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Abstract

Metaheuristics represent an important class of techniques to

solve, approximately, hard combinatorial optimization prob-

lems for which the use of exact methods is impractical.

In this work, we propose a hybrid version of the GRASP

metaheuristic, which incorporates a data mining process, to

solve the p-median problem. We believe that patterns ob-

tained by a data mining technique, from a set of sub-optimal

solutions of a combinatorial optimization problem, can be

used to guide metaheuristic procedures in the search for bet-

ter solutions. Traditional GRASP is an iterative metaheuris-

tic which returns the best solution reached over all iterations.

In the hybrid GRASP proposal, after executing a significant

number of iterations, the data mining process extracts pat-

terns from an elite set of sub-optimal solutions for the p-

median problem. These patterns present characteristics of

near optimal solutions and can be used to guide the following

GRASP iterations in the search through the combinatorial

solution space. Computational experiments, comparing tra-

ditional GRASP and different data mining hybrid proposals

for the p-median problem, showed that employing patterns

mined from an elite set of sub-optimal solutions made the

hybrid GRASP find better results. Besides, the conducted

experiments also evidenced that incorporating a data min-

ing technique into a metaheuristic accelerated the process of

finding near optimal and optimal solutions.

1 Introduction.

Metaheuristics represent an important class of approx-
imate techniques for solving hard combinatorial opti-
mization problems, for which the use of exact methods
is impractical. They are general purpose high-level pro-
cedures that can be instantiated to explore efficiently
the solution space of a specific optimization problem.
Over the last decades, metaheuristics, like genetic algo-
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rithms, tabu search, simulated annealing, ant systems,
GRASP, and others, have been proposed and applied
to real-life problems of several areas of science [13]. An
overview of heuristic search can be found in [17].

A trend in metaheuristics research is the exploration
of hybrid metaheuristics [21]. One kind of such hybrid
methods results from the combination of concepts and
strategies behind two or more metaheuristics, and an-
other kind corresponds to metaheuristics combined with
concepts and processes from other areas responsible for
performing specific tasks that can improve the original
method. An instance of the latter case, and the subject
of this work, is a hybrid version of the GRASP meta-
heuristic that incorporates a data mining process, called
DM-GRASP (Data Mining GRASP) [20].

The GRASP (Greedy Randomized Adaptive Search
Procedures) metaheuristic [2, 3], since it was proposed,
has been successfully applied to solve many optimiza-
tion problems [4]. The solution search process employed
by GRASP is performed iteratively and each iteration
consists of two phases: construction and local search. A
feasible solution is built in the construction phase, and
then its neighborhood is explored by the local search in
order to find a better solution. The result is the best
solution found over all iterations.

Data mining refers to the automatic extraction of
knowledge from datasets [9, 23]. The extracted knowl-
edge, expressed in terms of patterns or rules, represents
important features of the dataset at hand. Hence, data
mining provides a means to better understand concepts
implicit in raw data, which is fundamental in a decision
making process.

The hybridization of GRASP with a data mining
process was first introduced and applied to the set pack-
ing problem [15, 16]. The basic idea was that patterns
found in good quality solutions could be used to guide
the search, leading to a more effective exploration of the
solution space. The resulting method, the DM-GRASP
metaheuristic, achieved promising results not only in
terms of solution quality but also in terms of execution
time required to obtain good quality solutions. After-
wards, the method was evaluated on two other applica-
tions, namely, the maximum diversity problem [18] and



the server replication for reliable multicast problem [19],
and the results were equally successful.

The first contribution of this work is the develop-
ment and evaluation of a DM-GRASP implementation
for the p-median problem. We intend to show that this
optimization problem can also benefit from the idea of
introducing a data mining module into a metaheuristic.
The p-median is a well-known NP-hard problem [10],
with important applications to real-life location prob-
lems [22], and can be generally stated as follows. Given
a set F of m potential facilities and a set of n customers,
the p-median problem consists of finding a subset of F

with p facilities such that the cost of serving all cus-
tomers is minimized. Many recent procedures developed
to solve this problem are based on metaheuristics and
GRASP procedures have achieved excellent results [11].

The DM-GRASP implementations successfully used
for the set packing problem, the maximum diversity
problem, and for the reliable multicast problem were
developed over a common framework, divided in two
parts. In the first one, a number of GRASP iterations
are executed and the best solutions are stored in an
elite set. Then, a data mining algorithm is used to
extract patterns from this set of sub-optimal solutions.
In the second part, the GRASP iterations use the mined
patterns to construct new solutions. In this framework,
the data mining process is performed just once, after
exactly half of the GRASP iterations.

According to the taxonomy of hybrid metaheuris-
tics proposed in [21], the DM-GRASP framework can be
classified as a high-level and relay hybrid metaheuristic.
It is considered high-level since the data mining tech-
nique and GRASP are self-contained and it is a relay
hybridization because GRASP, the data mining process,
and GRASP again are applied in a pipeline fashion.

Although good results have been achieved using this
framework, another important contribution of this work
is to evaluate how many times and at which moments
the data mining process should be performed. We
believe that mining more than once, and as soon as
the elite set is stable and good enough, can improve the
DM-GRASP framework. Based on this observation, in
this work we also propose and evaluate another version
of the DM-GRASP for the p-median problem, called
MDM-GRASP (Multi Data Mining GRASP).

The remaining of this paper is organized as follows.
In Section 2, we review the main concepts and the
structure of the GRASP metaheuristic. In Section
3, we present the p-median problem and the GRASP
implementation for this problem. The hybridization
of GRASP, proposed in this work for the p-median
problem, is defined in Section 4. The experiments
conducted to compare the traditional GRASP and

the Hybrid DM-GRASP are reported and discussed in
Section 5. In Section 6, the multi data mining strategy
is proposed and, in Section 7, this new approach is
experimentally compared to the DM-GRASP. Finally,
in Section 8, concluding remarks are made and some
future works are pointed out.

2 The GRASP Metaheuristic.

GRASP [14] is a metaheuristic already applied success-
fully to many optimization problems [4]. It is a two-
phase iterative process. The first phase of a GRASP
iteration is the construction phase, in which a complete
solution is built. Since this solution is not guaranteed
to be locally optimal, a local search is performed in the
second phase. This iterative process is repeated until a
termination criterion is met and the best solution found
over all iterations is taken as result.

