Creating Rule Ensembles From
Automatically-Evolved Rule Induction
Algorithms

Gisele L. Pappa and Alex A. Freitas

Abstract Ensembles are a set of classification models that, when cauppro-
duce better predictions than when used by themselves. Mhger proposes a new
evolutionary algorithm-based method for creating an efdeof rule sets consist-
ing of two stages. First, an evolutionary algorithm (moregisely, a genetic pro-
gramming algorithm) is used to automatically create coteplele induction algo-
rithms. Secondly, the automatically-evolved rule indoictalgorithms are used to
produce rule sets that are then combined into an ensemhhee@ung this second
stage, we investigate the effectiveness of two differepragaches for combining
the votes of all rule sets in the ensemble and two differept@gches for selecting
which subset of evolved rule induction algorithms (out dfeafolved algorithms)
should be used to produce the rule sets that will be combim@dan ensemble.
Keywords: ensembles, evolutionary algorithms, rule indution algorithms,
grammar-based genetic programming

1 Introduction

After many decades of research, classification is still drta® most studied data
mining tasks. Classification problems can be solved by uzingriety of types of
algorithms, involving a really diverse set of represeptadito express classification
models (the outputs of classification algorithms) [1]. Argdhese, rule induction
algorithms produce classification models in the form of aocféF-THEN classifi-

Gisele L. Pappa
Federal University of Minas Gerais, Computer Science Diepamt, Av. Antdnio Carlos, 6627,
31270-010, Belo Horizonte, MG, Brazil e-mail: glpappa@démg.br

Alex A. Freitas
University of Kent, Computing Laboratory, CT2 7NF, Cantesh Kent, UK e-mail:
A.A Freitas@kent.ac.uk

2 Gisele L. Pappa and Alex A. Freitas

cation rules (sometimes called decision rules), which hlagedvantage of being a
knowledge representation intuitively comprehensibldtouser.

Another type of algorithms that can be used to solve the ifieestson task are
evolutionary algorithms. Evolutionary algorithms (EAZ] pre stochastic methods
based on Darwin’s theory of evolution and survival of the=§itt Since they are a
very generic and flexible type of search algorithm, evohaity algorithms can be
used to build many different types of classification modelqarticular, evolution-
ary algorithms became a common type of method to evolve idedises [3], clas-
sification rules [4, 5] and neural networks [6], and are alteroused as parameter
optimizers for many other types of classifiers [7]. More rdtg these methods have
been often applied to build ensembles of classification nsd8e9, 10, 11, 12].

From a search perspective, a motivation for using evolatipalgorithms in data
mining/machine learning is that they perform a populati@sed global search in
the space of candidate solutions (normally candidate ifitzet#on models, when
the target problem is classification) [4]. This is in contragh several other types
of methods, such as the greedy (local search-based) methpicislly used by more
conventional types of rule induction algorithms. The globearch performed by
evolutionary algorithms makes them less likely to get texbim local optima in the
search space, by comparison with greedy methods.

Whatever the type of algorithm(s) used to solve a classificgiroblem, in gen-
eral an effective approach for increasing the predictivaieacy of that(ose) algo-
rithm(s) consists of creating an ensemble of many classitanodels produced
by that(ose) algorithm(s). An ensemble basically combihegpredictions of many
different classification models into a single prediction éach test example (un-
seen during training), and follows the principle that a ‘r<éi decision will usually
generate better results than an individual one. Actualljiding an ensemble of
classification models became a popular research area sifidagon and other su-
pervised learning tasks (e.g. regression), since suchnéies have been shown to
outperform — in terms of predictive accuracy — a single dassion model [13].

In this chapter we are interested in evolutionary algorgtas a type of method
for supporting the creation of an ensemble of classificatimulels — in particular,
an ensemble of rule sets. More precisely, this chapter gegpa new method for
creating an ensemble of rule sets consisting of two stagest, Bn evolutionary
algorithm (a genetic programming algorithm) is usectomatically createcom-
plete rule induction algorithms. Secondly, the automatically-evolved rule induction
algorithms are used to produce rule sets that are then cewhlrito an ensemble.
Concerning this second stage, we investigate the efferagof two different ap-
proaches for combining the votes of all rule sets in the ehée(at prediction time)
and two different approaches for selecting which subsevolved rule induction
algorithms (out of all evolved algorithms) should be useg@itoduce the rule sets
that will be combined into an ensemble.

The basic idea of using evolutionary algorithms — more djpadly, genetic pro-
gramming — for automatically creating complete rule indutialgorithms (rather
than manually designing rule induction algorithms as yswak proposed in [14].
Note that by complete rule induction algorithm we mean atgors with approxi-

Creating Rule Ensembles From Automatically-Evolved Raobuction Algorithms 3

mately the same level of complexity as well-known algorigheanch as CN2 [15] or
Ripper [16]. That work has shown that genetic programmingseccessfully take
the automation of data mining/machine learning tasks a@fstrther, by automat-
ically creating rule induction algorithms competitive vitnanually-designed rule
induction algorithms.

However, in [14] the evolved rule induction algorithms wace used to create an
ensemble. That is, a set of 100 rule induction algorithmgiyiduals in the genetic
programming algorithm’s population) was evolved, but ahly best one at the end
of the evolution was returned as a solution to the user. Asetpy Gagne et al. [8],
this selection of the best individual out of many evolvedviatlials actually repre-
sents a missed opportunity for creating an ensemble “f@&” frience evolutionary
algorithms naturally work with a (usually large) populatiof candidate solutions.
At a high level of abstraction, this is the basic idea explarethis work, where
we use the classification models (rule sets) produced byuleeimduction algo-
rithms automatically evolved by the genetic programmirggpathm to produce an
ensemble of rule sets.

