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Abstract Proteins can be grouped into families according to some features such as hydrophobicity, 

composition or structure, aiming to establish common biological functions. This paper presents 

MAHATMA – Memetic Algorithm-based Highly Adapted Tool for Motif Ascertainment – a 

system that was conceived to discover features (particular sequences of amino acids, or motifs) 

that occur very often in proteins of a given family but rarely occur in proteins of other families. 

These features can be used for the classification of unknown proteins, that is, to predict their 

function by analyzing their primary structure. Experiments were done with a set of enzymes 

extracted from the Protein Data Bank. The heuristic method used was based on Genetic 

Programming using operators specially tailored for the target problem. The final performance was 

measured using sensitivity (Se), specificity (Sp) and hit rate. The best results obtained for the 

enzyme dataset suggest that the proposed evolutionary computation method is effective in finding 

predictive features (motifs) for protein classification.   

 

Keywords Evolutionary algorithms   Genetic programming  Data mining  Proteins patterns 

discovery 
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1 Introduction 

 

This paper proposes a computational tool based on a genetic programming method, a type of 

evolutionary algorithm, specially devised for the automatic discovery of protein motifs 

(“signatures” or “patterns” characterizing proteins), using as input the primary structure (see 

below) of proteins.  

Proteins are very large molecules responsible for several functions in living organisms, such as: 

transport of small molecules, sustentation, regulation, increase of reaction speed and others. 

Biological organisms have thousands of different types of proteins, which are constituted basically 

of amino acids linked in linear chains through peptide connections. The amino acid sequence of a 

protein´s polypeptide chain, also called primary structure, is inextricably linked to its function 

(Lehninger et al. 1998). Some different regions of the sequence form secondary structures like 

alpha (α) helices or beta (β) strands. The tertiary structure is formed by packing some structural 

elements into one or several compact units called domains. The final configuration of the protein 

also may contain several polypeptide chains arranged in a quaternary structure.  Active intra-

molecular forces like covalent peptide bonds and disulfide bonds cause proteins to assume specific 

three-dimensional shapes that are directly related to their biological functions (Branden and Tooze 

1999). Proteins are grouped into super families, families and subfamilies according to these 

biological functions (Friedberg 2006; Rost et al 2003; Jensen et al, 2002).  

For instance, according to Lehninger et al (1998),  proteins can be categorized into broad 

groups such as enzymes (highly specialized proteins with catalytic activity – e.g. catalase, that 

catalyzes the decomposition of hydrogen peroxide into water and oxygen), transport proteins 

(which in blood plasma bind and carry molecules or ions from one organ to another – e.g. 

hemoglobin, which transports oxygen),  storage proteins (required for  the growth of the 

germinating seedling for some plants – e.g. ovalbumin, casein and ferritin), motile proteins (which 

endow cells and organisms with the ability to contract, change shape or move – e.g. myosin and 

actin), structural proteins (which serve as supporting structures, offering strength or protection – 

e.g. collagen and keratin), defense proteins (which defend organisms against invasions by other 

species or protect them from injury – e.g. immunoglobulin and fibrinogen), regulatory proteins 

(which help to regulate cellular or physiological activity – e.g. insulin) and others. 

Genome-sequencing technology has produced a huge amount of data about proteins and their 

primary structure (amino acid sequence). However, there are a large number of proteins whose 

function is unknown. Hence, an active research area consists of predicting proteins’ functions 

based on proteins’ primary sequences. Despite the existence of several methods to solve this kind 

of protein function prediction problem (Chua et al 2006; Zhao et al 2008), it still remains one of 

the main challenges in the current post-genomic era. 

Evolutionary algorithms are search and optimisation methods inspired by the principle of 

natural selection in biological evolution. In essence, they evolve a population of candidate 

solutions (“individuals”) to a target problem, doing a search in the space of candidate solutions 

guided by a “fitness function”, which measures the quality of candidate solutions. In general the 

higher the fitness of individuals, the more likely they are to be selected to reproduce, creating new 

candidate solutions that inherit characteristics of their “parent” individuals. Hence, the population 

gradually evolves to better and better candidate solutions as measured by the fitness function. 

Genetic programming is a particular type of evolutionary algorithms where an individual 

(candidate solution) consists not only of data (variables or constants), but also of operators (or 

functions) applied to the individual’s data. Hence, in genetic programming individuals can be said 

to represent “programs”, in a loose sense, or “executable structures”. 