A pseudo-code of the GRASP process is illustrated
in Figure 1. In line 1, the variable that stores the best
solution found is initialized. The block of instructions
between lines 2 and 8 are executed iteratively. The con-
struction phase is executed in line 3 and, in line 4, the
local search is applied to the constructed solution. In
line 5, the quality of the obtained solution is compared
to the current best found and, if necessary, the best solu-
tion is updated. In line 9, the best solution is returned.

procedure GRASP()
1. best sol← ∅;
2. repeat

3. sol← Construction Phase();

4. sol← Local Search Phase(sol);
5. if Quality(sol) > Quality(best sol)
6. best sol← sol;

7. end if

8. until TerminationCriterion();
9. return best sol;

Figure 1: Pseudo-code of the GRASP metaheuristic

In the construction phase, the components of the
solutions are selected one by one and incorporated
into the partial solution until it is completely built.
This process is illustrated in Figure 2. In line 1, the
solution starts as an empty set. In each step executed
from line 2 to line 6, the components not yet in the
solution are ranked according to a greedy function. The
better ranked components form a list, called Restricted
Candidate List (RCL), in line 3. Suppose that, in a
maximization problem, the best ranked component has
the value max value. The RCL can be, for example,
composed by all components whose values are in the
interval [α ∗ max value,max value], where α ∈ [0, 1] is
the parameter that, in general, defines the size of this
list. In line 4, one component is randomly selected from



this list and incorporated into the current solution in
line 5. Note that this process would be purely greedy
if the RCL was always composed only by the best
component (α = 1), and purely random if it was always
composed by all possible components (α = 0). In line 7,
the complete solution is returned.

procedure Construction Phase()

1. sol← ∅;
2. repeat

3. RCL← BuildRCL(sol);
4. s← SelectRandom(RCL);

5. sol← sol ∪ {s};
6. until SolutionCompleted(sol);
7. return sol;

Figure 2: Pseudo-code of the construction phase

The solution obtained in the construction phase is
not guaranteed to be locally optimal and becomes the
starting point for the local search phase. Local search
is a hill-climbing process, in which the neighborhood of
the solution is explored. The neighborhood of a solution
is defined by a function that relates this solution with
a set of other solutions. If a better solution is found,
the local search is performed again, considering the
neighborhood of this new solution. Otherwise, the local
search terminates.

Greedy methods usually find local optimal solutions
due to the over intensive exploration of a small part of
the solution space. In order to increase the probability
of finding a global optimal solution, the solution search
process must diversify the solution space regions to be
explored. The GRASP metaheuristic can be understood
as a method that is partially greedy and partially
random, which leads to an effective exploration of the
solution search space due to the satisfactory balance of
search intensification and diversification.

3 GRASP for the p-Median Problem.

3.1 The p-Median Problem. The p-median is a
well-known NP-hard problem [10] and has been em-
ployed in many important real-life location problems
[22]. It can be stated as follows.

Let F be a set of m potential facilities and C a
set of n customers. Let d : C × F → ℜ be a function
which evaluates the distance between a customer and
a potential facility. Given a positive integer p, p ≤ m,
the p-median problem consists of identifying a subset R

of F such that |R| = p and the sum of the distances
from each customer in C to its closest facility in R is
minimized.

Without loss of generality, in this work we will
consider F = C, that is, in every customer location,

there is a potential facility.
An instance of the p-median problem can then be

represented by a constant p and a complete, weighted
and undirected graph G = (C,D), where C =
{c1, c2, ..., cn} is the set of n customers, and the weight
wij of each edge (ci, cj) in D represents the distance
d(ci, cj) between ci and cj .

A solution of an instance of the p-median problem,
defined by p and G = (C,D), can then be represented
by a subset R = {r1, r2, ..., rp} of C.

Every solution R naturally partitions the set C

into p clusters P1, P2, ..., Pp, such that each cluster Pi,
1 ≤ i ≤ p, is composed by all customers whose closest
facility is ri.

3.2 The GRASP Implementation. As mentioned
earlier, a GRASP implementation to solve a combina-
torial optimization problem is generally composed by a
construction and a local search procedures.

Figure 3 contains the pseudo-code of the GRASP
construction phase implemented in this work. Initially,
in line 1, the variable sol, which stores the best solution
found is initialized. In line 2, all potential facilities in
C are inserted into the candidate list CL, which stores
all elements that can be part of the solution. From
line 3 to 11, the construction iterations are executed
until the solution is completed with p elements. In each
iteration, an element is inserted into the solution. In
lines 4 and 5, each element e in CL is evaluated by a
greedy function that calculates the cost of the partial
solution after the insertion of the element e. In line 7,
the restricted candidate list RCL is generated with all
elements in CL whose returned evaluations are in the
interval [mic,mic + (mac − mic) ∗ α], where mic and
mac are the worst and the best returned values. In line
8, an element s is randomly selected from RCL and, in
line 9, it is inserted into the solution sol. In line 10,
the CL is updated. Finally, in line 12, the best solution
found is returned.

In Figure 4, the pseudo-code of the GRASP local
search is presented. Initially, in lines 1 to 2, some control
variables are initialized. The function cost eval(), used
in line 2, evaluates the cost of a solution by computing
the sum of the distances between all customers and their
closest facilities. From line 3 to 23, the neighborhood
of the current solution is visited and if a better solution
is found, it becomes the current one, which starts this
process again, until no more improvement is made. The
best solution found is returned in line 24. From line
5 to 22, p iterations are executed. In each iteration,
from line 8 to 15, one element ri of the solution is
exchanged by all elements close to it in its partition
(cluster) Pi. We consider that an element e is close to



procedure Construction p Median()
1. sol← ∅;
2. CL← C;

3. repeat

4. for each element e in CL

5. cost [e]← sum of distances between each
element in C − {sol ∪ {e}} and

its closest element in sol ∪ {e};
6. end for;
7. RCL← {e ∈ CL|cost [e] ∈ [mic, mic + (mac−mic) ∗ α]};

8. s← element randomly selected from RCL;
9. sol← sol ∪ {s};
10. CL← CL− {s};
11. until sol has p elements;
12. return sol;

Figure 3: Construction phase for the p-median problem

ri in its partition Pi if the distance between e and ri is
less or equal to the average of distances between ri and
all elements in Pi. In order to reduce the computational
effort of the local search, the solution obtained by each
exchange is approximately evaluated in line 10 and
only the best one is exactly evaluated in line 16. The
function approx cost eval(), used in line 10, evaluates
approximately the cost of a solution by recalculating the
distances only within the partition Pi, without making
this computation within the other partitions, which
would be necessary for the exact calculation, since there
was a change of location. In lines from 17 to 21, it is
verified if a better solution than the current one was
reached. If so, this new one becomes the current solution
and the local search starts again.