Hence, the main contribution of this work is to propose a newidionary
algorithm-based ensemble method where a genetic progmagratgorithm is used
to evolve a population of complete rule induction algorithiwhere the latter are
then used to produce rule sets composing an ensemble. Tdisas way of pro-
ducing a diverse set of classification models. That is, atstef creating diverse
classification models by injecting randomness into s@orgponent of a classifi-
cation algorithm (e.g., injecting randomness in the aitetselection procedure in
random forests — see Section 2), we inject a certain degrendbmness into the
generation of theomplete rule induction algorithms that will be used to produce
the classification models that will form an ensemble. Thigrde of randomness is
due to the stochastic nature of an evolutionary algoritts®érch, which works with
a diverse population of candidate solutions (rule indurcétgorithms in our case)
spread across the search space. In any case, of course théoeasy search for
rule induction algorithms is not completely random, sincis actually a heuristic
search guided by the fitness function (which favours ruleatidn algorithms with
higher classification accuracy). Hence, it is hoped thaetiedutionary search will
do a good job ofutomatically creating a set of rule induction algorithms which are
both accurate and diverse, which would tend to produce attetsving those corre-
sponding properties, which are desirable properties fersemble of classification
models in general.

The chapter is organized as follows. Section 2 introducesesbackground
knowledge on ensembles, and Section 3 introduces concegwlotionary algo-
rithms and genetic programming. Section 4 shows how enssnalold evolutionary
algorithms can be combined, and presents some related Wedtion 5 gives an
overview of the grammar-based genetic programming metised to evolve the
rule induction algorithms, and describes how the ensensbhaiilt. Finally, Sec-
tion 6 reports some experimental results, and Section 7gdsame conclusions and
presents some ideas of future work.

4 Gisele L. Pappa and Alex A. Freitas

2 Ensembles of Classification Models

The concept of ensembles is based on the idea that combirsegad predictions
coming from different classification models often genes#tetter results than a sin-
gle prediction produced by one of the models participatmthe ensemble. Given
a set ofn classification model€;, wherei varies from 1 ton, an ensemble com-
bines all the predictions of those classification modelsréaljgt a final class to an
example.

According to [17], ensembles usually obtain better acqurates than single
classification models because they solve three importaftigoms that the single
classification models have difficulties in dealing with: #tatistical, the computa-
tional and the representational problems. The statigicdilem refers to the size of
the model's search spagersus the number of training examples available. Many
classification models’ search spaces are simply too large &xplored considering
the limited number of training examples available. Hencanyrclassification mod-
els with similar accuracy rates are found, and choosing drikemn is a difficult
task. The single classification model chosen might be orteditees not generalize
(on the test set) very well, by comparision with other modeith similar classi-
fication accuracies in the training set. Ensembles avogighoblem, once a set of
classification models is considered, and the chances oingicaly bad models is
reduced.

The computational problem relates to the fact that, asifilzeson model search
spaces are usually huge, one cannot guarantee the bestwilbdelfound in a fea-
sible time. In order to cope with this problem, heuristios ased, and they can get
trapped in local optima in the search space. Selecting & sédssification models
instead of just one model reduces the chances of only gatiasgification models
found around local optima.

The third problem, named representational, concernsifitag®n model spaces
that do not contain any good approximations to the “idealteloln this case, a set
of weak classification models might guarantee better re#udin a single one.

Considering these problems, ensembles are usually bildtviog one of two
approaches. In the first approach, different classificatiodels are built separately
[18], and their predictions combined through some sort dingoscheme. In this
kind of approach, the main difficult lies on how to choose hoangnand which
classification models will be considered as part of the ebéefi 1], as it is known
that the success of an ensemble is highly dependent on haueae@nd diverse its
individual classification models are [19, 20]. In the secapdroach, this problemis
avoided, as the classification models that compose the racelbliilt incrementally,
in a cooperative fashion [12].

Regardless of the approach used to build the ensemblesnpariant decisions
have to be made: which method will be used to build the setasfsification mod-
els, and which method will be used to to combine the predistiof each model
into a single prediction. Concerning the methods used tldl e ensembles, most
of them work by manipulating the training set [21], the seatifibutes [22] or the
output labels of the training instances [23] before givihgr to a classification

Creating Rule Ensembles From Automatically-Evolved Raobuction Algorithms 5

algorithm. Some other methods work by injecting some rantkss into the classi-
fication algorithms [24].

Among the most known methods for ensemble construction aggibg [21],
boosting [25] and random forests [24]. Bagging works by tingamultiple data
samples, where each data sample is produced by samplingeytacement the
original training set. These data samples typically haeesdime size the original
training set has. Therefore, one data sample may have manigscof a specific
example and no copies of others. The classification algarisithen run on each of
those data samples, producing a set of classification modedgituting the ensem-
ble.

Boosting, in contrast, works by setting weights to the frajrexamples in the
original training set. Initially, all the examples have tEme weight. A sample of
examples (also with the same size of the original trainirty iseprobabilistically
drawn from the training set. The probability of an examplmbe&hosen to be part
of the sample is proportional to its weight. The classifmatlgorithm is run mul-
tiple times, sequentially, in iteratively sampled datsssand at each iteration the
weights of the examples are updated according to the peafoceof the classifica-
tion model in that particular iteration. In this way, exaegptifficult to be classified
have their weights increased more frequently than othéaees, which improves
their probabilities of being selected for the next samplécivhvill be used to train
the next iteration of the classification algorithm.

Random forests are methods that combine bagging with ralydmriit decision
trees. They produce a set of decision trees, each of therg adiifferent sampled
data set. In a popular approach to build a random forest, derato build each
decision tree, a numben of attributes are randomly selected from the total set of
n attributes available in the training set — whends typically much smaller than
n. Out of the set oim randomly-selected attributes, the attribute that cretites
best data split is used to label the current node of the aectsée, during the tree
building process. Each decision tree is built to the largessible extent, and there
is no pruning. When classifying new examples, each treesgigevote, and the
votes of all decision trees are combined to classify a neungk@ Random forests
are well-known for not overfitting.

