
Creating Rule Ensembles From
Automatically-Evolved Rule Induction
Algorithms

Gisele L. Pappa and Alex A. Freitas

Abstract Ensembles are a set of classification models that, when combined, pro-
duce better predictions than when used by themselves. This chapter proposes a new
evolutionary algorithm-based method for creating an ensemble of rule sets consist-
ing of two stages. First, an evolutionary algorithm (more precisely, a genetic pro-
gramming algorithm) is used to automatically create complete rule induction algo-
rithms. Secondly, the automatically-evolved rule induction algorithms are used to
produce rule sets that are then combined into an ensemble. Concerning this second
stage, we investigate the effectiveness of two different approaches for combining
the votes of all rule sets in the ensemble and two different approaches for selecting
which subset of evolved rule induction algorithms (out of all evolved algorithms)
should be used to produce the rule sets that will be combined into an ensemble.
Keywords: ensembles, evolutionary algorithms, rule induction algorithms,
grammar-based genetic programming

1 Introduction

After many decades of research, classification is still one of the most studied data
mining tasks. Classification problems can be solved by usinga variety of types of
algorithms, involving a really diverse set of representations to express classification
models (the outputs of classification algorithms) [1]. Among these, rule induction
algorithms produce classification models in the form of a setof IF-THEN classifi-

Gisele L. Pappa
Federal University of Minas Gerais, Computer Science Department, Av. Antônio Carlos, 6627,
31270-010, Belo Horizonte, MG, Brazil e-mail: glpappa@dcc.ufmg.br

Alex A. Freitas
University of Kent, Computing Laboratory, CT2 7NF, Canterbury, Kent, UK e-mail:
A.A.Freitas@kent.ac.uk

1



2 Gisele L. Pappa and Alex A. Freitas

cation rules (sometimes called decision rules), which havethe advantage of being a
knowledge representation intuitively comprehensible to the user.

Another type of algorithms that can be used to solve the classification task are
evolutionary algorithms. Evolutionary algorithms (EAs) [2] are stochastic methods
based on Darwin’s theory of evolution and survival of the fittest. Since they are a
very generic and flexible type of search algorithm, evolutionary algorithms can be
used to build many different types of classification models.In particular, evolution-
ary algorithms became a common type of method to evolve decision trees [3], clas-
sification rules [4, 5] and neural networks [6], and are also often used as parameter
optimizers for many other types of classifiers [7]. More recently, these methods have
been often applied to build ensembles of classification models [8, 9, 10, 11, 12].

From a search perspective, a motivation for using evolutionary algorithms in data
mining/machine learning is that they perform a population-based global search in
the space of candidate solutions (normally candidate classification models, when
the target problem is classification) [4]. This is in contrast with several other types
of methods, such as the greedy (local search-based) methodstypically used by more
conventional types of rule induction algorithms. The global search performed by
evolutionary algorithms makes them less likely to get trapped in local optima in the
search space, by comparison with greedy methods.

Whatever the type of algorithm(s) used to solve a classification problem, in gen-
eral an effective approach for increasing the predictive accuracy of that(ose) algo-
rithm(s) consists of creating an ensemble of many classification models produced
by that(ose) algorithm(s). An ensemble basically combinesthe predictions of many
different classification models into a single prediction for each test example (un-
seen during training), and follows the principle that a “shared” decision will usually
generate better results than an individual one. Actually, building an ensemble of
classification models became a popular research area in classification and other su-
pervised learning tasks (e.g. regression), since such ensembles have been shown to
outperform – in terms of predictive accuracy – a single classification model [13].

In this chapter we are interested in evolutionary algorithms as a type of method
for supporting the creation of an ensemble of classificationmodels – in particular,
an ensemble of rule sets. More precisely, this chapter proposes a new method for
creating an ensemble of rule sets consisting of two stages. First, an evolutionary
algorithm (a genetic programming algorithm) is used toautomatically createcom-
plete rule induction algorithms. Secondly, the automatically-evolved rule induction
algorithms are used to produce rule sets that are then combined into an ensemble.
Concerning this second stage, we investigate the effectiveness of two different ap-
proaches for combining the votes of all rule sets in the ensemble (at prediction time)
and two different approaches for selecting which subset of evolved rule induction
algorithms (out of all evolved algorithms) should be used toproduce the rule sets
that will be combined into an ensemble.

The basic idea of using evolutionary algorithms – more specifically, genetic pro-
gramming – for automatically creating complete rule induction algorithms (rather
than manually designing rule induction algorithms as usual) was proposed in [14].
Note that by complete rule induction algorithm we mean algorithms with approxi-



Creating Rule Ensembles From Automatically-Evolved Rule Induction Algorithms 3

mately the same level of complexity as well-known algorithms such as CN2 [15] or
Ripper [16]. That work has shown that genetic programming can successfully take
the automation of data mining/machine learning tasks one step further, by automat-
ically creating rule induction algorithms competitive with manually-designed rule
induction algorithms.

However, in [14] the evolved rule induction algorithms werenot used to create an
ensemble. That is, a set of 100 rule induction algorithms (individuals in the genetic
programming algorithm’s population) was evolved, but onlythe best one at the end
of the evolution was returned as a solution to the user. As argued by Gagne et al. [8],
this selection of the best individual out of many evolved individuals actually repre-
sents a missed opportunity for creating an ensemble “for free”, since evolutionary
algorithms naturally work with a (usually large) population of candidate solutions.
At a high level of abstraction, this is the basic idea explored in this work, where
we use the classification models (rule sets) produced by the rule induction algo-
rithms automatically evolved by the genetic programming algorithm to produce an
ensemble of rule sets.