4 DM-GRASP for the p-Median Problem.

In this section, we present the main contribution of this
work: The hybrid version of the GRASP metaheuristic
which incorporates a data mining process, called DM-
GRASP, to solve the p-median problem.

In the original GRASP, iterations are performed in-
dependently and, consequently, the knowledge acquired
in past iterations is not exploited in subsequent itera-
tions. The basic concept of incorporating a data mining
process in GRASP is that patterns found in high qual-
ity solutions obtained in earlier iterations can be used
to conduct and improve the search process.

The DM-GRASP is composed of two phases. The
first one is called the elite set generation phase, which
consists of executing n pure GRASP iterations to obtain
a set of different solutions. The d best solutions from
this set of solutions compose the elite set.

After this first phase, the data mining process is
applied. It is responsible for extracting patterns from
the elite set. The patterns to be mined are sets of
elements that frequently appear in solutions from the

procedure Local Search p Median(sol)
1. best sol← sol;
2. best cost← cost eval(sol);

3. repeat

4. no improvements← true;
5. for i = 1 to p

6. approx best sol← ∅;

7. approx best cost←∞;
8. for each element e in Pi close to ri

9. approx sol← exchange(best sol, ri, e);

10. approx cost← approx cost eval(approx sol);
11. if approx cost < approx best cost then

12. approx best sol← approx sol;
13. approx best cost← approx cost;
14. end if

15. end for;
16. exact sol cost← cost eval(approx best sol);
17. if exact sol cost < best cost then

18. best sol← approx best sol;
19. best cost← exact sol cost;
20. no improvements← false;

21. end if

22. end for;
23. until no improvements;
24. return best sol;

Figure 4: Local search phase for the p-median problem

elite set. This extraction of patterns characterizes a
frequent itemset mining application [9]. A frequent
itemset mined with support s% represents a set of
elements that occur in s% of the elite solutions.

Next, the second phase, called hybrid phase, is
performed. In this part, another n slightly different
GRASP iterations are executed. In these n iterations,
an adapted construction phase starts building a solu-
tion guided by a mined pattern selected from the set
of mined patterns. Initially, all elements of the selected
pattern are inserted into the partial solution, from which
a complete solution will be built executing the standard
construction procedure. This way, all constructed solu-
tions will contain the elements of the selected pattern.

The pseudo-code of the DM-GRASP for the p-
median problem is illustrated in Figure 5. In lines 1
and 2, the best solution and the elite set are initialized
with the empty set. The loop from line 3 to line 10
corresponds to the elite set generation phase, in which
pure GRASP is performed for n iterations. The original
construction method is executed in line 4, followed
by the local search method in line 5. The elite set,
composed of d solutions, is updated in line 6. In line 7, it
is checked whether the best solution should be updated,
which is done in line 8. The data mining procedure
extracts the set of patterns from the elite set in line 11.
The loop from line 12 to line 19 corresponds to the
hybrid phase. Each iteration is based on a pattern



selected in line 13. The largest pattern is chosen. If
there are more than one largest pattern, one of them is
randomly selected. The adapted construction procedure
is performed in line 14, using the selected pattern as a
starting point. In line 15, the local search is executed.
From line 16 to 18 the best solution is updated. The
best solution is returned in line 20.

procedure DM GRASP p Median()
1. best sol← ∅;
2. elite set← ∅;

3. for it← 1 to n do

4. sol← Construction p Median();
5. sol← Local Search p Median(sol);
6. UpdateElite(elite set, sol, d);

7. if Cost(sol) < Cost(best sol)
8. best sol← sol;
9. end if

10. end for

11. patterns set← Mine(elite set);
12. for it← 1 to n do

13. pattern← SelectNextLargestPattern(patterns set);

14. sol← Adapted Construction p Median(pattern);
15. sol← LocalSearch Phase(sol);
16. if Cost(sol) < Cost(best sol)
17. best sol← sol;

18. end if

19. end for;
20. return best sol;

Figure 5: Pseudo-code of the DM-GRASP

In Figure 6, the pseudo-code of the adapted con-
struction is illustrated. It is quite similar to the code
described in Figure 3 with the difference that, instead
of beginning the solution with an empty set, in line 1,
it starts with all elements of the pattern supplied as a
parameter. In line 2, these elements already inserted in
the solution are removed from the candidate list CL.

procedure Adapted Construction p Median(pattern)
1. sol← pattern;
2. CL← C − pattern;

3. repeat

4. for each element e in CL

5. cost [e]← sum of distances between each
element in C − {sol ∪ {e}} and

its closest element in sol ∪ {e};
6. end for;
7. RCL← {e ∈ CL|cost [e] ∈ [mic, mic + (mac−mic) ∗ α]};
8. s← element randomly selected from RCL;

9. sol← sol ∪ {s};
10. CL← CL− {s};
11. until sol has p elements;

12. return sol;

Figure 6: Pseudo-code of the adapted construction

The extraction of patterns from the elite set, which
is activated in line 11 of the pseudo-code presented

in Figure 5, corresponds to the well-known frequent
itemset mining (FIM) task. The FIM problem can be
defined as follows.

Let I = {i1, i2, ..., in} be a set of items. A
transaction t is a subset of I and a dataset D is a set
of transactions. A frequent itemset F , with support
s, is a subset of I which occurs in at least s% of
the transactions in D. The FIM problem consists of
extracting all frequent itemset from a dataset D with a
minimum support specified as a parameter. During the
last fifteen years, many algorithms have been proposed
to efficiently mine frequent itemsets [1, 6, 8, 12].