After classification models are built using one of the methdeiscribed above or
a related method, another method has to be applied to cortit@mpeedictions com-
ing from different classification models. The most commorthase combination
methods is the majority voting, where the class assignednewaexample is the
one predicted by the greatest number of classifiers, or selatd weighted voting
strategy.

At this point, it is important to note that, although most bétresearch in en-
sembles is concentrated on building ensembles using the skssification algo-
rithm, ensembles can also be built using classification nsquteduced by different
classification algorithms (using different model repréagaons). In this case, more
sophisticated techniques to combine the results coming @ifferent classifiers is
needed. The most common of this type of methods is stackibig [2

6 Gisele L. Pappa and Alex A. Freitas

Stacking works by creating a meta-model that learns to ptéié final class to
be assigned to a new example based on the classes predictieel tiassification
models that compose the ensemble. In order to learn a medain@training set
is built using a leave-one-out procedure. The most impbdanisions concerning
stacking methods are the attributes to be used in the medasdaand the algorithm
that will learn the meta model.

Ting and Witten [27], for instance, proposed a stacking meétiat predicts the
probability distributions over the set of class valuesheathan single class values.
In this case, the meta-level attributes are the probadslitif each of the class values
returned by each of the base level classification modelsietisemble. In this same
work, the authors show there are several learning algosittivat are not suitable
for learning meta-models, and they recommend a multi-nrespdinear regression
method for this task.

So far, we described some of the most used methods to cresgmbtes of clas-
sification models. Recently, AdaBoost [28] and random fisreave been shown to
be particularly powerful. At the same time, a lot of appraechsing evolutionary
algorithms for ensemble building were proposed [11, 8, iPihis chapter, we are
particularly interested in what we call evolutionary enbés. One of the main mo-
tivations to combine evolutionary algorithms and ensemtd¢o take advantage of
the population of individuals (classification models) whis naturally evolved by
the evolutionary algorithm. Section 3 gives an overviewafationary algorithms,
and Section 4 describes methods using them to build enssrobldassification
models.

3 Evolutionary Algorithms and Genetic Programming

Evolutionary algorithms [2] are stochastic methods baseBarwin’s concepts of
evolution and survival of the fittest, and they work by evotya population of can-
didate solutions to a given target problem. Genetic Progreng (GP) [29] is an
area of evolutionary computation which aims to automdii@lolve computer pro-
grams. Together with other types of evolutionary algorghits application is being
successful because of its generality (applicability toeptillly any problem do-
main), global search and associated implicit parallelisthraise tolerance [30, 31].

Essentially, a GP algorithm evolves a population of indilts, where each in-
dividual represents a “program” or “executable structuheit is a candidate solu-
tion to the target problem. These individuals are evaluatgag a fitness function,
which measures the goodness of the candidate solutionr@mgepresented by
the individual. The fittest individuals are usually selecte undergo reproduction,
crossover and mutation operations. The new individualsyred by these opera-
tions are used to create a new population, which replaceslthene. This evolu-
tionary process is carried out until an optimum solution atisfactory solution is
found, or a pre-defined number of generations (iteraticsached.

The design of a GP algorithm has to consider five essentiabooents:

Creating Rule Ensembles From Automatically-Evolved Raobuction Algorithms 7

1. A set of functions and terminals, used to create the firsp&G®Rilation.

. The representation of the individuals.

3. The fitness function used to measure the quality of theviddals (candidate
solutions).

4. A selection method.

5. Crossover and mutation operators, which produce newlrehmilindividuals out
of the selected parent individuals in the current genemndtteration).

N

The next subsections explain the main concepts involvelddrdesign of these
elements.

3.1 Functions and Terminal Sets

In a GP algorithm, the first population is randomly generatgdg a set of functions
and terminals. The terminals are usually constants, @sadnd/or zero-argument
functions. The most common functions are the boolean arldnagtical ones, but
conditional and/or loop statements can also be used.

Although the designer of a GP algorithm has a lot of freedorchoose the
function set, it should not have too many functions, sineertiore functions the
greater the search space.

One constraint to be considered when choosing the sets cfiémis and termi-
nals is that the closure property must be respected. Thigeptypstates that every
function in the function set has to be able to handle all theesit receives as input.
Thus a division operator, for example, has to be modified feasith division by
zero. This is often implemented by making the operator nedugiven value, rather
than an error, in case of division by zero.

3.2 Individual representation

Most GP algorithms work with either of two standard indivadwepresentations:
a tree or a linear structure [31]. A linear representatiosisply a sequence of
commands that are executed from left to right. In a tree sspration, the execution
of the commands is usually made in postfix order (readingefimbst node of the
tree first). The majority of GP algorithms use the tree regméstion.

3.3 Fitness function and Selection M ethods

GP algorithms evolve a population of individuals using tleaeepts of selection
and survival of the fittest. Hence, after the initial GP p@pioh is initialized (usu-
ally randomly), individuals are evaluated using a fithes&fion. This function mea-

8 Gisele L. Pappa and Alex A. Freitas

sures how well an individual solves the target problem.isisd to determine which
individuals will have parts of their genetic material (j.parts of their candidate
solution) passed onto the next generation via the actiorwfesgenetic operator
(reproduction, crossover or mutation). The better the $ignef an individual, the
higher the probability of that individual being selected feproduction, crossover
or mutation.

There are many selection methods, such as fitness-propairsielection, ranking
selection and tournament selection. Tournament seledtorexample, randomly
gets a pre-defined number of individuals from the populatiod simulates a tour-
nament among them. Typically, the individual with the bestefss is declared the
winner of the tournament and is therefore selected for @iymtion, crossover or
mutation.

3.4 Crossover and Mutation Operators

Crossover swaps genetic material (parts of candidateisof)tbetween two indi-
viduals, whereas mutation replaces some part of the genaterial of an individual
with a new randomly-generated genetic material. These pevations are applied
with user-specified probabilities. The basic idea of thgmrators is as follows.