The proposed genetic programming method – called MAHATMA (Memetic Algorithm-based 

Highly Adapted Tool for Motif Ascertainment) – finds sub-sequences of amino acids (patterns, 

features or motifs expressions) that occur very often in proteins of a given class (family) but rarely 

occur in proteins of other classes. Those discovered motifs can be further used for the 

characterization of families of proteins as well as for the automatic classification of unknown-class 

proteins.  

The remainder of this paper is organized as follows. Section 2 presents algorithmic details of 

the proposed genetic programming method, like individual representation, selection method, 

genetic operators, and others. Sections 3 and 4 present the set up of the computational experiments 

and their results, respectively. In these sections parameter tuning experiments and results are 

reported in order to decide which components of the method to use and to explain their influence 

in the performance of the method. Finally, conclusions and future research directions are provided 

in section 5. This paper is an extended version of (Tsunoda et al. 2009). 
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2 The Proposed Genetic Programming Method 

 

Eiben and Smith (2003) state that there are many variants of evolutionary algorithms (EAs) 

with a common basic idea: given an initial population of individuals, the environmental pressure 

causes natural selection (survival of the fittest) and hence the improvement (a rise in the fitness) of 

the population.   

The genetic algorithm (GA) proposed by John Holland at the University of Michigan is a 

subclass of evolutionary algorithms (EAs) that has proven to be successful in solving some 

difficult problems (Goldberg 1989). GAs are based on the mechanics of natural selection, in others 

words, inspired from the Darwinian theory of evolution.  

Genetic programming (GP) (Koza 1992; 1994) was used mainly for its ability to perform 

adaptive and robust searches. Besides, as an evolutionary computation technique, it operates in 

parallel over a population of candidate solutions, allowing a simultaneous exploration of different 

regions of the search space in the solution domain. This characterizes a global search, less likely to 

get trapped in local optima, by comparison with many local-search methods.  

The combination of Evolutionary Algorithms with local search operators that work within the 

EA loop has been termed “memetic algorithms” (Moscato 1989). This term also applies to EAs 

that use operators based on problem-specific knowledge. According to Eiben and Smith (2003), 

memetic algorithms (MA) or hybrid algorithms (HA) have been shown to be orders of magnitude 

faster and more accurate than EAs on some problems, and are the “state of the art” on many search 

or optimisation problems. 

 

2.1 Basic Algorithm and Individual Representation 

 

MAHATMA – Memetic Algorithm-based Highly Adapted Tool for Motif Ascertainment – is a 

hybrid genetic programming (GP) based tool (Koza 1992; Hsu 2009).  In GP – like in other types 

of evolutionary algorithms – each individual corresponds to a candidate solution to the target 

problem. As mentioned in the Introduction, the key characteristic that distinguishes GP from other 

evolutionary algorithms is that the former evolves candidate solutions representing “executable 

structures”, consisting of both data and operators (functions); whilst in other types of evolutionary 

algorithms such as GAs a candidate solution typically consists of data only (and not 

operators/functions). 

In this work the goal of the GP method is to find a set of rules combining protein motifs which, 

when used as predictive features by a classification algorithm, lead to a high protein-classification 

accuracy. In this work, an individual is represented by a tree (Figure 1). There are three kinds of 

nodes: root node, intermediate nodes and leaf nodes. The root and intermediate nodes represent the 

logical operations: and, or and not. The leaf nodes are variable-length sequences of amino acids 

representing candidate protein motifs. 

 

 

Fig. 1 MAHATMA individual representation 

 

Hence, each individual represents the antecedent (IF part) of an IF-THEN classification rule 

consisting of a motif formed by applying logical operations to the names of amino acids in the 

proteins’ amino acid sequences. Each amino acid name can be abbreviated by a single letter. For 

instance, the individual shown in Figure 1 can be read as the rule antecedent: IF “(a protein has the 

aminoacid sub-sequence MD or MM) and (a protein has the aminoacid sub-sequences LQE and 

IGA)”.  
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Table 1 presents the 20 “standard” monomeric units of proteins, the amino acids (Lesk 2001). It 

is from these substances that proteins are synthesized.  