In this work, the useful patterns to be mined are
sets of elements that commonly appear in sub-optimal
solutions of the p-median problem. This is a typical
frequent itemset mining application, where the set of
items is the set of potential locations. Each transaction
of the dataset represents a sub-optimal solution of the
elite set. A frequent itemset mined from the elite set
with support s% represents a set of locations that occur
in s% of the elite solutions.

A frequent itemset is called maximal if it has no
superset that is also frequent. In order to avoid mining
frequent itemsets which are subset of one another, in
the DM-GRASP proposal for the p-median problem, we
decided to extract only maximal frequent itemset. To
execute this task, we adopted the FPmax* algorithm [7],
available at http://fimi.cs.helsinki.fi.

5 Computational Results for DM-GRASP.

In this section, the computational results obtained for
GRASP and DM-GRASP are presented. The 80 p-
median problem instances adopted in the conducted
experiments were also used in [5]. There are four groups
with 20 instances each: instances in the first group
(G50) have 50 customers and p varying from 6 to 25
with an increment of 1. In the second (G287), third
(G654), and fourth (G1060) groups, instances have 287,
654, and 1060 customers, respectively, with p varying
from 5 to 100 with an increment of 5. For all instances
the optimal values are known.

The algorithms were implemented in C++ and
compiled with g++ (GCC) 4.2.3. The tests were
performed on a 2.4 GHz Intel Core 2 Quad CPU Q6600
with 3 Gbytes of RAM, running Linux Kernel 2.6.24.

Both GRASP and DM-GRASP were run 10 times
with a different random seed in each run. The pa-
rameter α was set to 0.2 and each strategy executed
max(500,min(3 ∗ nc, 2000)) iterations, where nc is the
number of customers of the instance. Different numbers
of iterations allow more search for larger instances.

In Tables 1, 2, 3, and 4, the results related to
the quality of the obtained solutions are shown. The



first column presents the value of p, the second one
shows the optimal value for this instance – obtained
by ILOG CPLEX –, the third and fifth columns present
the deviation value of the best cost obtained by GRASP
and DM-GRASP related to the optimal value, and the
fourth and sixth columns present the deviation value of
the average cost obtained by GRASP and DM-GRASP.

The deviation value is computed as follows:

dev =
(HeuristicCost − OptCost)

OptCost
× 100,(5.1)

where HeuristicCost is the (best or average) cost
obtained by the heuristic technique and the OptCost

is the optimal value for the working instance.
In each table, the smallest values, i.e., the better

results, are bold-faced. The last line of these four tables
presents the average values of each column. In all tables,
the average results obtained by DM-GRASP are better
than the results obtained by GRASP, except for the
average value of the best results in Table 1.

Table 1 shows that 18 optimal solutions were found
by both DM-GRASP and GRASP. DM-GRASP found
10 better results for average deviation and GRASP
found 4. Table 2 shows that DM-GRASP found 18
better results for best deviation and 2 were found by
GRASP. DM-GRASP found better results for average
deviation in all instances. Table 3 shows that DM-
GRASP found 13 better results for best deviation and
2 were found by GRASP. DM-GRASP found 16 better
results for average deviation and GRASP just one.
Table 4 shows that DM-GRASP found 17 better results
for best deviation and 18 better results for average
deviation values, and GRASP found no better values.

These results show that the proposed DM-GRASP
strategy was able to improve the results obtained by
GRASP in the large majority of the cases.

Tables 5, 6, 7, and 8 present the results related to
execution time of both strategies. In these tables, the
first column presents the value of p, the second and
fourth columns show the average execution time (in
seconds) of GRASP and DM-GRASP, obtained for 10
runs, the third and fifth columns present the standard
deviation value of these execution times. The sixth
column shows the percentual difference between the
GRASP and DM-GRASP average times in relation to
the GRASP average time.

For all Tables, the execution times for DM-GRASP
are considerably smaller than those for GRASP. The
standard deviations are quite small, which shows the
robustness of DM-GRASP.

There are two main reasons for the faster behavior
of DM-GRASP. First, the computational effort of the
adapted construction phase is smaller than the tradi-

GRASP DM-GRASP
p Optimal Best Avg Best Avg

6 61.31 0.00 0.00 0.00 0.00
7 55.15 0.00 0.00 0.00 0.00
8 50.26 0.00 0.00 0.00 0.00
9 46.26 0.00 0.00 0.00 0.00
10 42.37 0.00 0.00 0.00 0.00
11 38.80 0.00 0.00 0.00 0.00
12 35.53 0.00 0.08 0.00 0.00

13 32.77 0.00 0.09 0.00 0.12
14 30.12 0.00 0.66 0.00 0.00

15 27.99 0.00 0.36 0.00 0.04

16 26.00 0.00 0.65 0.00 0.35

17 24.21 0.00 0.33 0.00 0.37
18 22.46 0.00 0.71 0.00 0.40

19 20.73 0.00 1.83 0.00 0.87

20 19.47 0.00 0.87 0.00 0.72

21 18.21 0.22 1.15 0.22 0.60

22 17.00 0.00 0.71 0.00 0.76
23 15.83 0.00 0.51 0.38 0.95
24 14.65 0.14 1.71 0.00 1.30

25 13.51 0.00 2.00 0.00 1.26

Average 0.02 0.58 0.03 0.39

Table 1: GRASP and DM-GRASP for group G50

GRASP DM-GRASP
p Optimal Best Avg Best Avg

5 9715.63 3.35 6.86 0.86 4.35

10 6757.13 6.36 10.01 3.35 6.92

15 5237.04 9.76 12.24 6.47 8.86

20 4167.50 9.71 14.22 3.94 9.44

25 3359.60 5.15 10.66 6.38 9.98

30 2723.51 2.43 6.82 3.99 6.09

35 2246.57 4.93 7.44 2.15 5.73

40 1909.70 7.02 8.50 4.30 6.49

45 1636.22 4.81 6.40 3.64 5.47

50 1405.30 4.84 6.83 3.04 4.85

55 1206.85 5.30 7.76 4.36 6.27

60 1057.71 6.81 8.18 3.20 4.95

65 928.97 5.19 7.42 3.05 5.21

70 817.41 6.33 8.22 3.09 5.41

75 731.12 6.15 8.81 4.47 6.41

80 656.75 5.78 8.69 3.09 5.51

85 589.33 7.66 11.26 4.57 6.50

90 529.95 9.73 11.64 2.99 5.67

95 481.53 8.94 11.08 2.65 5.29

100 441.95 8.70 10.10 1.78 4.10

Average 6.45 9.16 3.57 6.17

Table 2: GRASP and DM-GRASP for group G287



GRASP DM-GRASP
p Optimal Best Avg Best Avg

5 209155.00 0.00 0.00 0.00 0.00
10 115789.00 0.00 0.00 0.00 0.00
15 80595.40 0.00 0.00 0.00 0.00
20 63894.70 0.00 0.01 0.00 0.02
25 52875.80 0.24 0.61 0.02 0.15