Crossover re-combines the genetic material of two parelitiofuals, in order to
produce two new children. If the individuals are represerig trees, randomly-
selected subtrees are swapped between the two parentse lcatie of linear
genomes, randomly-selected linear segments of code appsda

Unlike crossover, mutation acts on a single parent ind&iddithe population. It
randomly selects a subtree of the tree-based genome or @&seghtode in linear
genomes and replaces it by a new randomly-generated sulstremde segment.
Both crossover and mutation operations can be implementetainy ways - see
[31] for a detailed review of these operators.

It should be noted that, although the mechanisms of crossmemutation are
essentially a form of random moves in the search space (whaites them prob-
lem independent), a GP algorithm as a whole is a heuristicBeaethod, because
crossover and mutation are applied to parent individualehvare selected based
on their (problem dependent) fitness, i.e. a measure of didlity in solving the
target problem. Hence, by iteratively applying crossovet eutation operators to
the best programs of the current gereration (iteratior®) pipulation of programs
gradually evolves to better and better programs.

4 Evolutionary Methods for Creating Ensembles

Evolutionary algorithms and ensembles can be used togiethso different broad
approaches. In the first one, the evolutionary algorithmthasame role as a tra-

Creating Rule Ensembles From Automatically-Evolved Raobuction Algorithms 9

ditional classification algorithm: it builds a classifieatimodel from data. In this
case, each individual in the EA represents a classificatiodaly and a subset of
them is selected and then combined using one of the tradltiensemble tech-
niques, such as bagging or boosting [18]. The selectioneofitbdels (individuals)

that will compose the final ensemble is the most difficult peabto be tackled in

this approach.

In the second approach, evolutionary algorithms are usegttmize some com-
ponents — or (broadly speaking) “parameters” — of an enseriblese components
or parameters might vary from the best set of attributestfd @je number of classi-
fication models that should compose an ensemble [32]. Catibirs of both strate-
gies are also valid [9].

The evolutionary algorithm-based ensemble method prapioghis chapter can
be considered as a new method belonging to the above secpnoaah where,
instead of optimizing a simple parameter - such as ensentge\ge “optimize”
(evolve) a fundamental “macro-parameter”: the classificatlgorithms that will
produce the classification models that will compose therabge In other words, a
genetic programming algorithm is used to automaticallaten entire set of clas-
sification (more precisely, rule induction) algorithmsteéfthe evolved rule induc-
tion algorithms are applied to the data being mined, thegtera set of classification
models (rule sets), from which an ensemble of rule sets idymed. This method
will be explained in detail in Section 5. Before moving tottaction, however, this
section reviews related work on evolutionary algorithnsdzhensemble methods.

Let us now describe some methods following the first apprdaskribed above.
One of the first ideas of combining ensembles and genetiacanaging (GP) was
presented by Iba [18], who introduced the BagGP and Boost@itams. In both
algorithms, each individual in the population represergkasification model, and
the population of a GP algorithm is divided inBsub-populations. In the case of
BagGP, each subpopulation is trained with a data set of\sigampled with replace-
ment from the original training set (which also has e The best individuals of
each population have the right to vote when classifying neawgles in the test set.

BoostGP follows the same basic algorithmic procedure tltEBoost does. At
the beginning of the evolutionary process, each exampleefraining set is asso-
ciated with the same weight. The probability of an example being chosen to be
part of the sampled training set, which has the same sizeeawitfinal training set,
is proportional to the weight it is associated with. Each-pobulation is evolved
sequentially with a different training set, and the weigirs updated according to a
loss function. After all the sub-populations are evolvée, best individual of each
population votes to classify a new example.

In this same line of work, Folinet al [33] proposed a boosting system based on
cellular genetic programming that they named ClustBooStC3ClustBoostCGPC
is a parallel GP algorithm, where each processing unit egdévdifferent popula-
tion (where each individual represents a decision treeichwvis locally evaluated.
However, in contrast with the method proposed in [18], atehé of the evolution
the well-known k-means clustering algorithm [34] is usedyemerate clusters of
individuals for each population. The best individuals offealuster in each pop-

10 Gisele L. Pappa and Alex A. Freitas

ulation are chosen to build the ensemble. One drawback sfntleithod is that it
can generate really large ensembles, so the authors usepsanieg strategies to
remove individuals from a previously built ensemble.

Chenet al [11] proposed a multi-objetive evolutionary algorithmthaombined
with a Bayesian automatic relevance determination (ARDdhoe [35], designed
and trained ensembles of neural networks using attriblgéetsen. The neural nets
were initially built using a subset of attributes from thaiting set, and their pa-
rameters optimized using the Bayesian ARD method. The &eolary algorithm
was used to evolve neural networks with few attributes amddoor rate. At the
end of the evolutionary process, a logistic regression ateitas used to choose the
networks that would be part of the ensemble.

Gagneet al [8] proposed and compared two evolutionary algorithms for e
semble learning. The first, named Off-EEL (an “off-line” ensble construction
method), used an evolutionary algorithm to evolve neuravaeks and built the
ensemble after evolution using a greedy approach. The deapproach, named
On-EEL (an “on-line” ensemble construction method), usetigame type of evo-
lutionary algorithm but selected the final classificationdmis that would form the
ensemble during the evolution process. The results showadte first approach
obtained better results than the second one. They clainetigt can be explained
by the On-EEL getting often trapped in local optima in therskapace.

Kim et al [9] also proposed a local selection algorithm to evolve mises
of neural nets combined with attribute selection. In thisecaach neural net was
trained with a different subset of attributes, but indivatineural networks and en-
sembles were evolved simultaneously. Each individual wpsesented by a binary
string that encoded the attributes that should be useditottraneural network and
the list of ensembles the individual’'s classification mdalbnged to. In this way,
the ensembles being evolved competed directly to each,athdrthe individual
neural networks also competed among themselves, and ienedlto move to the
fittest ensembles.