 

Table 1 The amino acids and their three-letter and one-letter codes 

Amino acid 
Three 
letter 

symbol 

One 
letter 

symbol* 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartic acid Asp D 

Cysteine Cys C 

Glutamic acid Glu E 

Glutamine Gln Q 

Glycine Gly G 

Histidine His H 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Tryptophan Trp W 

Tyrosine  Tyr Y 

Valine Val V 

* The one letter symbol for an undertemined or “nonstandard” amino acid is X. 

 

 

The class predicted by the THEN part of a rule is computed by using a deterministic procedure 

that assigns the best possible class to the rule (individual), to be explained later. 

Figure 2 presents MAHATMA’s flowchart. The steps of this flowchart will be explained in the 

following sub-sections. 

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Ala_val.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/L/Lys_arg.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Asn_gln.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Asp_glu.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/Cys_met.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Asp_glu.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Asn_gln.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/G/Gly_trp.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/H/His_pro.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/L/Leu_ile.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/L/Leu_ile.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/L/Lys_arg.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/Cys_met.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/T/Tyr_phe.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/H/His_pro.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/S/Ser_thr.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/S/Ser_thr.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/G/Gly_trp.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/T/Tyr_phe.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Ala_val.gif
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Fig. 2 MAHATMA flowchart 

 

2.2 Selection Method and Genetic Operators 

 

The system uses stochastic tournament selection, which works as follows (Banzhaf et al 1998). 

First, k individuals are randomly drawn from the current population, with replacement, where k is 

determined as a percentage of the population size. In this work, k is 3% of the population size (this 

is a user-defined parameter). Then, the k individuals are prompted to “play a tournament”, where 

the probability of an individual to win the tournament is proportional to its fitness value. A copy of 

the winner of a tournament is then passed on, as a parent, to genetic operators such as crossover 

and mutation. Notice that each tournament selects just one parent, so that the tournament selection 

procedure has to be called N times to produce N parents, where N is the population size. The 

choice of k must be done carefully, since this parameter modulates the degree of the selective 

pressure. The larger k, the higher the selective pressure will be, possibly leading the algorithm to 

converge rapidly into a “local maximum”. On the other hand, a k too small will impose no 

selective pressure, turning the method into a random search. 

We emphasize that MAHATMA has two kinds of operators: structural operators (usual in GP 

Koza 1992)) and leaf operators (based on genetic algorithms (Goldberg 1989; Larose 2006)). The 

structural operators are: reproduction, crossover, mutation, editing and encapsulation.  

The reproduction operator just copies a selected individual to the next generation. The 

encapsulation keeps the best M motifs found throughout the evolutionary process, where M is a 

user-defined parameter. In other words, the encapsulation operator identifies a potentially useful 

subtree and gives it a tag so that it can be referenced and used later. 

The leaf operators modify the sequence of amino acids by genetic operators (e.g. crossover and 

mutation) in order to produce offspring (Goldberg 1989; Larose 2006).  
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2.2.1 Structural Operators 

 

These operators modify an individual’s structure. MAHATMA´s structural mutation introduces 

random changes in structures. For example, in the “parent” individual in the left part of Figure 3, 

the AND at the intermediate node is selected as the mutation point. A subtree is randomly 

generated and inserted at that point, to produce the “child” individual. 

 

 

Fig. 3 MAHATMA structural mutation operator 

 

The structural crossover operator produces new offspring taking parts from each of the two 

parents. It is also called sexual recombination. For example, in the two “parent” individuals in the 

left part of Figure 4, one random point in each parent is select. Each of these points is a rooted 

subtree crossover point. The right part of Figure 4 shows the two offspring resulting from 

crossover. 

 

 

 

Fig. 4 MAHATMA structural crossover operator 

 

The edition operation provides a means to edit and simplify expressions as genetic 

programming is running.  Edition is an asexual operator and it recursively applies a set of 

simplifying operations (editing rules, Table 1) in order to optimize the rule. If any function has no 

side effects, the edition operator will evaluate that function and replace it with the value obtained 

by the evaluation. Figure 5 shows an expression before and after the MAHATMA´s editing 

operation.  
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Table 2 Editing rules 

Before operation After operation 

X or X X 

A and A A 

not not B B 

(C and C) or C C 

D and (D or D) D 

 

 

 

Fig. 5 MAHATMA edition operator 

 

 

2.2.2 Leaf Operators 

 