30 45307.10 0.10 0.43 0.01 0.09

35 39862.00 1.17 2.11 0.31 0.80

40 36228.30 0.57 1.44 0.33 0.76

45 32779.10 0.84 2.00 0.84 1.82

50 29774.10 2.42 2.80 2.07 2.44

55 27200.10 2.40 3.62 2.52 3.11

60 24984.00 3.71 4.49 2.48 3.26

65 23129.20 3.77 4.73 2.13 3.10

70 21851.80 3.04 3.88 2.26 2.77

75 20740.40 1.82 3.33 0.99 1.77

80 19748.20 2.11 2.83 1.28 1.70

85 18837.20 2.17 2.65 1.57 1.91

90 18008.40 1.66 2.66 1.73 2.00

95 17259.80 2.43 2.80 1.51 2.03

100 16544.10 1.97 2.91 1.52 2.03

Average 1.52 2.16 1.08 1.49

Table 3: GRASP and DM-GRASP for group G654

GRASP DM-GRASP
p Optimal Best Avg Best Avg

5 1854330.00 0.00 0.00 0.00 0.00
10 1252140.00 0.00 0.00 0.00 0.00
15 982399.00 0.00 0.01 0.00 0.00

20 831419.00 0.06 0.19 0.00 0.02

25 725006.00 0.15 0.34 0.00 0.07

30 641851.00 0.16 0.51 0.07 0.16

35 581365.00 0.31 0.79 0.19 0.31

40 532432.00 0.65 1.11 0.43 0.63

45 492476.00 0.72 1.08 0.35 0.58

50 455588.00 1.35 1.56 0.32 0.83

55 425178.00 0.97 1.66 0.16 0.58

60 399964.00 1.07 1.67 0.34 0.81

65 379072.00 1.11 1.55 0.26 0.69

70 360127.00 1.51 1.91 0.21 0.78

75 343261.00 1.67 1.97 0.87 1.17

80 329073.00 1.92 2.22 0.91 1.16

85 316450.00 1.79 2.13 0.77 1.18

90 304974.00 2.11 2.46 1.19 1.57

95 294660.00 2.25 2.57 1.20 1.65

100 284815.00 2.41 2.69 1.72 1.91

Average 1.01 1.32 0.45 0.71

Table 4: GRASP and DM-GRASP for group G1060

GRASP DM-GRASP
p Time (s) SD Time (s) SD %

6 0.09 0.01 0.07 0.01 22.22
7 0.13 0.01 0.08 0.02 38.46
8 0.14 0.02 0.09 0.01 35.71
9 0.18 0.01 0.11 0.01 38.89
10 0.20 0.03 0.11 0.01 45.00
11 0.21 0.03 0.12 0.01 42.86
12 0.22 0.01 0.12 0.02 45.45
13 0.24 0.01 0.13 0.01 45.83
14 0.23 0.01 0.13 0.01 43.48
15 0.26 0.03 0.14 0.01 46.15
16 0.27 0.02 0.14 0.01 48.15
17 0.28 0.02 0.14 0.01 50.00
18 0.27 0.01 0.15 0.01 44.44
19 0.28 0.03 0.16 0.01 42.86
20 0.29 0.02 0.16 0.02 44.83
21 0.29 0.04 0.15 0.01 48.28
22 0.32 0.04 0.15 0.01 53.12
23 0.31 0.04 0.16 0.01 48.39
24 0.33 0.10 0.16 0.02 51.52
25 0.31 0.04 0.15 0.01 51.61

Table 5: Time of GRASP and DM-GRASP for G50

tional construction, since the elements from a pattern
are initially fixed in the solution. Then a smaller num-
ber of elements must be processed and inserted into
the constructed solution. Second, the use of patterns
leads to the construction of better solutions which will
be input for the local search. This incurs in less com-
putational effort taken to converge to a local optimal
solution.

6 MDM-GRASP for the p-Median Problem.

The computational experiments reported in the previ-
ous section showed that the introduction of the data
mining process allowed GRASP to find better solutions
in less computational time. In the proposed hybrid
GRASP, the data mining procedure is executed just
once and at the middle point of the whole process. Al-
though the obtained results were satisfactory, we believe
that mining more than once, and as soon as the elite
set is stable and good enough, can improve the original
DM-GRASP framework. Based on this hypothesis, in
this work we also propose and evaluate another version
of the DM-GRASP for the p-median problem, called
MDM-GRASP (Multi Data Mining GRASP).