In contrast to the methods described until now, Sirlardzed [32] used an evo-
lutionary algorithm to select the best combination of a dqtre-defined classifi-
cation algorithms and voting strategies, following theass&tapproach previously
described. Depending on the problem being tackled, they Gise 12 classification
algorithms together with 4 voting strategies.

This was also the approach followed by Kim and Cho [12], wiaerevolutionary
algorithm was used to find ensembles of pairs of attributecsen method and
classification algorithm. In this case, they pre-definediibatte selection methods
and 6 classification algorithms. This generated 42 pairttidbate selection method
and classification algorithm, which were represented innaiividual as a vector
with 42 positions (“genes”). Each individual vector’'s germild be represented by
a binary digit or a real-valued number. In the first case, aicated that the pair of
attribute selection method and classification algorithsoaimted with that gene is
part of the ensemble being evolved. In the second case, aaruifferent from 0
meant the pair associated with the gene was being used inseenble, and its vote
when classifying unseen examples was weighted by the vaksept in that gene

Creating Rule Ensembles From Automatically-Evolved Raobuction Algorithms 11

of the individual. Hence, each individual represented asesble of classification
models, which would be generated using the pairs of at&ibatection method and
classification algorithms indicated by its gene vector.

All the evolutionary algorithms described above aim to traery accurate and
diverse ensembles. In order to achieve that, beside the ideeady discussed,
other mechanisms were also used to improve the effectigenfethe evolution-
ary algorithm-based ensemble systems. For instance dibas®d on accuracy was
combined with niching mechanisms or modified according t@wealution princi-
ples [36], and speciation was applied [37]. Moreover, rrolfective EAs (MOEAS)
became commonly used as a way to optimize both accuracy sadsiy simulta-
neously [38].

5 Building an Ensemble of Rule Sets from Rule Induction
Algorithms Automatically Created by Genetic Programming

As pointed out before, the main difference among the evarhatiy method proposed
in this paper and other evolutionary algorithm-based eb$emethods proposed in
the literature is that the evolutionary method proposed dees not evolve classifi-
cation models. Instead, it evolves complete rule inductiigorithms. The evolved

rule induction algorithms are then used to produce rulecgetgposing an ensemble.

The method proposed uses a grammar-based genetic progrgrf®&GP) algo-
rithm to evolve a population of rule induction algorithm8[3GGP [40] is a special
type of genetic programming (GP) algorithm where the irttlials are generated
following the production rules of a grammar (instead of sdtierminals and func-
tions), which enforces the generation of syntacticallyrectrindividuals only. Be-
sides, the grammar can incorporate background knowlednyg &low the problem
being tackled is solved. In the case of the system used irptpsr, the grammar
incorporates knowledge about how humans design rule irauatgorithms.

As explained before, there are some elements in GP that ndesldefined ac-
cording to the problem being tackled. In the case of GGP, étedf terminals and
functions of a standard GP is replaced by a grammar, whickssribed in detail
in [14, 39]. Each individual represents a complete rule atidun algorithm, such as
CN2 or Ripper. Fig.1 shows an example of an individual geteerhy following the
production rules of the grammar.

In order to extract from an individual’s tree the pseudoeofithe corresponding
rule induction algorithm, we read all the terminals (leafdes) in the tree from left
to right. The tree in Figure 1, for example, represents tlieeigs-code of the CN2
algorithm [15] producing an ordered list of rules, with theam-width (or star size,
using the CN2 terminology) parameter set to 5 and the statisgignificant test
threshold set to 0.01.

Figure 2 shows the scheme of the proposed method. As obsériearesents a
standard evolutionary algorithm execution, combined wiihme interesting points.
First, as already explained, the individuals of the firstydapon are generated by

12 Gisele L. Pappa and Alex A. Freitas

CreateRule
List

whileLoop

CreateOne
Rule
uncovered Initialize
NotEmpty Rule

emptyRule

RuleList
Test

while endWhile appendRule

whileCand
NotEmpty

Evaluate
Rule

Laplace

endWhile

Stopping SelectCandidate’
Criterion Rule

Significance
Test 0.01 5CR

RefineRule

Add1

Fig. 1 Example of a GGP individual (candidate rule induction aildpon)

following the production rules of a grammar. Second, théviddals are evaluated
using a “meta-training set”, which is composed of a set cbmplete data sets (i.e.
a training set and a validation set for each data set, withvedapping of examples
between these two sets). After executing the candidatandlection algorithm in
each data satof the meta-training set, a fitness function based on theageeof
the value offit; (given by Eg. 1) over all data sets is calculated. In EqAdg;
represents the accuracy (on the validation set) obtaingtéoyules discovered by
the rule induction algorithm in the training set of datais@efAcc; represents the
default accuracy (the accuracy obtained when using the frexgient class in the
training examples to classify all examples in the validaset).

1)

Acc; —Def Acg;

it m’ if ACCi > Def,A\(_;C|
It =
DefAcg;

1-DefAcg;
, otherwise

Note that, for each data set in the meta-training set, thidatedn set has the
same role as the test set in conventional classificatiorsjstimg of examples unseen
during training. However, we prefer to use the term valimfatet (rather than test
set) in this context because the fitness values of indivedara iteratively computed
by accessing the validation set many times during evolytiod so the term test set
would be misleading.

By executing the candidate rule induction algorithms intaoédifferent classifi-
cation problems, we aim at automatically evolving robus mduction algorithms

Creating Rule Ensembles From Automatically-Evolved Raobuction Algorithms 13

Initialize
Population

+ A J

Meta-Training Evaluate) Tournament
Set Individuals Selection

A

Grammar ——
I Reproduction

No

Mutation New Population Training
Complete? Set
Yes* +

Crossover Stopping Create
Criterion Y‘es> Ensemble from
Satisfied? Final Population

No \
Test Set

Fig. 2 Scheme of the GGP algorithm used to create the ensemble

which can generalize well on new data sets (application dushadifferent from
the data sets (application domains) used in the meta+tigaget. During the evolu-
tion, individuals created by crossover and mutation opanatalso have to be valid
according to the grammar. A detailed description of thigesyscan be found in
[14, 39].