Hence, the main contribution of this work is to propose a new evolutionary
algorithm-based ensemble method where a genetic programming algorithm is used
to evolve a population of complete rule induction algorithms, where the latter are
then used to produce rule sets composing an ensemble. This isa new way of pro-
ducing a diverse set of classification models. That is, instead of creating diverse
classification models by injecting randomness into somecomponent of a classifi-
cation algorithm (e.g., injecting randomness in the attribute selection procedure in
random forests – see Section 2), we inject a certain degree ofrandomness into the
generation of thecomplete rule induction algorithms that will be used to produce
the classification models that will form an ensemble. This degree of randomness is
due to the stochastic nature of an evolutionary algorithm’ssearch, which works with
a diverse population of candidate solutions (rule induction algorithms in our case)
spread across the search space. In any case, of course the evolutionary search for
rule induction algorithms is not completely random, since it is actually a heuristic
search guided by the fitness function (which favours rule induction algorithms with
higher classification accuracy). Hence, it is hoped that theevolutionary search will
do a good job ofautomatically creating a set of rule induction algorithms which are
both accurate and diverse, which would tend to produce rule sets having those corre-
sponding properties, which are desirable properties for anensemble of classification
models in general.

The chapter is organized as follows. Section 2 introduces some background
knowledge on ensembles, and Section 3 introduces concepts of evolutionary algo-
rithms and genetic programming. Section 4 shows how ensembles and evolutionary
algorithms can be combined, and presents some related work.Section 5 gives an
overview of the grammar-based genetic programming method used to evolve the
rule induction algorithms, and describes how the ensemble is built. Finally, Sec-
tion 6 reports some experimental results, and Section 7 draws some conclusions and
presents some ideas of future work.



4 Gisele L. Pappa and Alex A. Freitas

2 Ensembles of Classification Models

The concept of ensembles is based on the idea that combining aset of predictions
coming from different classification models often generates better results than a sin-
gle prediction produced by one of the models participating in the ensemble. Given
a set ofn classification modelsCi, wherei varies from 1 ton, an ensemble com-
bines all the predictions of those classification models to predict a final class to an
example.

According to [17], ensembles usually obtain better accuracy rates than single
classification models because they solve three important problems that the single
classification models have difficulties in dealing with: thestatistical, the computa-
tional and the representational problems. The statisticalproblem refers to the size of
the model’s search spaceversus the number of training examples available. Many
classification models’ search spaces are simply too large tobe explored considering
the limited number of training examples available. Hence, many classification mod-
els with similar accuracy rates are found, and choosing one of them is a difficult
task. The single classification model chosen might be one that does not generalize
(on the test set) very well, by comparision with other modelswith similar classi-
fication accuracies in the training set. Ensembles avoid this problem, once a set of
classification models is considered, and the chances of picking only bad models is
reduced.

The computational problem relates to the fact that, as classification model search
spaces are usually huge, one cannot guarantee the best modelwill be found in a fea-
sible time. In order to cope with this problem, heuristics are used, and they can get
trapped in local optima in the search space. Selecting a set of classification models
instead of just one model reduces the chances of only gettingclassification models
found around local optima.

The third problem, named representational, concerns classification model spaces
that do not contain any good approximations to the “ideal” model. In this case, a set
of weak classification models might guarantee better results than a single one.

Considering these problems, ensembles are usually built following one of two
approaches. In the first approach, different classificationmodels are built separately
[18], and their predictions combined through some sort of voting scheme. In this
kind of approach, the main difficult lies on how to choose how many and which
classification models will be considered as part of the ensemble [11], as it is known
that the success of an ensemble is highly dependent on how accurate and diverse its
individual classification models are [19, 20]. In the secondapproach, this problem is
avoided, as the classification models that compose the modelare built incrementally,
in a cooperative fashion [12].

Regardless of the approach used to build the ensembles, two important decisions
have to be made: which method will be used to build the set of classification mod-
els, and which method will be used to to combine the predictions of each model
into a single prediction. Concerning the methods used to build the ensembles, most
of them work by manipulating the training set [21], the set ofattributes [22] or the
output labels of the training instances [23] before giving them to a classification



Creating Rule Ensembles From Automatically-Evolved Rule Induction Algorithms 5

algorithm. Some other methods work by injecting some randomness into the classi-
fication algorithms [24].

Among the most known methods for ensemble construction are bagging [21],
boosting [25] and random forests [24]. Bagging works by creating multiple data
samples, where each data sample is produced by sampling withreplacement the
original training set. These data samples typically have the same size the original
training set has. Therefore, one data sample may have many copies of a specific
example and no copies of others. The classification algorithm is then run on each of
those data samples, producing a set of classification modelsconstituting the ensem-
ble.

Boosting, in contrast, works by setting weights to the training examples in the
original training set. Initially, all the examples have thesame weight. A sample of
examples (also with the same size of the original training set) is probabilistically
drawn from the training set. The probability of an example being chosen to be part
of the sample is proportional to its weight. The classification algorithm is run mul-
tiple times, sequentially, in iteratively sampled data sets, and at each iteration the
weights of the examples are updated according to the performance of the classifica-
tion model in that particular iteration. In this way, examples difficult to be classified
have their weights increased more frequently than other instances, which improves
their probabilities of being selected for the next sample which will be used to train
the next iteration of the classification algorithm.

Random forests are methods that combine bagging with randomly built decision
trees. They produce a set of decision trees, each of them using a different sampled
data set. In a popular approach to build a random forest, in order to build each
decision tree, a numberm of attributes are randomly selected from the total set of
n attributes available in the training set – wherem is typically much smaller than
n. Out of the set ofm randomly-selected attributes, the attribute that createsthe
best data split is used to label the current node of the decision tree, during the tree
building process. Each decision tree is built to the largestpossible extent, and there
is no pruning. When classifying new examples, each tree gives its vote, and the
votes of all decision trees are combined to classify a new example. Random forests
are well-known for not overfitting.