The main idea of this proposal is to execute the
mining process: (a) as soon as the elite set becomes
stable – which means that no change in the elite set
occurs throughout a given number of iterations – and
(b) whenever the elite set has been changed and again
has become stable. We hypothesize that mining more



GRASP DM-GRASP
p Time (s) SD Time (s) SD %

5 1.76 0.02 1.58 0.08 10.23
10 3.65 0.05 3.12 0.08 14.52
15 5.57 0.04 4.56 0.10 18.13
20 7.47 0.08 5.97 0.15 20.08
25 9.21 0.06 7.21 0.20 21.72
30 10.95 0.08 8.04 0.14 26.58
35 12.62 0.05 9.28 0.18 26.47
40 14.32 0.05 10.59 0.16 26.05
45 16.03 0.09 11.69 0.15 27.07
50 17.68 0.06 12.97 0.17 26.64
55 19.47 0.09 14.36 0.12 26.25
60 21.18 0.05 15.77 0.13 25.54
65 22.87 0.04 17.11 0.16 25.19
70 24.45 0.06 18.33 0.09 25.03
75 26.19 0.23 19.54 0.23 25.39
80 27.50 0.07 20.41 0.22 25.78
85 28.78 0.07 21.11 0.27 26.65
90 29.91 0.09 22.10 0.36 26.11
95 30.99 0.10 22.66 0.31 26.88
100 31.92 0.11 23.31 0.19 26.97

Table 6: Time of GRASP and DM-GRASP for G287

GRASP DM-GRASP
p Time (s) SD Time (s) SD %

5 14.54 0.15 12.53 0.30 13.82
10 31.02 0.22 19.92 0.08 35.78
15 47.84 0.17 31.27 0.85 34.64
20 65.01 0.22 41.00 0.86 36.93
25 83.06 0.39 57.12 1.02 31.23
30 101.59 0.31 74.20 1.40 26.96
35 120.87 0.54 95.22 1.79 21.22
40 139.70 0.46 111.90 1.46 19.90
45 160.03 0.73 128.16 1.29 19.92
50 180.64 0.32 141.89 1.70 21.45
55 202.27 0.27 158.68 1.33 21.55
60 223.24 0.43 173.04 2.02 22.49
65 243.09 0.47 188.85 0.97 22.31
70 262.74 0.95 204.60 1.56 22.13
75 280.63 0.48 221.63 2.61 21.02
80 298.97 0.70 238.20 1.43 20.33
85 317.94 0.53 254.31 2.11 20.01
90 337.88 0.55 271.90 1.49 19.53
95 358.21 0.64 289.15 3.64 19.28
100 377.81 0.64 303.49 2.56 19.67

Table 7: Time of GRASP and DM-GRASP for G654

GRASP DM-GRASP
p Time (s) SD Time (s) SD %

5 70.82 2.38 33.28 1.96 53.01
10 151.69 4.73 62.03 0.55 59.11
15 227.93 3.57 89.05 4.18 60.93
20 309.00 4.89 138.92 4.05 55.04
25 382.88 7.41 182.04 4.70 52.46
30 457.96 6.26 220.87 4.78 51.77
35 535.30 4.45 261.29 6.11 51.19
40 618.57 4.19 311.84 4.42 49.59
45 701.37 5.80 357.01 4.95 49.10
50 786.00 4.19 398.47 8.21 49.30
55 882.14 6.41 440.81 7.06 50.03
60 971.43 6.76 486.93 6.40 49.87
65 1052.06 8.08 538.06 6.93 48.86
70 1144.24 6.66 585.01 6.29 48.87
75 1233.64 7.97 633.64 6.83 48.64
80 1334.10 6.47 681.62 8.21 48.91
85 1422.74 4.80 736.56 8.51 48.23
90 1506.16 7.56 795.74 9.46 47.17
95 1573.72 18.11 852.16 14.77 45.85
100 1742.93 37.33 900.21 10.45 48.35

Table 8: Time of GRASP and DM-GRASP for G1060

than once will explore the gradual evolution of the elite
set and allow the extraction of refined patterns.

The pseudo-code of the MDM-GRASP for the p-
median problem is illustrated in Figure 7. In lines 1
and 2, the best solution and the elite set are initialized
with the empty set. The loop from line 3 to 10
corresponds to the first elite set generation phase, in
which pure GRASP iterations are performed until the
elite set becomes ready to be mined or the termination
criterion – the total number of iterations – becomes
true. In the current implementation, we consider that
the elite set is ready if it has not being changed for 5%
of the total number of iterations after has been updated.
Next, in the loop from line 11 to 22, whenever the elite
set is ready, the data mining procedure is executed and
extracts a new pattern set in line 13 and, from line 15
to 21, a hybrid iteration is executed. In line 15, the next
largest pattern is selected. If there are more than one
largest pattern, they are randomly selected. Then the
adapted construction is performed in line 16, using the
selected pattern as a starting point. In line 17, the local
search is executed. From line 19 to 21, the best solution
is updated. The best solution is returned in line 23.

7 Computational Results for MDM-GRASP.

In this section, the computational results obtained for
the proposed MDM-GRASP strategy are compared to
the previously reported DM-GRASP results. The p-
median problem instances are the same used in the



procedure MDM GRASP p Median()
1. best sol← ∅;
2. elite set← ∅;

3. repeat

4. sol← Construction p Median();
5. sol← Local Search p Median(sol);
6. UpdateElite(elite set, sol, d);

7. if Cost(sol) < Cost(best sol)
8. best sol← sol;
9. end if

10. until elite set is ready or end criterion;
11. while not end criterion;
12. if elite set is ready

13. patterns set← Mine(elite set);
14. end if

15. pattern← SelectNextLargestPattern(patterns set);
16. sol← Adapted Construction p Median(pattern);
17. sol← LocalSearch Phase(sol);

18. UpdateElite(elite set, sol, d);
19. if Cost(sol) < Cost(best sol)
20. best sol← sol;

21. end if

22. end while;
23. return best sol;

Figure 7: Pseudo-code of the MDM-GRASP

previous section. The MDM-GRASP was also run 10
times with a different random seed in each run. The
parameter α and the number of executed iterations were
also the same used in the previous experiments.

In Tables 9, 10, 11, and 12, the results related
to quality of the obtained solutions are shown. In all
Tables, the average results obtained by MDM-GRASP
are better than the results obtained by DM-GRASP.

Table 9 shows that 19 optimal solutions were found
by MDM-GRASP and 18 were found by DM-GRASP.
MDM-GRASP found 12 better results for average de-
viation and DM-GRASP did not find any. Table 10
shows that MDM-GRASP found 16 better results for
best deviation and 4 were found by DM-GRASP. MDM-
GRASP found 19 better results for average deviation
and DM-GRASP just one. Table 11 shows that MDM-
GRASP found 13 better results for best deviation and
DM-GRASP just one. MDM-GRASP found 17 better
results for average deviation and DM-GRASP did not
find any. Table 12 shows that MDM-GRASP found 14
better results for best deviation and 1 was found by DM-
GRASP. MDM-GRASP found 17 better results for aver-
age deviation, and DM-GRASP found no better result.
These results show that the MDM-GRASP proposal was
able to improve the results obtained by DM-GRASP.