These operators modify the contents of leaf nodes (sequences of amino acids representing 

motifs). MAHATMA uses the classical one-point crossover often used in GAs, where a crossover 

point is randomly selected and then the two parents swap their genetic material from the crossover 

point up to the right-hand end of the individual (Hsu 2009). Notice, however, that this kind of 

crossover was originally designed for a fixed-length individual representation, unlike the variable-

length motif representation used in this work. Therefore, this work has adapted the conventional 

one-point crossover to a variable-length representation, as follows. The crossover point (which is 

still randomly generated) indicates the percentage of the genome of each parent where the 

swapping of genes starts. The percentile (relative position) is the same for both parents, but the 

actual (absolute) position where the gene swapping starts can be different, since the parents can 

have different numbers of genes. This is illustrated in Figure 6, where the crossover percentage is 

60%. The absolute position of the crossover point for each parent is computed by multiplying 0.6 

by the number of genes of the parent and rounding up the result. This results in crossover points at 

positions 4 and 5 in the first and second parents, respectively. The genetic material being swapped 

is shown in Figure 6. 

 

 

Fig. 6 One-point crossover between variable-length parents: (a) original parents, (b) offspring 

 

The crossover operator introduced here also has another feature that distinguishes it from 

conventional crossover operators. This feature consists of monotonically increasing the fitness of 
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the children with respect to their parents, and it was introduced to eliminate the potentially-

destructive effect of crossover (which can produce offspring with fitness worse than the parents). 

This idea works as follows. After crossover has been done, all the corresponding four individuals 

(two parents and two children) are compared to each other and the best two individuals are passed 

to the next population, no matter whether the individuals being passed are parent or offspring.  

 

This work introduces four kinds of mutation operators tailored for the variable-length sequence 

of amino acids represented by each individual, as follows: 

a) Addition to the Left (AE) – a letter – representing an amino acid – is randomly generated and 

inserted into the leftmost end of the sequence of amino acids; 

b) Addition to the Right (AR) – analogous to AE, with the difference that the new amino acid is 

inserted into the rightmost end of the sequence of amino acids; 

c) Multiple Mutations (MM) – each of the amino acids from a randomly-generated starting 

position up to the end of the sequence is replaced by another randomly-generated amino acid. 

The starting position can be any position in the sequence except the first and the last positions.  

d) Removal (RM) – the amino acid in a randomly-chosen position is removed from the 

sequence. Notice that after removal of an amino acid the sequence will still have at least three 

amino acids. If this condition is not met then this operator is not applied, and another mutation 

operator is applied instead. 

 

These mutation operators also have the feature of monotonically increasing the fitness of 

offspring with respect to the parents, as explained for the crossover operator. That is, if the fitness 

of the offspring is worse than the fitness of the parent then the offspring is thrown away and the 

parent is passed to the next generation. 

The system also has an extra genetic operator designed specifically for the target problem. This 

operator, called the expansion operator, performs a kind of local search in the solution space, so 

that the MAHATMA can be considered a hybrid method or a memetic algorithm (Moscato 1989). 

The expansion operator works as follows. 

The basic idea is to increase the length of the motif represented by an individual – making that 

motif more specific to a given class – while at the same time increasing the motif’s ability to 

discriminate between different classes of proteins. The operator starts by randomly selecting a 

protein among those that contain the motif represented by the individual to be expanded. (If there 

is no protein with that motif, the operator is not applied.) The selected protein is then used as a 

source of amino acids to be inserted into the individual, as follows.  

First, the amino acid which is located immediately to the left of the motif in the protein is 

inserted into the leftmost end of the individual’s sequence of amino acids, and the individual’s 

fitness is recomputed. If the new fitness is worse than the previous one, then this operation is 

undone – i.e. the just-added amino acid is removed from the individual’s sequence of amino acids 

– and the expansion based on the current protein is terminated. Otherwise the just-inserted amino 

acid is kept in the individual, and the process continues. Next, the amino acid which is located 

immediately to the right of the motif in the protein is inserted into the rightmost end of the 

individual’s sequence of amino acids, and the fitness of the individual is recomputed. Again, if the 

new fitness is worse than the previous one, this operation is undone and the expansion based on 

the current protein is terminated. Otherwise the just-inserted amino acid is kept in the individual, 

and the process continues. This process is repeated, considering amino acids that are 2,3,…., 

positions away from the motif in the current protein, alternating between amino acids to the left 

and to the right of that motif, until an attempt to further expand the individual would lead to a 

reduction in its fitness. 

