1.3 
�

 0.68 1.8 
�

 0.44 
Dermatology 29.0 

�
 3.65 15.95 

�
 1.43 1.11 

�
 0.11 0.88 

�
 0.17 0 0.22 

�
 0.11 

Vehicle 134.0 
�

 6.17 26.03 
�

 1.78 6.1 
�

 0.76 1.5 
�

 0.43 1.1 
�

 0.46 3.5 
�

 0.82 
Promoters 23.8 

�
 1.04 16.83 

�
 2.55 1.5 

�
 0.16 0.5 

�
 0.22 0 1.0 

�
0.26 

Ionosphere 26.2 
�

 1.74 10.2 
�

 1.25 1.14 
�

 0.14 0.42 
�

 0.2 0.14 
�

 0.14 0.57 
�

 0.3 
Crx 29.0 

�
 3.65 15.95 

�
 1.43 4.55 

�
 0.67 2.55 

�
 0.69 0.22 

�
 0.15 1.77

�
 0.77 

 

The results in Table 2 show that the number of GA-found solutions that dominate the baseline solution 
(5th column) is larger than the number of GA-found solutions that are dominated by the baseline 
solution (6th column) in 5 out of the 6 data sets. The only exception is the Arrhythmia data set, but the 
difference is not significant, taking into account the standard deviations. The better performance of the 
GA-found solutions, by comparison with the baseline solution, is particularly significant in the 
Dermatology and Crx data sets. 



Table 3. Results comparing multiobjective FSS with conventional FSS 

Data Set FSS MOFSS solutions 
 Tree size Error rate Total Dominate Dominated Neutral 

Arrhythmia 31.4 
�

 5.35 37.37 
�

 1.42 32.2 
�

 10.82 17.4 
�

 9.38 0 14.8 
�

 8.68 
Dermatology 21.6 

�
 0.52 9.61 

�
 2.14 76.5 

�
 10.3 0 0 76.5 

�
 10.3 

Vehicle 88.8 
�

 11.02 34.93 
�

 2.11 3.6 
�

 0.16 0.6 
�

 0.16 0 3.0 
�

 0.15 
Promoters 5 

�
 0 32.84 

�
 5.88 66.6 

�
 12.66 18.2 

�
 11.43 0 48.4 

�
 14.16 

Ionosphere 10.2 
�

 1.49 12.46 
�

 1.6 12.9 
�

 6.23 1.8 
�

 1.21 0 11.1 
�

 5.21 
Crx 3 

�
 0 14.46 

�
 1.48 84.1 

�
 2.05 75.0 

�
 8.55 0 9.1 

�
 9.1 

 

The results in Table 3 show that, in all 6 data sets, none of the MOFSS-found solutions were 
dominated by the baseline solution (the set of all attributes). In general, MOFSS found more solutions 
than the GA, except in the Vehicle data set. In 2 data sets (Arrhytmia and Crx) the majority of 
solutions found by MOFSS dominate the baseline solution. However, in the other 4 data sets the 
majority of solutions found by MOFSS are neutral. These neutral solutions generally have small tree 
sizes but high error rates, by comparison with the baseline solution. In other words, they are 
concentrated in one part of the Pareto front. By contrast, the solutions found by the GA are more 
spread along the Pareto front, representing a better diversity of trade-offs between tree size and error 
rate, which gives the user more flexibility to chose among the solutions returned by the GA. 

6. Conclusions and Future Work 

This work proposed a multiobjective genetic algorithm (MOGA) for attribute selection and a 
multiobjective version of forward sequential selection (MOFSS). The computational results showed 
that, overall, the number of MOGA-found and MOFSS-found solutions that dominate the baseline 
solution (the set of all attributes) is larger than the number of MOGA-found and MOFSS-found 
solutions that are dominated by the baseline solution, respectively. Hence, both multiobjective 
methods can be considered good alternatives to the attribute selection problem. The MOGA had the 
advantage of finding solutions that are more spread along the Pareto front, by comparison with the 
solutions found by MOFSS (most of which had small tree sizes but high error rates). 

We are currently doing experiments with more data sets, to further validate the results reported in this 
paper. In the future it would also be interesting to compute the dominance relations between the 
solutions found by MOGA and MOFSS. (In these paper the dominance relations of these solutions 
were compared only with the baseline solution.)  
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