Tables 13 and 14 compare the execution times spent
by DM-GRASP and MDM-GRASP for the G654 and
G1060 instances. The results for instances from groups
G50 and G287 are similar. We can note that the

DM-GRASP MDM-GRASP
p Optimal Best Avg Best Avg

6 61.31 0.00 0.00 0.00 0.00
7 55.15 0.00 0.00 0.00 0.00
8 50.26 0.00 0.00 0.00 0.00
9 46.26 0.00 0.00 0.00 0.00
10 42.37 0.00 0.00 0.00 0.00
11 38.80 0.00 0.00 0.00 0.00
12 35.53 0.00 0.00 0.00 0.00
13 32.77 0.00 0.12 0.00 0.00

14 30.12 0.00 0.00 0.00 0.00
15 27.99 0.00 0.04 0.00 0.00

16 26.00 0.00 0.35 0.00 0.08

17 24.21 0.00 0.37 0.00 0.04

18 22.46 0.00 0.40 0.00 0.18

19 20.73 0.00 0.87 0.00 0.63

20 19.47 0.00 0.72 0.00 0.36

21 18.21 0.22 0.60 0.00 0.49

22 17.00 0.00 0.76 0.00 0.59

23 15.83 0.38 0.95 0.13 0.69

24 14.65 0.00 1.30 0.00 0.41

25 13.51 0.00 1.26 0.00 1.11

Average 0.03 0.39 0.01 0.23

Table 9: DM and MDM-GRASP for group G50

DM-GRASP MDM-GRASP
p Optimal Best Avg Best Avg

5 9715.63 0.86 4.35 0.38 3.68

10 6757.13 3.35 6.92 1.42 4.27

15 5237.04 6.47 8.86 5.45 7.24

20 4167.50 3.94 9.44 5.16 7.41

25 3359.60 6.38 9.98 2.71 7.91

30 2723.51 3.99 6.09 3.17 6.27
35 2246.57 2.15 5.73 2.09 4.80

40 1909.70 4.30 6.49 2.75 4.70

45 1636.22 3.64 5.47 2.82 4.34

50 1405.30 3.04 4.85 1.44 3.46

55 1206.85 4.36 6.27 4.37 5.54

60 1057.71 3.20 4.95 2.83 3.93

65 928.97 3.05 5.21 3.55 4.33

70 817.41 3.09 5.41 2.31 4.11

75 731.12 4.47 6.41 2.35 4.32

80 656.75 3.09 5.51 3.54 4.43

85 589.33 4.57 6.50 3.05 4.47

90 529.95 2.99 5.67 1.97 3.62

95 481.53 2.65 5.29 1.21 3.56

100 441.95 1.78 4.10 0.74 2.16

Average 3.57 6.17 2.67 4.73

Table 10: DM and MDM-GRASP for group G287



DM-GRASP MDM-GRASP
p Optimal Best Avg Best Avg

5 209155.00 0.00 0.00 0.00 0.00
10 115789.00 0.00 0.00 0.00 0.00
15 80595.40 0.00 0.00 0.00 0.00
20 63894.70 0.00 0.02 0.00 0.01

25 52875.80 0.02 0.15 0.00 0.10

30 45307.10 0.01 0.09 0.01 0.02

35 39862.00 0.31 0.80 0.29 0.50

40 36228.30 0.33 0.76 0.21 0.44

45 32779.10 0.84 1.82 0.84 1.22

50 29774.10 2.07 2.44 1.46 1.97

55 27200.10 2.52 3.11 1.36 2.08

60 24984.00 2.48 3.26 1.35 2.40

65 23129.20 2.13 3.10 0.97 2.18

70 21851.80 2.26 2.77 1.19 1.67

75 20740.40 0.99 1.77 1.11 1.48

80 19748.20 1.28 1.70 1.25 1.61

85 18837.20 1.57 1.91 1.07 1.48

90 18008.40 1.73 2.00 1.18 1.71

95 17259.80 1.51 2.03 1.02 1.61

100 16544.10 1.52 2.03 0.51 1.30

Average 1.08 1.49 0.69 1.09

Table 11: DM and MDM-GRASP for group G654

DM-GRASP MDM-GRASP
p Optimal Best Avg Best Avg

5 1854330.00 0.00 0.00 0.00 0.00
10 1252140.00 0.00 0.00 0.00 0.00
15 982399.00 0.00 0.00 0.00 0.00
20 831419.00 0.00 0.02 0.00 0.01

25 725006.00 0.00 0.07 0.00 0.01

30 641851.00 0.07 0.16 0.00 0.04

35 581365.00 0.19 0.31 0.04 0.17

40 532432.00 0.43 0.63 0.28 0.38

45 492476.00 0.35 0.58 0.21 0.40

50 455588.00 0.32 0.83 0.21 0.48

55 425178.00 0.16 0.58 0.15 0.37

60 399964.00 0.34 0.81 0.26 0.49

65 379072.00 0.26 0.69 0.19 0.51

70 360127.00 0.21 0.78 0.22 0.64

75 343261.00 0.87 1.17 0.55 0.78

80 329073.00 0.91 1.16 0.51 0.78

85 316450.00 0.77 1.18 0.65 0.89

90 304974.00 1.19 1.57 0.66 0.97

95 294660.00 1.20 1.65 1.11 1.27

100 284815.00 1.72 1.91 1.14 1.49

Average 0.45 0.71 0.31 0.48

Table 12: DM and MDM-GRASP for group G1060

DM-GRASP MDM-GRASP
p Time (s) SD Time (s) SD %

5 12.53 0.30 11.00 0.22 12.21
10 19.92 0.08 11.37 0.45 42.92
15 31.27 0.85 22.69 2.50 27.44
20 41.00 0.86 28.46 3.02 30.59
25 57.12 1.02 44.30 4.36 22.44
30 74.20 1.40 61.41 4.71 17.24
35 95.22 1.79 81.83 3.77 14.06
40 111.90 1.46 97.22 10.62 13.12
45 128.16 1.29 109.88 3.81 14.26
50 141.89 1.70 124.33 7.75 12.38
55 158.68 1.33 136.31 7.32 14.10
60 173.04 2.02 147.41 9.26 14.81
65 188.85 0.97 162.69 13.43 13.85
70 204.60 1.56 177.61 15.45 13.19
75 221.63 2.61 195.72 6.81 11.69
80 238.20 1.43 210.66 12.56 11.56
85 254.31 2.11 220.66 15.27 13.23
90 271.90 1.49 247.92 25.19 8.82
95 289.15 3.64 252.02 18.79 12.84
100 303.49 2.56 261.17 18.10 13.94

Table 13: Time of DM and MDM-GRASP for G654

MDM-GRASP was faster than the DM-GRASP for all
instances. The standard deviations are quite small,
which also shows the robustness of MDM-GRASP.