Next, this process is repeated for all other proteins that also contain the individual’s motif and 

that belong to the same class as the class of the protein that was used in the first step of the 

operator.  

Hence, the expansion operator aims at generating the longest (most specific) motif for a given 

class, but notice that the expansion process never decreases the fitness of the individual being 

expanded. Therefore, this operator also has the feature of monotonically increasing the fitness of 

the offspring with respect to its parent, like the crossover and mutation leaf operators. 

 

2.3 Fitness Function 

 

As mentioned earlier, an individual represents a protein motif that will be used as a predictor 

attribute by a given classification algorithm. Since the goal is to maximize classification accuracy, 
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the quality of a motif is determined by its ability in discriminating enzymes of different classes. 

That is, ideally a motif should represent an amino acid sequence that occurs in many proteins of a 

given class and in no (or few) proteins of other classes. The fitness function was designed to take 

this basic principle into account. Hence, the fitness of an individual (motif) is computed as 

follows. 

At first, MAHATMA computes, for each class i, i=1,…,6 (for the enzyme dataset used in this 

work), the relative frequency of occurrence of the motif in that class. This is simply the number of 

proteins of the i-th class where the motif occurs in the protein’s primary sequence. Secondly,  it 

computes, for each class i, a measure of the ability of the motif to discriminate between class i and 

the other classes, denoted Disci and given by the equation 1, where Fi is the relative frequency of 

the individual’s motif in the i-th class, n is the number of classes (n = 6 in this work), and k is the 

number of classes that contain at least one protein whose primary sequence contains the 

individual’s motif. Hence, the fitness function can be formally stated as follows: 

 

     (1) 

 

 

where the rightmost term of the formula simply computes the average relative frequency of the 

motif in all the (n – 1) classes j with j i. This term is subtracted from 1, so that the term between 

square brackets is to be maximized – the higher its value, the better the value of Disci. Similarly, 

the value of Fi (the first term of the formula) is also to be maximized, so that a high value of Disci 

means that the motif occurs very often in class i but rarely in the other classes. 

Finally, once the value of Disci has been calculated for all classes i, i=1,…,n, the motif is 

associated with the class i that has the largest value of Disci, and that value is considered the 

fitness of the individual.  

Hence, the motif is considered as a characteristic pattern of proteins belonging to class i. In 

other words, the occurrence of that motif in a protein of unknown class will be considered, by the 

classification algorithm, as evidence that the protein belongs to class i. 

 

2.4 Result Designation 

 

As explained earlier, each individual represents a motif which is associated with a given class 

of proteins. Therefore, it is not enough to return, as solution found by the method, only the best 

motif found throughout the evolutionary process – as usual in conventional evolutionary 

algorithms. It is necessary to return a set of motifs, in order to perform a comprehensive 

classification of proteins into known families. In this work, we return the best M motifs found 

throughout the evolutionary process, where M is a user-defined parameter. 

 

3 Set Up of the Computational Experiments 

 

The data set to be mined consists of data about enzymes. The data was extracted from the PDB 

(Protein Data Bank), version 102, by identifying the PDB entries which had an EC number. This is 

an enzyme code provided by IUBMB (International Union of Biochemistry and Molecular 

Biology). From a data mining viewpoint, each EC number corresponds to a class, i.e., a specific 

protein function. More precisely, the EC number consists of four digits, where each pair of 

adjacent digits is separated by a dot (“.”), and it specifies the chemical reaction catalyzed by the 

corresponding enzyme. For instance, the enzyme Alcohol dehydrogenase has the number 

EC.1.1.1.1.  

Note that this is a hierarchical classification consisting of four levels, so that the first digit 

represents the most general classes and the last digit the most specific subclasses. In this work we 

address the prediction of the first digit only, corresponding to the prediction of the most general 

class to which the example belongs.  

We emphasize that this is still a useful, challenging prediction, and other projects have also 

focused on the prediction of the first digit only – see e.g. . The first digit can take on six different 

n
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values, corresponding to the following six different classes: EC.1 – oxidoreductases; EC.2 – 

transferases; EC.3 – hydrolases; EC.4 – lyases; EC.5 – isomerases and EC.6 – ligases.  