After classification models are built using one of the methods described above or
a related method, another method has to be applied to combinethe predictions com-
ing from different classification models. The most common ofthese combination
methods is the majority voting, where the class assigned to anew example is the
one predicted by the greatest number of classifiers, or some related weighted voting
strategy.

At this point, it is important to note that, although most of the research in en-
sembles is concentrated on building ensembles using the same classification algo-
rithm, ensembles can also be built using classification models produced by different
classification algorithms (using different model representations). In this case, more
sophisticated techniques to combine the results coming from different classifiers is
needed. The most common of this type of methods is stacking [26].



6 Gisele L. Pappa and Alex A. Freitas

Stacking works by creating a meta-model that learns to predict the final class to
be assigned to a new example based on the classes predicted bythe classification
models that compose the ensemble. In order to learn a meta-model, a training set
is built using a leave-one-out procedure. The most important decisions concerning
stacking methods are the attributes to be used in the meta data set and the algorithm
that will learn the meta model.

Ting and Witten [27], for instance, proposed a stacking method that predicts the
probability distributions over the set of class values, rather than single class values.
In this case, the meta-level attributes are the probabilities of each of the class values
returned by each of the base level classification models in the ensemble. In this same
work, the authors show there are several learning algorithms that are not suitable
for learning meta-models, and they recommend a multi-response linear regression
method for this task.

So far, we described some of the most used methods to create ensembles of clas-
sification models. Recently, AdaBoost [28] and random forests have been shown to
be particularly powerful. At the same time, a lot of approaches using evolutionary
algorithms for ensemble building were proposed [11, 8, 12].In this chapter, we are
particularly interested in what we call evolutionary ensembles. One of the main mo-
tivations to combine evolutionary algorithms and ensembles is to take advantage of
the population of individuals (classification models) which is naturally evolved by
the evolutionary algorithm. Section 3 gives an overview of evolutionary algorithms,
and Section 4 describes methods using them to build ensembles of classification
models.

3 Evolutionary Algorithms and Genetic Programming

Evolutionary algorithms [2] are stochastic methods based on Darwin’s concepts of
evolution and survival of the fittest, and they work by evolving a population of can-
didate solutions to a given target problem. Genetic Programming (GP) [29] is an
area of evolutionary computation which aims to automatically evolve computer pro-
grams. Together with other types of evolutionary algorithms, its application is being
successful because of its generality (applicability to potentially any problem do-
main), global search and associated implicit parallelism and noise tolerance [30, 31].

Essentially, a GP algorithm evolves a population of individuals, where each in-
dividual represents a “program” or “executable structure”that is a candidate solu-
tion to the target problem. These individuals are evaluatedusing a fitness function,
which measures the goodness of the candidate solution (program) represented by
the individual. The fittest individuals are usually selected to undergo reproduction,
crossover and mutation operations. The new individuals produced by these opera-
tions are used to create a new population, which replaces theold one. This evolu-
tionary process is carried out until an optimum solution or satisfactory solution is
found, or a pre-defined number of generations (iterations) is reached.

The design of a GP algorithm has to consider five essential components:



Creating Rule Ensembles From Automatically-Evolved Rule Induction Algorithms 7

1. A set of functions and terminals, used to create the first GPpopulation.
2. The representation of the individuals.
3. The fitness function used to measure the quality of the individuals (candidate

solutions).
4. A selection method.
5. Crossover and mutation operators, which produce new children individuals out

of the selected parent individuals in the current generation (iteration).

The next subsections explain the main concepts involved in the design of these
elements.

3.1 Functions and Terminal Sets

In a GP algorithm, the first population is randomly generatedusing a set of functions
and terminals. The terminals are usually constants, variables and/or zero-argument
functions. The most common functions are the boolean and arithmetical ones, but
conditional and/or loop statements can also be used.

Although the designer of a GP algorithm has a lot of freedom tochoose the
function set, it should not have too many functions, since the more functions the
greater the search space.

One constraint to be considered when choosing the sets of functions and termi-
nals is that the closure property must be respected. This property states that every
function in the function set has to be able to handle all the values it receives as input.
Thus a division operator, for example, has to be modified to cope with division by
zero. This is often implemented by making the operator return a given value, rather
than an error, in case of division by zero.

3.2 Individual representation

Most GP algorithms work with either of two standard individual representations:
a tree or a linear structure [31]. A linear representation issimply a sequence of
commands that are executed from left to right. In a tree representation, the execution
of the commands is usually made in postfix order (reading the leftmost node of the
tree first). The majority of GP algorithms use the tree representation.

3.3 Fitness function and Selection Methods

GP algorithms evolve a population of individuals using the concepts of selection
and survival of the fittest. Hence, after the initial GP population is initialized (usu-
ally randomly), individuals are evaluated using a fitness function. This function mea-



8 Gisele L. Pappa and Alex A. Freitas

sures how well an individual solves the target problem. It isused to determine which
individuals will have parts of their genetic material (i.e., parts of their candidate
solution) passed onto the next generation via the action of some genetic operator
(reproduction, crossover or mutation). The better the fitness of an individual, the
higher the probability of that individual being selected for reproduction, crossover
or mutation.

There are many selection methods, such as fitness-proportional selection, ranking
selection and tournament selection. Tournament selection, for example, randomly
gets a pre-defined number of individuals from the populationand simulates a tour-
nament among them. Typically, the individual with the best fitness is declared the
winner of the tournament and is therefore selected for reproduction, crossover or
mutation.