The main reason for the faster behavior of MDM-
GRASP is that the first execution of the data mining
process occurs earlier than the unique data mining
execution in the DM-GRASP strategy. Because of this,
the benefit from using patterns in terms of execution
time, which was already identified in the comparison
between GRASP and DM-GRASP, was anticipated in
the MDM-GRASP executions.

Figures 8, 9, and 10 present the behavior of the
construction and local search phases, in terms of the cost
values obtained, by GRASP, DM-GRASP, and MDM-
GRASP throughout the execution of 2000 iterations, for
a specific instance (p=80 in G1060).

Since the p-median is a minimization problem, the
figures show that the local search always reduces the
cost of the solution obtained by the construction phase.
In Figure 8, we observe that GRASP maintains the be-
havior of both construction and local search during all
the execution. In Figure 9, since the data mining proce-
dure is executed after iteration 1000, the DM-GRASP
strategy, from this point, makes an improvement in the
quality of the solutions reached by the construction and
local search phases. The behavior of MDM-GRASP is
presented in Figure 10. There were four executions of
the data mining procedures, after the iterations 584,
1023, 1378, and 1863. We can see then that the im-
provement due to the execution of the data mining pro-



DM-GRASP MDM-GRASP
p Time (s) SD Time (s) SD %

5 33.28 1.96 25.84 1.82 22.36
10 62.03 0.55 48.26 2.87 22.20
15 89.05 4.18 67.58 10.21 24.11
20 138.92 4.05 119.16 14.69 14.22
25 182.04 4.70 155.57 16.57 14.54
30 220.87 4.78 180.24 16.41 18.40
35 261.29 6.11 220.43 17.76 15.64
40 311.84 4.42 263.32 25.85 15.56
45 357.01 4.95 315.17 27.86 11.72
50 398.47 8.21 329.08 14.32 17.41
55 440.81 7.06 377.18 30.49 14.43
60 486.93 6.40 405.63 21.27 16.70
65 538.06 6.93 461.86 9.75 14.16
70 585.01 6.29 520.64 27.75 11.00
75 633.64 6.83 537.92 26.76 15.11
80 681.62 8.21 574.46 31.34 15.72
85 736.56 8.51 616.94 27.22 16.24
90 795.74 9.46 656.35 26.09 17.52
95 852.16 14.77 743.59 57.80 12.74
100 900.21 10.45 816.66 56.07 9.28

Table 14: Time of DM and MDM-GRASP for G1060

cess started to happen earlier. And, differently from the
DM-GRASP, since patterns are extracted more than
once, we can observe that the MDM-GRASP reduces
gradually the cost of the solutions obtained by the con-
struction and local search phases, which justify the good
general behavior of this approach.

Figure 8: One execution of GRASP.

8 Statistical Significance of the Results.

In order to assess whether or not the differences of mean
values obtained by the evaluated strategies are statisti-
cally significant, we employed the unpaired Student’s
t-test technique. Table 15 presents, for each pair of
metaheuristics and for each instance group, the num-
ber of better average solutions found by each strategy

Figure 9: One execution of DM-GRASP.

Figure 10: One execution of MDM-GRASP.

Strategy Instance
G50 G287 G654 G1060

GRASP 4 (0) 0 (0) 1 (0) 0 (0)
DM-GRASP 10 (0) 20 (13) 16 (13) 18 (17)

DM-GRASP 0 (0) 1 (0) 0 (0) 0 (0)
MDM-GRASP 12 (0) 19 (6) 17 (9) 17 (11)

GRASP 1 (0) 0 (0) 0 (0) 0 (0)
MDM-GRASP 13 (2) 20 (17) 16 (16) 18 (17)

Table 15: t-test results with p-value equal to 0.01

and, between parentheses, the number among them that
presents a p-value less than 0.01, which means that the
probability of the difference of performance being due
to random chance alone is less than 0.01.

For the group of 50 customers, almost all differences
of performance are not significant as these instances
seems to be easy to solve. For the other three groups,
we can note that almost all results obtained by both
DM-GRASP and MDM-GRASP, when compared to
GRASP, are statistically significant. It should also be
noted that the results of MDM-GRASP are in general
considerably better than the results of DM-GRASP.



9 Conclusions.

In this work, we proposed a hybrid version of the
GRASP metaheuristic, called DM-GRASP, to solve the
p-median problem. This proposal was based on the
hypothesis that patterns extracted from sub-optimal
obtained solutions could guide the search for better
ones. The experimental results showed that the pro-
posed strategy was able to obtain better solutions in
less computational time than the original GRASP.

In the first version of the hybrid GRASP, the data
mining process occurred just once. In order to try to
explore the gradual evolution of the elite set of solutions
and allow the extraction of better and higher-quality
patterns, we proposed another version of the hybrid
strategy, called MDM-GRASP. This strategy extracts
new sets of patterns whenever the elite set changes and
become stable. The conducted experiments showed that
the MDM-GRASP obtained even better results than
the DM-GRASP, not only in terms of quality, but also
regarding the computational time.

These encouraging results obtained with DM-
GRASP and MDM-GRASP motivate us, as future work,
to try to introduce into other metaheuristics the idea of
extracting patterns from sub-optimal solutions and us-
ing them in search procedures. We believe that other
metaheuristics and many combinatorial optimization
problems can benefit from the incorporation of data
mining techniques.
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[11] N. Mladenović, J. Brimberg, P. Hansen and José A.
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