Some of the enzymes stored in the PDB contained non-standard amino acids, from which no 

useful motif can be discovered. Therefore, as part of our data preparation procedure, we have only 

retrieved from PDB the enzymes whose primary sequence has at least 30 standard amino acids. 

After this simple filtering, the total number of proteins retrieved from the PDB was 8,399, 

distributed across the six classes as follows: 1,583 proteins in class EC.1; 1,866 in class EC.2; 

3,385 in class EC.3; 775 in class EC.4; 481 in class EC.5 and 309 in class EC.6. 

  

 

4 Computational Results 

 

As described earlier, MAHATMA has several parameters. Hence, this paper describes 

experiments performed to find good values for some of these parameters. In these experiments the 

expansion operator was initially turned off, because this is a computationally expensive operator 

and we wanted to perform some relatively quick experiments to set other parameters. The leaf 

operators (mutation and crossover operators) were set during experiments with a genetic algorithm  

that discovers protein motifs in a stand-alone fashion, without being hybridized with GP as in 

MAHATMA (Tsunoda and Lopes 2005). 

To evaluate the predictive accuracy of the classification algorithm we used the well-known 

five-fold cross validation method (Witten and Frank 2005) in all experiments reported in this 

paper. The average values of specific predictive accuracy measures on the test set (unseen during 

training) over all five folds are the so-called cross-validated predictive accuracy measures.  

The initial parameter settings are: number of generations: 20, population size: 500, structural 

crossover and mutation probability: 60% each, hill climbing: 10% probability, leaf crossover and 

mutation probabilities: 20% and 70%, stochastic tournament size: 3%, edition active and 

expansion deactivated. From now on these parameter values will be referred to as the initial 

values.  

For each fold of the cross-validation procedure, GP method is run once for each class, since 

each run has to use that fold’s training set to find motifs (rules/patterns) discriminating one class 

(the “positive” class) from all the other classes (collectively considered the “negative class”). 

Hence, each run of GP method discovers a set of possible rules (each represented by an individual) 

which tend to occur in proteins of the positive class and tend not to occur in proteins from the 

other classes.  

The number of motifs discovered for each class (i.e., the number of individuals output by 

MAHATMA as the discovered “solution”) is a user-defined parameter. At present this parameter 

specifies the same value for all the classes, for the sake of simplicity, but in future research it 

might be interesting to allow the number of motifs discovered for each class to be variable, 

depending for instance on the number of examples available for each class. The returned motifs 

(individuals) are the ones with the best fitness in the last generation.  

For each cross-validation fold, once a set of motifs has been discovered (from the training set) 

for each class, the entire set of discovered motifs can be used to classify examples in the test set of 

the current cross-validation fold (i.e. examples whose class is unknown by the system) in two 

different ways, as follows. 

Firstly, each individual can be interpreted as a rule of the form IF <motif_condition> THEN 

<motif_class>, where motif_condition is the logical expression associated with the motif  –  

involving all nodes of the corresponding individual, see e.g. Fig. 1; and motif_class is the positive 

class associated with the rule that was discovered. Hence, this kind of rule suggests that if the 

logical expression associated with a rule antecedent is satisfied by an example (protein), then the 

rule predicts the motif’s class for that example.  

The entire set of rules corresponding to all discovered (for all classes) is then used as follows. 

For each new example in the test set, the example is submitted to all discovered rules and the 

system computes the number of rules in each class whose antecedents are satisfied by the example. 

Finally, the test example is assigned the class with the highest number of rules satisfied by the 

example, subject to the condition that at least 60% of the rules for the chosen class have to be 

satisfied by the example. If this latter condition is not satisfied, then the test protein is simply 

assigned the most frequent class in the training set (in our dataset, EC3). Note that in this case the 

motif (individuals/rules) discovered by MAHATMA are directly used for the classification of test 

examples. 
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A second and very different approach to classify examples in the test set consist of passing each 

of the discovered motifs to a separate classification algorithm, which simply uses the set of 

discovered motifs as a set of predictor attributes. That is, in this approach each motif is used as a 

binary attribute, taking the value 1 or 0 to indicate whether or not the pattern (motif) occurs in each 

example (protein). In this case in principle any classification algorithm can be used with the set of 

motifs discovered by MAHATMA. 

We report first the results of experiments with the first approach, using the discovered motifs to 

directly classify examples in the test set. Results of experiments with the second approach, using a 

well-known decision tree induction algorithm as the classification algorithm, are reported later in 

the paper. 