3.4 Crossover and Mutation Operators

Crossover swaps genetic material (parts of candidate solutions) between two indi-
viduals, whereas mutation replaces some part of the geneticmaterial of an individual
with a new randomly-generated genetic material. These two operations are applied
with user-specified probabilities. The basic idea of these operators is as follows.

Crossover re-combines the genetic material of two parent individuals, in order to
produce two new children. If the individuals are represented by trees, randomly-
selected subtrees are swapped between the two parents. In the case of linear
genomes, randomly-selected linear segments of code are swapped.

Unlike crossover, mutation acts on a single parent individual of the population. It
randomly selects a subtree of the tree-based genome or a segment of code in linear
genomes and replaces it by a new randomly-generated subtreeor code segment.
Both crossover and mutation operations can be implemented in many ways - see
[31] for a detailed review of these operators.

It should be noted that, although the mechanisms of crossover and mutation are
essentially a form of random moves in the search space (whichmakes them prob-
lem independent), a GP algorithm as a whole is a heuristic search method, because
crossover and mutation are applied to parent individuals which are selected based
on their (problem dependent) fitness, i.e. a measure of theirability in solving the
target problem. Hence, by iteratively applying crossover and mutation operators to
the best programs of the current gereration (iteration), the population of programs
gradually evolves to better and better programs.

4 Evolutionary Methods for Creating Ensembles

Evolutionary algorithms and ensembles can be used togetherin two different broad
approaches. In the first one, the evolutionary algorithm hasthe same role as a tra-



Creating Rule Ensembles From Automatically-Evolved Rule Induction Algorithms 9

ditional classification algorithm: it builds a classification model from data. In this
case, each individual in the EA represents a classification model, and a subset of
them is selected and then combined using one of the traditional ensemble tech-
niques, such as bagging or boosting [18]. The selection of the models (individuals)
that will compose the final ensemble is the most difficult problem to be tackled in
this approach.

In the second approach, evolutionary algorithms are used tooptimize some com-
ponents – or (broadly speaking) “parameters” – of an ensemble. These components
or parameters might vary from the best set of attributes [10]to the number of classi-
fication models that should compose an ensemble [32]. Combinations of both strate-
gies are also valid [9].

The evolutionary algorithm-based ensemble method proposed in this chapter can
be considered as a new method belonging to the above second approach where,
instead of optimizing a simple parameter - such as ensemble size, we “optimize”
(evolve) a fundamental “macro-parameter”: the classification algorithms that will
produce the classification models that will compose the ensemble. In other words, a
genetic programming algorithm is used to automatically create an entire set of clas-
sification (more precisely, rule induction) algorithms. After the evolved rule induc-
tion algorithms are applied to the data being mined, they create a set of classification
models (rule sets), from which an ensemble of rule sets is produced. This method
will be explained in detail in Section 5. Before moving to that section, however, this
section reviews related work on evolutionary algorithm-based ensemble methods.

Let us now describe some methods following the first approachdescribed above.
One of the first ideas of combining ensembles and genetic programming (GP) was
presented by Iba [18], who introduced the BagGP and BoostGP algorithms. In both
algorithms, each individual in the population represents aclassification model, and
the population of a GP algorithm is divided intoS sub-populations. In the case of
BagGP, each subpopulation is trained with a data set of sizeN, sampled with replace-
ment from the original training set (which also has sizeN). The best individuals of
each population have the right to vote when classifying new examples in the test set.

BoostGP follows the same basic algorithmic procedure that AdaBoost does. At
the beginning of the evolutionary process, each example of the training set is asso-
ciated with the same weightw. The probability of an example being chosen to be
part of the sampled training set, which has the same size as the original training set,
is proportional to the weight it is associated with. Each sub-population is evolved
sequentially with a different training set, and the weightsare updated according to a
loss function. After all the sub-populations are evolved, the best individual of each
population votes to classify a new example.

In this same line of work, Folinoet al [33] proposed a boosting system based on
cellular genetic programming that they named ClustBoostCGPC. ClustBoostCGPC
is a parallel GP algorithm, where each processing unit evolves a different popula-
tion (where each individual represents a decision tree), which is locally evaluated.
However, in contrast with the method proposed in [18], at theend of the evolution
the well-known k-means clustering algorithm [34] is used togenerate clusters of
individuals for each population. The best individuals of each cluster in each pop-



10 Gisele L. Pappa and Alex A. Freitas

ulation are chosen to build the ensemble. One drawback of this method is that it
can generate really large ensembles, so the authors use somepruning strategies to
remove individuals from a previously built ensemble.

Chenet al [11] proposed a multi-objetive evolutionary algorithm that, combined
with a Bayesian automatic relevance determination (ARD) method [35], designed
and trained ensembles of neural networks using attribute selection. The neural nets
were initially built using a subset of attributes from the training set, and their pa-
rameters optimized using the Bayesian ARD method. The evolutionary algorithm
was used to evolve neural networks with few attributes and low error rate. At the
end of the evolutionary process, a logistic regression method was used to choose the
networks that would be part of the ensemble.

Gagneet al [8] proposed and compared two evolutionary algorithms for en-
semble learning. The first, named Off-EEL (an “off-line” ensemble construction
method), used an evolutionary algorithm to evolve neural networks and built the
ensemble after evolution using a greedy approach. The second approach, named
On-EEL (an “on-line” ensemble construction method), used the same type of evo-
lutionary algorithm but selected the final classification models that would form the
ensemble during the evolution process. The results showed that the first approach
obtained better results than the second one. They claim thisresult can be explained
by the On-EEL getting often trapped in local optima in the search space.