At the end of the evolution, all the individuals in the laspptation (or a subset
of them, depending on the version of the system used — seeSeetibn) are used
to create an ensemble of rule sets. That is, for each rulectimtualgorithm in
the last population, we run it in each new target data sete@msluring the GGP
algorithm’s evolution), producing a corresponding rulg s&d then we create an
ensemble consisting of the rule sets produced by thosendilestion algorithms.

Once such an ensemble of rule sets has been produced, twoediffvoting
strategies can be used to combine the rule sets’ predicti@msely majority vot-
ing and fitness-weighted voting. The majority voting stggtes its name suggests,
classifies an example as belonging to the class predicteldeblyighest number of
rule sets in the ensemble. The fithess-weighted votingesiyatveighs the vote of
each rule set according to the fitness value attributed tmit®sponding individual
(rule induction algorithm) in the GGP algorithm’s last geateon (see Eq. 1).

As pointed out before, the success of an ensemble is higlpgrdient on the
diversity and accuracy of the individuals belonging torittérms of accuracy, it is
expected that, at the end of the evolutionary process,aihitlividuals will present
accuracies at least better than the ones obtained by thiéneedlassification model
(which always predicts the most frequent class in the tngirsiet for all examples
in the test set). In terms of diversity, an analysis of the ponents of the grammar
present in the individuals of the last generation showetlukaally a diverse set of
rule induction algorithms is evolved.

14 Gisele L. Pappa and Alex A. Freitas

Table 1 Data sets used to create ensembles
Dataset Examples Attributes Classes Def. Acc.(%)

crx 690 5 2 67.7
heart-c 303 13 2 54.5
ionosphere 351 34 2 64
sonar 208 60 2 53
segment 2310 19 7 14.3

6 Computational Experiments

This section describes experiments performed to creadiss of rule sets from
the last population of individuals (rule induction algbrits) evolved by the GGP al-
gorithm (with a population size of 100 individuals). Expeents were performed in
5 UCI data sets [41], listed in Table 1. The figures in the callEixamplesindicate
the number of examples present in the data set, followedédgtimber of attributes
and classes. The last column shows the default accuracyaitigacy obtained
when using the most frequent class in the training set tasiflasew examples in
the test set). It is important to emphasize that these détaase different from the
ones used in the GGP algorithm’s meta-training set duria@tiolutionary process.
In the experiments reported in this work, the data sets usétei meta-training set
weremonks-2, monks-3, balance-scal e, lymph andzoo.

The accuracies obtained by the ensemble of rule sets prddiycthe evolved
rule induction algorithms (from now on referred to as Rutesfor short) using the
two voting strategies explained in Section 5 were compavetti¢ accuracies ob-
tained by the rule set produced by the single best individetarned to the user as
the best evolved rule induction algorithm (GGP-RI). Tableh®dws the results ob-
tained by a 5-fold cross validation procedure (with numladtes the symbolt: rep-
resenting standard deviations). The results were compesiad a paired two tailed
Student’s t-test with significance level 0.05. Cells in dgr&y represent significant
wins of Rule-Ens againstthe GGP-RI. In Table 2 the columnesiRule-Ens Maj.”
and “Rule-Ens Fit.” refer to Rule-Ens using the majorityimgtand fithess-weighted
voting strategies, respectively.

The results in Table 2 show that, for the data ssgiment, both the ensemble
using a majority voting and the ensemble using a fithesshieivoting obtained
better predictive accuracy rates than the GGP-RI. All theiotesults obtained are
considered to be statistically the same as the ones obtaynénd GGP-RIs.

The results in Table 2 were produced by using all individal$ée induction
algorithms) of the last population to produce rule sets ardlining all those rule
sets into an ensemble. In a second set of experiments, wadrieduce the number
of rule sets in the ensemble. We selected a subset of ruletiodualgorithms to
be used to produce the rule sets for the ensemble accordihg tmllowing two
methods.

In the first method we selected the top 10 individuals of tis¢ pepulation ac-
cording to a fithess-based ranking (where fitness is givendoyl Fand created the

Creating Rule Ensembles From Automatically-Evolved Raobuction Algorithms 15

Table 2 Predictive accuracy rates (%) obtained by the ensemblelefsets built from the last
population of evolved rule induction algorithms using twiedtent voting strategies

Data Set Rule-Ens Maj. Rule-Ens Fit. GGP-RIs
Ccrx 83.2+0.02 82.01+0.02 79.4+ 0.01
heart-c 80.54- 0.02 81.86+ 0.02 76.6+ 0.036
ionosphere 86.3 0.01 89.91+ 0.01 86.9+ 0.024
segment [JO7I0IE0I002 [SEMEE0I008 94.5+ 0.005
sonar 74.38- 0.05 74.87+0.04 73.1+0.036

corresponding ensemble of rule sets produced by thoseidudils (denoted Ens-
Top). In the second method we selected the top 5 and the bé&ttowhividuals of
the last population according to a fitness-based rankingcanbined the rule sets
produced by both groups of individuals in a single ensemtdém@ted Ens-Mix).
This last method intuitively tends to increase the divgreitthe selected rule in-
duction algorithms (which in turn tends to increase the ity of their produced
rule sets), once similar rule induction algorithms arellike have similar fitness
values. The results obtained are presented in Table 3. Aggiaired two-tailed
Student’s t-test with significance level of 0.05 was usedvuate the statistical
significance of the differences in the accuracies obtaineddth of the two pro-
posed ensemble methods and the GGP-RI baseline, and sghifitns of one of
the proposed ensemble methods are highlighted in dark grégitable.