Each result table reports the following cross-validated measures of predictive accuracy: 

sensitivity (Se), specificity (Sp), performance (P) (Se multiplied by Sp) (Lopes 1996) and hit rate 

(HR). Se and Sp are defined in equations (2) and (3). Mahatma´s HR is defined as equation (4), 

where proteinCount is the count of proteins in test set. In equations (2), (3), (4) the terms TP, FP, 

TN and FN denote, respectively, the numbers of true positives, false positives, true negatives and 

false negatives observed in the test set – these are well-known terms used to measure predictive 

accuracy in the classification task of machine learning and data mining, see e.g. (Witten & Frank 

2005). 

We have bolded the best results (better performance) in each of the tables of results. 

 

  

      (2) 

 

  

       (3) 

 

ntproteinCou

TP
HitRate                          (4) 

 

The first step was to find a good value for the number of generations (G) and population size 

(PS). The results obtained via 5-fold cross-validation are reported in Table 3.  

 

Table 3. MAHATMA’s performance varying number of generations and population size 
G PS Se (%) Sp (%) P (%) HR(%) 

20 500 87.28±0.12 43.35±0.31 61.51±0.21 79.03±0.74 
40 250 86.85±0.12  37.60±0.30 57.15±0.20 78.28±0.81 
50 200 86.87±0.12 42.37±0.36 60.67±0.26 77.40±1.12 
70 150 85.56±0.12 32.32±0.30 52.59±0.20 77.30±0.79 

 

The second step was to adjust structural crossover (SC) and mutation (SM) probabilities (%). 

The results are reported in Table 4. 

 

Table 4. MAHATMA’s performance varying structural mutation and crossover probabilities 
SM SC Se (%) Sp (%) P (%) HR (%) 

30 60 87.17±0.12 38.37±0.32 57.83±0.22 78.68±0.99 
20 70 87.70±0.11 41.62±0.30 60.42±0.21 79.85±1.01 
10 80 86.70±0.12 36.18±0.32 56.01±0.21 77.76±0.98 
60 60 87.28±0.11 43.35±0.32 61.51±0.23 79.03±0.74 
60 30 87.18±0.11 42.09±0.32 60.58±0.23 78.40±0.92 
70 20 87.49±0.10 39.61±0.31 58.87±0.22 79.32±0.68 
80 10 88.31±0.10 42.34±0.28 61.15±0.20 81.34±0.87 

 

The third step adjusted the hill climbing (HC) probability (%). As shown in Table 5, higher 

values for this parameter do not assure better results. In fact, when we used 70%, performance 

decreased significantly. This happens because this parameter does not guarantee the offspring’s 

improvement. It simply states that a parent will be copied for next generation if the offspring has 

lower fitness than that parent.  

)( FNTP

TP
Se

)( FPTN

TN
Sp
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Since the experiments that generated the table 5 led to the conclusion that higher predictive 

accuracy was achieved with hill climbing probability 40% - instead of 0% or 70%, this value 

(40%) was used to run the experiments summarized in tables 6 and 7. 

 

Table 5. MAHATMA’s performance varying hill climbing probability 
HC Se (%) Sp (%) P (%) HR (%) 

0% 87.31±0.11 42.38±0.30 60.83±0.21 79.19±0.89 
40% 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84 
70% 87.12±0.11 38.52±0.34 57.93±0.24 77.98±0.85 

 

The fourth step fixed a good value for the parameter tournament size. This parameter was given 

special attention, because it is potentially one of the most important parameters of an evolutionary 

algorithm. The reason is that this parameter directly determines the selective pressure of the 

algorithm. The larger the tournament size, the larger the selective pressure. The results of 

experiments with different values of tournament size are reported in Table 6. 

 

Table 6. MAHATMA’s performance varying tournament size 
TS Se (%) Sp (%) P (%) HR (%) 

1% 86.85±0.14 37.60±0.34 57.15±0.27 77.87±0.89 
3% 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84 
5% 87.10±0.14 42.31±0.39 60.71±0.31 77.99±1.08 
7% 86.94±0.13 42.43±0.37 60.74±0.28 77.05±0.71 

 

Surprisingly, the value of tournament size had little impact in the predictive accuracy. In any 

case, we decided to fix the default value of this parameter to 3%, since this value led to slightly 

higher predictive accuracy.  