Kim et al [9] also proposed a local selection algorithm to evolve ensembles
of neural nets combined with attribute selection. In this case, each neural net was
trained with a different subset of attributes, but individual neural networks and en-
sembles were evolved simultaneously. Each individual was represented by a binary
string that encoded the attributes that should be used to train the neural network and
the list of ensembles the individual’s classification modelbelonged to. In this way,
the ensembles being evolved competed directly to each other, and the individual
neural networks also competed among themselves, and were allowed to move to the
fittest ensembles.

In contrast to the methods described until now, Sirlantziset al [32] used an evo-
lutionary algorithm to select the best combination of a set of pre-defined classifi-
cation algorithms and voting strategies, following the second approach previously
described. Depending on the problem being tackled, they used 6 or 12 classification
algorithms together with 4 voting strategies.

This was also the approach followed by Kim and Cho [12], wherean evolutionary
algorithm was used to find ensembles of pairs of attribute selection method and
classification algorithm. In this case, they pre-defined 7 attribute selection methods
and 6 classification algorithms. This generated 42 pairs of attribute selection method
and classification algorithm, which were represented in an individual as a vector
with 42 positions (“genes”). Each individual vector’s genecould be represented by
a binary digit or a real-valued number. In the first case, a 1 indicated that the pair of
attribute selection method and classification algorithm associated with that gene is
part of the ensemble being evolved. In the second case, a number different from 0
meant the pair associated with the gene was being used in the ensemble, and its vote
when classifying unseen examples was weighted by the value present in that gene



Creating Rule Ensembles From Automatically-Evolved Rule Induction Algorithms 11

of the individual. Hence, each individual represented an ensemble of classification
models, which would be generated using the pairs of attribute selection method and
classification algorithms indicated by its gene vector.

All the evolutionary algorithms described above aim to create very accurate and
diverse ensembles. In order to achieve that, beside the ideas already discussed,
other mechanisms were also used to improve the effectiveness of the evolution-
ary algorithm-based ensemble systems. For instance, fitness based on accuracy was
combined with niching mechanisms or modified according to co-evolution princi-
ples [36], and speciation was applied [37]. Moreover, multi-objective EAs (MOEAs)
became commonly used as a way to optimize both accuracy and diversity simulta-
neously [38].

5 Building an Ensemble of Rule Sets from Rule Induction
Algorithms Automatically Created by Genetic Programming

As pointed out before, the main difference among the evolutionary method proposed
in this paper and other evolutionary algorithm-based ensemble methods proposed in
the literature is that the evolutionary method proposed here does not evolve classifi-
cation models. Instead, it evolves complete rule inductionalgorithms. The evolved
rule induction algorithms are then used to produce rule setscomposing an ensemble.

The method proposed uses a grammar-based genetic programming (GGP) algo-
rithm to evolve a population of rule induction algorithms [39]. GGP [40] is a special
type of genetic programming (GP) algorithm where the individuals are generated
following the production rules of a grammar (instead of setsof terminals and func-
tions), which enforces the generation of syntactically correct individuals only. Be-
sides, the grammar can incorporate background knowledge about how the problem
being tackled is solved. In the case of the system used in thispaper, the grammar
incorporates knowledge about how humans design rule induction algorithms.

As explained before, there are some elements in GP that need to be defined ac-
cording to the problem being tackled. In the case of GGP, the sets of terminals and
functions of a standard GP is replaced by a grammar, which is described in detail
in [14, 39]. Each individual represents a complete rule induction algorithm, such as
CN2 or Ripper. Fig.1 shows an example of an individual generated by following the
production rules of the grammar.

In order to extract from an individual’s tree the pseudo-code of the corresponding
rule induction algorithm, we read all the terminals (leaf-nodes) in the tree from left
to right. The tree in Figure 1, for example, represents the pseudo-code of the CN2
algorithm [15] producing an ordered list of rules, with the beam-width (or star size,
using the CN2 terminology) parameter set to 5 and the statistical significant test
threshold set to 0.01.

Figure 2 shows the scheme of the proposed method. As observed, it represents a
standard evolutionary algorithm execution, combined withsome interesting points.
First, as already explained, the individuals of the first population are generated by



12 Gisele L. Pappa and Alex A. Freitas

CreateRule
List

whileLoop
RuleList

Test

Start

while condWhile
CreateOne

Rule
endWhile appendRule

uncovered
NotEmpty

Initialize
Rule

innerWhile

emptyRule
whileCand
NotEmpty

FindRule endWhile

Add1

RefineRule
Evaluate

Rule
Stopping
Criterion

SelectCandidate
Rule

AddCond Laplace
Significance

Test 0.01
5CR

Fig. 1 Example of a GGP individual (candidate rule induction algorithm)

following the production rules of a grammar. Second, the individuals are evaluated
using a “meta-training set”, which is composed of a set ofn complete data sets (i.e.
a training set and a validation set for each data set, with no overlapping of examples
between these two sets). After executing the candidate ruleinduction algorithm in
each data seti of the meta-training set, a fitness function based on the average of
the value of f iti (given by Eq. 1) over all data sets is calculated. In Eq. 1,Acci

represents the accuracy (on the validation set) obtained bythe rules discovered by
the rule induction algorithm in the training set of data seti. DefAcci represents the
default accuracy (the accuracy obtained when using the mostfrequent class in the
training examples to classify all examples in the validation set).

f iti =

{

Acci−De f Acci
1−De f Acci

, if Acci > DefAcci
Acci−De f Acci

De f Acci
, otherwise

(1)

Note that, for each data set in the meta-training set, the validation set has the
same role as the test set in conventional classification, consisting of examples unseen
during training. However, we prefer to use the term validation set (rather than test
set) in this context because the fitness values of individuals are iteratively computed
by accessing the validation set many times during evolution, and so the term test set
would be misleading.