Table 3 shows that both types of ensembles obtain significhatter predictive
accuracies than the GGP-RI baseline ingbgment data set, and that the ensemble
produced by using the mixed strategy (which in theory hasendorerse rule sets)
also obtains significantly better predictive accuraciesitthe GGP-RI baseline in
thecrx data set. Note that in theex data set only the accuracy of Ens-Mix (and not
the accuracy of Ens-Top) is significantly better than theueazy of GGP-RI. This
result shows that the weaker individuals in the last popataactually contribute
to generate a better ensemble (since the weaker individeatsto increase the
diversity of the rule sets in the ensemble) in thedata set, leading to the generation
of a better ensemble by comparison with the ensemble corgsistly of rule sets
produced by the strongest individuals in the last poputatibis important to point
out that the difference in fitness values from the best to tbestindividual in the
last population was significant in the case of tg data set, but even the worst
individual of the population could not be considered a batividual, after being
evolved for 100 generations.

In conclusion, overall the ensembles built with 10 indivatkiselected from the
last population produced better results than the ensempidésiced by taking all the
100 individuals of the last population into account. In didai, mixing the rule sets
produced by the 5 best and the 5 worst individuals of the lagtifation according
to fithess values produced ensembles presenting goodsésigihificantly better
than the GGP-RI baseline) in 2 out of the 5 data sets used iexiheriment.

16 Gisele L. Pappa and Alex A. Freitas

Table 3 Predictive accuracy rates (%) obtained by an ensemble @fsets built from a set of 10
rule induction algorithms selected from the last poputabbevolved rule induction algorithms

Data Set Ens-Top Ens-Mix GGP-RIs
Ccrx 80.99+ 0.02 _ 79.4+ 0.01

heart-c 80.55- 0.02 82.18+ 0.01 76.6+ 0.036
ionosphere 85.76-0.012 85.76+ 0.01 86.9+ 0.024
segment [JO70IE0I002 [SERERO008 94.5+ 0.005
sonar 74.38: 0.05 74.39%+0.05 73.1+ 0.036

7 Conclusions and Future Research Directions

This paper proposed a new evolutionary algorithm-basedadeto produce an
ensemble of rule sets. More precisely, the proposed metbiosists of two basic
stages. First, it exploits the population-based searchgefreetic programming al-
gorithm to automatically evolve a diverse set of rule inéutalgorithms. We em-
phasize that what is being evolved by the genetic programmlgorithm is a set
of complete rule induction algorithms, with the same level of complexity as well-
known manually-designed algorithms like CN2 or Rippetheathan classification
models as in many other evolutionary algorithms. Secottldéyset of evolved rule
induction algorithms in the last population (or a selectausgt of those algorithms)
is used to produce a set of rule sets (one rule set for eacimduetion algorithm),
which are then combined into an ensemble of rule sets.

Experiments in 5 public-domain data sets showed that bygusgimple majority
voting scheme the ensembles of rule sets produced by uditigeahdividuals or
only 10% of the individuals in the last population were cdpatf obtaining predic-
tive accuracy rates higher than the ones obtained by a sinigleset (produced by
the best individual in the last population) in 2 out of the Sedsets.

Concerning future research directions, we believe theseofpof concept” re-
sults can be improved by adding some diversity measure wethetic programming
algorithm’s fitness function, or by using a more sophisédaechnique to select the
evolved individuals (rule induction algorithms) that Wik used to produce the rule
sets composing the ensemble.

In addition, other voting schemes, and even a meta-claaific model, could
also be used to compute the ensemble prediction. An integestperiment would
involve to actually leave up to the genetic programming atm the task of se-
lecting how many and which individuals should be used andlkioting scheme
should be used to maximize the predictive accuracy of thdtieg ensemble.

Yet another research direction to be explored is to use a-whjkctive version
of the genetic programming algorithm (based on the condepareto dominance)
which simultaneously optimizes both the diversity and tbeuaacy of the individ-
uals being evolved.

Creating Rule Ensembles From Automatically-Evolved Raobuction Algorithms 17

Acknowledgments

The first author is financially supported by FAPEMIG, Brazil.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Witten, I.H., Frank, E.: Data Mining: Practical Machinedrning Tools and Techniques with

Java Implementations™2edn. Morgan Kaufmann (2005)

. Eiben, A.E., Smith, J.E.: Introduction to Evolutionargr@putation. Springer-Verlag (2003)
. Wong, M.L., Leung, K.S.: Data Mining Using Grammar-Basgenetic Programming and

Applications. Kluwer, Norwell, MA, USA (2000)

. Freitas, A.A.: Data Mining and Knowledge Discovery witlvdutionary Algorithms.

Springer-Verlag (2002)

. Tsakonas, A., Dounias, G., Jantzen, J., Axer, H., Bjeasat) B., von Keyserlingk, D.G.:

Evolving rule-based systems in two medical domains usimgte programming. Artificial
Intelligence in Medicine82(3) (2004) 195-216

. Yao, X.: Evolving artificial neural networks. Proceedirgf the IEEE37(9) (1999) 1423-1447
. Rozsypal, A., Kubat, M.: Selecting representative edampnd attributes by a genetic algo-

rithm. Intelligent Data Analysig(4) (2003) 291-304

. Gagnég, C., Sebag, M., Schoenauer, M., Tomassini, M.efahke learning for free with evo-

lutionary algorithms? In: GECCO '07: Proceedings of the &thual conference on Genetic
and evolutionary computation, New York, NY, USA, ACM (20QI7j82—-1789

. Kim, Y., Street, W.N., Menczer, F.: Optimal ensemble tardion via meta-evolutionary

ensembles. Expert Systems With Applicati@4) (2006)

Oliveira, L.S., Morita, M., Sabourin, R., Bortolozzi; Multi-objective genetic algorithms to
create ensemble of classifiers. In: Proc. of the Third InbfCan Evolutionary Multi-Criterion
Optimization. (2005) 592—-606