Having fixed this parameter, the next experiment evaluated the influence of the expansion 

operator in the classification accuracy. The expansion operator was somewhat effective, leading to 

a slight increase of the predictive accuracy (performance of 64.69%), but the processing time 

increased exponentially (twenty two hours instead of thirty seven minutes).  

Finally, we performed experiments to determine the influence – in the predictive accuracy – of 

another important parameter of the algorithm, the number of motifs (NM) used for each class. In 

the experiments reported so far this parameter was set to 5 motifs per class. The new experiments 

produced the results shown in Table 7. 

 

Table 7. MAHATMA’s performance varying number of motifs per class 
NM Se (%) Sp (%) P (%) HR (%) 

1 86.15±0.17 28.76±0.25 49.78±0.15 78.42±0.91 
5 87.26±0.16 35.68±0.27 55.80±0.16 81.19±0.87 

10 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84 
15 87.64±0.15 41.98±0.30 60.66±0.21 80.25±0.75 
20 87.11±0.16 41.61±0.31 60.20±0.22 81.15±0.73 

 

As it can be observed in Table7, there was some variation in predictive accuracy when the 

number of motifs changed. However, three values of this parameter were considerably more 

successful than the value of 5 which had been used in earlier experiments. Hence, it is important to 

return a larger number of motifs per class, in order to give more predictor attributes to the 

classification algorithm. 

For comparison purposes, as described earlier, the list of the top ten best motifs (or rules) for 

each class, as well as the corresponding training and test sets of course, were converted as input 

(arff file) for the WEKA data mining tool, in order to allow the discovered motifs to be used as 

predictor attributes by a separate classification algorithm. As the classification algorithm we chose 

J4.8, a Java implementation of the very well-known C4.5 algorithm (Quinlan 1993). This choice 

was motivated for the following reasons. First, J4.8 produces a decision tree, a classification model 

that tends to be comprehensible to the user, allowing him/her to interpret discovered knowledge. 

This is important in bioinformatics applications such as protein function prediction (Freitas et al. 

2010), and also in data mining in general, where the goal is to give the user some new insight 

about the predictive relationships that hold in the data. Second, J4.8 is available in the WEKA data 

mining tool (Witten and Frank 2005), which has the advantage of being a public domain and 

widely used tool. 

Using the J48 classification algorithm, the results were sensitivity (Se), specificity (Sp) and 

performance (P) values of 82.88±6.03, 96.81±1.78 and 89.50±3.02, respectively; and a Hit Rate of 
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85.36% ± 2.59 (also measured by 5-fold cross-validation). These results are in general better than 

the results produced using the discovered motifs directly for classification, as reported in Tables 3 

through 7, with the exception that using J4.8 led to a somewhat smaller Se than the best results in 

Tables 3 to 7. 

 

 

5 Conclusions 

 

We have proposed a Genetic Programming method (which can also be regarded as a hybrid 

genetic programming/genetic algorithm system) for protein motif discovery, aiming to classify 

proteins with unknown functional class.  

We have performed experiments to adjust the parameters of our method in an enzyme subset of 

the PDB (Protein Data Bank), containing 8,399 enzymes.. 

The proposed MAHATMA system uses not only conventional GP (and GA-like) operators, but 

also operators specifically designed for the problem of finding protein motifs. Despite the 

complexity of the algorithm, the use of these problem-specific operators was very beneficial in the 

sense that it allowed MAHATMA to reach better motifs (motifs with higher fitness). 

The predictive performance was measured by three different criteria, viz. using sensitivity (Se), 

specificity (Sp) and Hit Rate (HR), in two different scenarios: using the motifs discovered by 

MAHATMA directly for classification, and using the discovered motifs as predictor attributes for 

another classification algorithm. Overall the latter approach led to better Sp and much better HR, 

but worse Se.   

Future work includes more extensive tests of the system in datasets involving enzymes’ 

secondary structures (Kaminska et al 2009) and comparisons with other methods. Also, it is 

intended to apply this system to alternative sets of proteins, like transmembranes, globins, 

hormones and others. 

In addition, the fact that the best predictive accuracy was obtained when the motifs discovered 

by MAHATMA were used as predictor attributes by another algorithm, rather than using the 

motifs discovered directly for classification, suggests that the procedure currently used to combine 

the predictions of the set of discovered motifs could be improved. This will also be object of future 

research. 
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