By executing the candidate rule induction algorithms in a set of different classifi-
cation problems, we aim at automatically evolving robust rule induction algorithms



Creating Rule Ensembles From Automatically-Evolved Rule Induction Algorithms 13

Fig. 2 Scheme of the GGP algorithm used to create the ensemble

which can generalize well on new data sets (application domains), different from
the data sets (application domains) used in the meta-training set. During the evolu-
tion, individuals created by crossover and mutation operations also have to be valid
according to the grammar. A detailed description of this system can be found in
[14, 39].

At the end of the evolution, all the individuals in the last population (or a subset
of them, depending on the version of the system used – see nextSection) are used
to create an ensemble of rule sets. That is, for each rule induction algorithm in
the last population, we run it in each new target data set (unseen during the GGP
algorithm’s evolution), producing a corresponding rule set, and then we create an
ensemble consisting of the rule sets produced by those rule induction algorithms.

Once such an ensemble of rule sets has been produced, two different voting
strategies can be used to combine the rule sets’ predictions, namely majority vot-
ing and fitness-weighted voting. The majority voting strategy, as its name suggests,
classifies an example as belonging to the class predicted by the highest number of
rule sets in the ensemble. The fitness-weighted voting strategy weighs the vote of
each rule set according to the fitness value attributed to itscorresponding individual
(rule induction algorithm) in the GGP algorithm’s last generation (see Eq. 1).

As pointed out before, the success of an ensemble is highly dependent on the
diversity and accuracy of the individuals belonging to it. In terms of accuracy, it is
expected that, at the end of the evolutionary process, all the individuals will present
accuracies at least better than the ones obtained by the baseline classification model
(which always predicts the most frequent class in the training set for all examples
in the test set). In terms of diversity, an analysis of the components of the grammar
present in the individuals of the last generation showed that usually a diverse set of
rule induction algorithms is evolved.



14 Gisele L. Pappa and Alex A. Freitas

Table 1 Data sets used to create ensembles
Data set Examples Attributes Classes Def. Acc.(%)
crx 690 5 2 67.7
heart-c 303 13 2 54.5
ionosphere 351 34 2 64
sonar 208 60 2 53
segment 2310 19 7 14.3

6 Computational Experiments

This section describes experiments performed to create ensembles of rule sets from
the last population of individuals (rule induction algorithms) evolved by the GGP al-
gorithm (with a population size of 100 individuals). Experiments were performed in
5 UCI data sets [41], listed in Table 1. The figures in the column Examples indicate
the number of examples present in the data set, followed by the number of attributes
and classes. The last column shows the default accuracy (theaccuracy obtained
when using the most frequent class in the training set to classify new examples in
the test set). It is important to emphasize that these data sets are different from the
ones used in the GGP algorithm’s meta-training set during the evolutionary process.
In the experiments reported in this work, the data sets used in the meta-training set
weremonks-2, monks-3, balance-scale, lymph andzoo.

The accuracies obtained by the ensemble of rule sets produced by the evolved
rule induction algorithms (from now on referred to as Rule-Ens for short) using the
two voting strategies explained in Section 5 were compared to the accuracies ob-
tained by the rule set produced by the single best individualreturned to the user as
the best evolved rule induction algorithm (GGP-RI). Table 2shows the results ob-
tained by a 5-fold cross validation procedure (with numbersafter the symbol± rep-
resenting standard deviations). The results were comparedusing a paired two tailed
Student’s t-test with significance level 0.05. Cells in darkgray represent significant
wins of Rule-Ens against the GGP-RI. In Table 2 the column names “Rule-Ens Maj.”
and “Rule-Ens Fit.” refer to Rule-Ens using the majority voting and fitness-weighted
voting strategies, respectively.

The results in Table 2 show that, for the data setsegment, both the ensemble
using a majority voting and the ensemble using a fitness-weighted voting obtained
better predictive accuracy rates than the GGP-RI. All the other results obtained are
considered to be statistically the same as the ones obtainedby the GGP-RIs.

The results in Table 2 were produced by using all individuals(rule induction
algorithms) of the last population to produce rule sets and combining all those rule
sets into an ensemble. In a second set of experiments, we tried to reduce the number
of rule sets in the ensemble. We selected a subset of rule induction algorithms to
be used to produce the rule sets for the ensemble according tothe following two
methods.

In the first method we selected the top 10 individuals of the last population ac-
cording to a fitness-based ranking (where fitness is given by Eq. 1) and created the



Creating Rule Ensembles From Automatically-Evolved Rule Induction Algorithms 15

Table 2 Predictive accuracy rates (%) obtained by the ensemble of rule sets built from the last
population of evolved rule induction algorithms using two different voting strategies

Data Set Rule-Ens Maj. Rule-Ens Fit. GGP-RIs
crx 83.2± 0.02 82.01± 0.02 79.4± 0.01
heart-c 80.54± 0.02 81.86± 0.02 76.6± 0.036
ionosphere 86.3± 0.01 89.91± 0.01 86.9± 0.024
segment 97.01± 0.002 96.45± 0.003 94.5± 0.005
sonar 74.38± 0.05 74.87± 0.04 73.1± 0.036

corresponding ensemble of rule sets produced by those individuals (denoted Ens-
Top). In the second method we selected the top 5 and the bottom5 individuals of
the last population according to a fitness-based ranking andcombined the rule sets
produced by both groups of individuals in a single ensemble (denoted Ens-Mix).
This last method intuitively tends to increase the diversity of the selected rule in-
duction algorithms (which in turn tends to increase the diversity of their produced
rule sets), once similar rule induction algorithms are likely to have similar fitness
values. The results obtained are presented in Table 3. Again, a paired two-tailed
Student’s t-test with significance level of 0.05 was used to evaluate the statistical
significance of the differences in the accuracies obtained by each of the two pro-
posed ensemble methods and the GGP-RI baseline, and significant wins of one of
the proposed ensemble methods are highlighted in dark grey in the table.