Chen, H., Yao, X.: Evolutionary multiobjective ensemtdarning based on bayesian feature
selection. In: CEC 2006. IEEE Congress on Evolutionary Qataton. (2006) 267-274

Kim, K.J., Cho, S.B.: An evolutionary algorithm apprbdo optimal ensemble classifiers for
dna microarray data analysis. |IEEE Trans. Evolutionary Qutation12(3) (2008) 377-388
Brown, G., Wyatt, J.L., Harris, R., Yao, X.: Diversityeation methods: a survey and categori-
sation. Information Fusiof(1) (2005) 5-20

Pappa, G.L., Freitas, A.A.: Automatically evolvingeuhduction algorithms. In Furnkranz,
J., Scheffer, T., Spiliopoulou, M., eds.: Proc. of th@EUropean Conf. on Machine Learning.
Volume 4212., Berlin, Springer Verlag (2006) 341-352

Clark, P., Boswell, R.: Rule induction with cn2: someemcimprovements. In Kodratoff,
Y., ed.: EWSL-91: Proceedings of the European Working $essn Learning on Machine
Learning, Springer-Verlag (1991) 151-163

Cohen, W.W.: Fast effective rule induction. In: Procttef 12th International Conference on
Machine Learning, Morgan Kaufmann (1995) 115-123

Dietterich, T.G.: Ensemble learning. In Arbib, M., @dandbook of Brain Theory and Neural
Networks. MIT Press (2002) 405-409

Iba, H.: Bagging, boosting, and bloating in genetic progming. In Banzhaf, W., Daida,
J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., BmR.E., eds.: Proceedings of
the Genetic and Evolutionary Computation Conference. iel2., Orlando, Florida, USA,
Morgan Kaufmann (1999) 1053—-1060

Dietterich, T.G.: Machine-learning research: Fourexnirdirections. The Al Magazint3(4)
(1998) 97-136

Kuncheva, L.I., Whitaker, C.J.: Measures of diversitylassifier ensembles and their rela-
tionship with the ensemble accuracy. Machine Lear&it@) (2003) 181-207

18

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.
36.

37.

38.

39.

40.

41.

Gisele L. Pappa and Alex A. Freitas

Breiman, L.: Bagging predictors. Mach. Lea?4(2) (1996) 123-140

Stefano, C.D., Marcelli, A.: Exploiting reliability falynamic selection of classifiers by means
of genetic algorithms. In: In Proc. ICDAROS3. (2003) 671-675

Dietterich, T.G., Bakiri, G.: Solving multiclass learg problems via error-correcting output
codes. Journal of Artificial Intelligence Resea(l1995) 263—286

Breiman, L.: Random forests. Machine Learndtf§l) (2001) 5-32

Freund, Y., Schapire, R.E.: A decision-theoretic galieation of on-line learning and an
application to boosting. In: EuroCOLT '95: Proc. of th& European Conference on Com-
putational Learning Theory, London, UK, Springer-Verld9%5) 23-37

Bauer, E., Kohavi, R.: An empirical comparison of votatgssification algorithms: Bagging,
boosting, and variants. Machine Learni3g(1-2) (1999) 105-139

Ting, K.M., Witten, I.H.: Issues in stacked generai@at Journal of Atrtificial Intelligence
Research0(1999) 271-289

Freund, Y., Schapire, R.E.: A decision-theoretic galieation of on-line learning and an
application to boosting. In: EuroCOLT '95: Proc. of the 2ndr&pean Conference on Com-
putational Learning Theory, London, UK, Springer-Verld9%5) 23-37

Koza, J.R.: Genetic Programming: On the Programmingpafiiiters by the means of natural
selection. The MIT Press, Cambridge, Massachusetts (1992)

Baeck, T., Fogel, D.B., Michalewicz, Z.: Evolutionargi@putation 1 Basic Algorithms and
Operators. Institute of Physics Publishing (2000)

Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.en€&tic Programming — An Intro-
duction; On the Automatic Evolution of Computer Programd @s Applications. Morgan
Kaufmann (1998)

Sirlantzis, K., Fairhurst, M., Guest, R.: An evolutiopalgorithm for classifier and combi-
nation rule selection in multiple classifier systems. RPatRecognition, 2002. Proceedings.
16th International Conference @(2002) 771-774 vol.2

Folino, G., Pizzuti, C., Spezzano, G.: Training disttéddl gp ensemble with a selective al-
gorithm based on clustering and pruning for pattern clasgitn. IEEE Trans. Evolutionary
Computationl2(4) (2008) 458-468

Tan, P., Steinbach, M., Kumar, V.: An Introduction to ®&&tining. Addison-Wesley (2006)
Neal, R.: Bayesian Learning for Neural Networks. PhBigéJniversity of Toronto (1994)
Liu, Y., Yao, X., Higuchi, T.: Evolutionary ensemblestkvinegative correlation learning.
IEEE-EC4(4) (2000) 380

Ando, S.: Heuristic speciation for evolving neural netivensemble. In: GECCO '07: Proc.
of the 9th Conf. on Genetic and Evolutionary ComputationyNerk, NY, USA, ACM (2007)
1766-1773

Chandra, A., Yao, X.: Ensemble learning using multiecbye evolutionary algorithms. Jour-
nal of Mathematical Modeling and Algorithnig4) (2006) 417-445

Pappa, G.L.: Automatically Evolving Rule Induction Alghms with Grammar-based Ge-
netic Programming. PhD thesis, Computing Laboratory, sty of Kent, Canterbury, UK
(2007)

Whigham, P.A.: Grammatical Bias for Evolutionary Leaga PhD thesis, School of Com-
puter Science, University College, University of New Sowthles, Australian Defence Force
Academy, Canberra, Australia (1996)

Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI epBsi-
tory of machine learning databases. University of Califarn Irvine,
http://www.ics.uci.edutmlearn/MLRepository.html (1998)