Table 3 shows that both types of ensembles obtain significantly better predictive
accuracies than the GGP-RI baseline in thesegment data set, and that the ensemble
produced by using the mixed strategy (which in theory has more diverse rule sets)
also obtains significantly better predictive accuracies than the GGP-RI baseline in
thecrx data set. Note that in thecrx data set only the accuracy of Ens-Mix (and not
the accuracy of Ens-Top) is significantly better than the accuracy of GGP-RI. This
result shows that the weaker individuals in the last population actually contribute
to generate a better ensemble (since the weaker individualstend to increase the
diversity of the rule sets in the ensemble) in thecrx data set, leading to the generation
of a better ensemble by comparison with the ensemble consisting only of rule sets
produced by the strongest individuals in the last population. It is important to point
out that the difference in fitness values from the best to the worst individual in the
last population was significant in the case of thecrx data set, but even the worst
individual of the population could not be considered a bad individual, after being
evolved for 100 generations.

In conclusion, overall the ensembles built with 10 individuals selected from the
last population produced better results than the ensemblesproduced by taking all the
100 individuals of the last population into account. In addition, mixing the rule sets
produced by the 5 best and the 5 worst individuals of the last population according
to fitness values produced ensembles presenting good results (significantly better
than the GGP-RI baseline) in 2 out of the 5 data sets used in theexperiment.



16 Gisele L. Pappa and Alex A. Freitas

Table 3 Predictive accuracy rates (%) obtained by an ensemble of rule sets built from a set of 10
rule induction algorithms selected from the last population of evolved rule induction algorithms

Data Set Ens-Top Ens-Mix GGP-RIs
crx 80.99± 0.02 84.2± 0.02 79.4± 0.01
heart-c 80.55± 0.02 82.18± 0.01 76.6± 0.036
ionosphere 85.76± 0.012 85.76± 0.01 86.9± 0.024
segment 97.01± 0.002 96.71± 0.003 94.5± 0.005
sonar 74.38± 0.05 74.39± 0.05 73.1± 0.036

7 Conclusions and Future Research Directions

This paper proposed a new evolutionary algorithm-based method to produce an
ensemble of rule sets. More precisely, the proposed method consists of two basic
stages. First, it exploits the population-based search of agenetic programming al-
gorithm to automatically evolve a diverse set of rule induction algorithms. We em-
phasize that what is being evolved by the genetic programming algorithm is a set
of complete rule induction algorithms, with the same level of complexity as well-
known manually-designed algorithms like CN2 or Ripper, rather than classification
models as in many other evolutionary algorithms. Secondly,the set of evolved rule
induction algorithms in the last population (or a selected subset of those algorithms)
is used to produce a set of rule sets (one rule set for each ruleinduction algorithm),
which are then combined into an ensemble of rule sets.

Experiments in 5 public-domain data sets showed that by using a simple majority
voting scheme the ensembles of rule sets produced by using all the individuals or
only 10% of the individuals in the last population were capable of obtaining predic-
tive accuracy rates higher than the ones obtained by a singlerule set (produced by
the best individual in the last population) in 2 out of the 5 data sets.

Concerning future research directions, we believe these “proof of concept” re-
sults can be improved by adding some diversity measure to thegenetic programming
algorithm’s fitness function, or by using a more sophisticated technique to select the
evolved individuals (rule induction algorithms) that willbe used to produce the rule
sets composing the ensemble.

In addition, other voting schemes, and even a meta-classification model, could
also be used to compute the ensemble prediction. An interesting experiment would
involve to actually leave up to the genetic programming algorithm the task of se-
lecting how many and which individuals should be used and which voting scheme
should be used to maximize the predictive accuracy of the resulting ensemble.

Yet another research direction to be explored is to use a multi-objective version
of the genetic programming algorithm (based on the concept of Pareto dominance)
which simultaneously optimizes both the diversity and the accuracy of the individ-
uals being evolved.



Creating Rule Ensembles From Automatically-Evolved Rule Induction Algorithms 17

Acknowledgments

The first author is financially supported by FAPEMIG, Brazil.

References

1. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with
Java Implementations. 2nd edn. Morgan Kaufmann (2005)

2. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation. Springer-Verlag (2003)
3. Wong, M.L., Leung, K.S.: Data Mining Using Grammar-BasedGenetic Programming and

Applications. Kluwer, Norwell, MA, USA (2000)
4. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms.

Springer-Verlag (2002)
5. Tsakonas, A., Dounias, G., Jantzen, J., Axer, H., Bjerregaard, B., von Keyserlingk, D.G.:

Evolving rule-based systems in two medical domains using genetic programming. Artificial
Intelligence in Medicine32(3) (2004) 195–216

6. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE87(9) (1999) 1423–1447
7. Rozsypal, A., Kubat, M.: Selecting representative examples and attributes by a genetic algo-

rithm. Intelligent Data Analysis7(4) (2003) 291–304
8. Gagné, C., Sebag, M., Schoenauer, M., Tomassini, M.: Ensemble learning for free with evo-

lutionary algorithms? In: GECCO ’07: Proceedings of the 9thannual conference on Genetic
and evolutionary computation, New York, NY, USA, ACM (2007)1782–1789

9. Kim, Y., Street, W.N., Menczer, F.: Optimal ensemble construction via meta-evolutionary
ensembles. Expert Systems With Applications30(4) (2006)

10. Oliveira, L.S., Morita, M., Sabourin, R., Bortolozzi, F.: Multi-objective genetic algorithms to
create ensemble of classifiers. In: Proc. of the Third Int. Conf. on Evolutionary Multi-Criterion
Optimization. (2005) 592–606

11. Chen, H., Yao, X.: Evolutionary multiobjective ensemble learning based on bayesian feature
selection. In: CEC 2006. IEEE Congress on Evolutionary Computation. (2006) 267–274

12. Kim, K.J., Cho, S.B.: An evolutionary algorithm approach to optimal ensemble classifiers for
dna microarray data analysis. IEEE Trans. Evolutionary Computation12(3) (2008) 377–388

13. Brown, G., Wyatt, J.L., Harris, R., Yao, X.: Diversity creation methods: a survey and categori-
sation. Information Fusion6(1) (2005) 5–20

14. Pappa, G.L., Freitas, A.A.: Automatically evolving rule induction algorithms. In Fürnkranz,
J., Scheffer, T., Spiliopoulou, M., eds.: Proc. of the 17th European Conf. on Machine Learning.
Volume 4212., Berlin, Springer Verlag (2006) 341–352

15. Clark, P., Boswell, R.: Rule induction with cn2: some recent improvements. In Kodratoff,
Y., ed.: EWSL-91: Proceedings of the European Working Session on Learning on Machine
Learning, Springer-Verlag (1991) 151–163

16. Cohen, W.W.: Fast effective rule induction. In: Proc. ofthe 12th International Conference on
Machine Learning, Morgan Kaufmann (1995) 115–123

17. Dietterich, T.G.: Ensemble learning. In Arbib, M., ed.:Handbook of Brain Theory and Neural
Networks. MIT Press (2002) 405–409

18. Iba, H.: Bagging, boosting, and bloating in genetic programming. In Banzhaf, W., Daida,
J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E., eds.: Proceedings of
the Genetic and Evolutionary Computation Conference. Volume 2., Orlando, Florida, USA,
Morgan Kaufmann (1999) 1053–1060

19. Dietterich, T.G.: Machine-learning research: Four current directions. The AI Magazine18(4)
(1998) 97–136

20. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their rela-
tionship with the ensemble accuracy. Machine Learning51(2) (2003) 181–207



18 Gisele L. Pappa and Alex A. Freitas

21. Breiman, L.: Bagging predictors. Mach. Learn.24(2) (1996) 123–140
22. Stefano, C.D., Marcelli, A.: Exploiting reliability for dynamic selection of classifiers by means

of genetic algorithms. In: In Proc. ICDAR03. (2003) 671–675
23. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output

codes. Journal of Artificial Intelligence Research2 (1995) 263–286
24. Breiman, L.: Random forests. Machine Learning45(1) (2001) 5–32
25. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an

application to boosting. In: EuroCOLT ’95: Proc. of the 2nd European Conference on Com-
putational Learning Theory, London, UK, Springer-Verlag (1995) 23–37

26. Bauer, E., Kohavi, R.: An empirical comparison of votingclassification algorithms: Bagging,
boosting, and variants. Machine Learning36(1-2) (1999) 105–139

27. Ting, K.M., Witten, I.H.: Issues in stacked generalization. Journal of Artificial Intelligence
Research10 (1999) 271–289

28. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an
application to boosting. In: EuroCOLT ’95: Proc. of the 2nd European Conference on Com-
putational Learning Theory, London, UK, Springer-Verlag (1995) 23–37

29. Koza, J.R.: Genetic Programming: On the Programming of Computers by the means of natural
selection. The MIT Press, Cambridge, Massachusetts (1992)

30. Baeck, T., Fogel, D.B., Michalewicz, Z.: Evolutionary Computation 1 Basic Algorithms and
Operators. Institute of Physics Publishing (2000)

31. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Intro-
duction; On the Automatic Evolution of Computer Programs and its Applications. Morgan
Kaufmann (1998)

32. Sirlantzis, K., Fairhurst, M., Guest, R.: An evolutionary algorithm for classifier and combi-
nation rule selection in multiple classifier systems. Pattern Recognition, 2002. Proceedings.
16th International Conference on2 (2002) 771–774 vol.2

33. Folino, G., Pizzuti, C., Spezzano, G.: Training distributed gp ensemble with a selective al-
gorithm based on clustering and pruning for pattern classification. IEEE Trans. Evolutionary
Computation12(4) (2008) 458–468

34. Tan, P., Steinbach, M., Kumar, V.: An Introduction to Data Mining. Addison-Wesley (2006)
35. Neal, R.: Bayesian Learning for Neural Networks. PhD thesis, University of Toronto (1994)
36. Liu, Y., Yao, X., Higuchi, T.: Evolutionary ensembles with negative correlation learning.

IEEE-EC4(4) (2000) 380
37. Ando, S.: Heuristic speciation for evolving neural network ensemble. In: GECCO ’07: Proc.

of the 9th Conf. on Genetic and Evolutionary Computation, New York, NY, USA, ACM (2007)
1766–1773

38. Chandra, A., Yao, X.: Ensemble learning using multi-objective evolutionary algorithms. Jour-
nal of Mathematical Modeling and Algorithms5(4) (2006) 417–445

39. Pappa, G.L.: Automatically Evolving Rule Induction Algorithms with Grammar-based Ge-
netic Programming. PhD thesis, Computing Laboratory, University of Kent, Canterbury, UK
(2007)

40. Whigham, P.A.: Grammatical Bias for Evolutionary Learning. PhD thesis, School of Com-
puter Science, University College, University of New SouthWales, Australian Defence Force
Academy, Canberra, Australia (1996)

41. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Reposi-
tory of machine learning databases. University of California, Irvine,
http://www.ics.uci.edu/∼mlearn/MLRepository.html (1998)


