
1

A Genetic Programming Method for Protein
Motif Discovery and Protein Classification

Denise Fukumi Tsunoda
1
  Alex A. Freitas

2
 Heitor Silvério Lopes

3

1 Federal University of Parana

 Av. Prefeito Lothário Meissner, 632, Room 38

 Curitiba / PR – Brazil

 E-mail: dtsunoda@ufpr.br

 Tel: +55(41)33604472

 Fax: +55(41)33604420

2
 University of Kent

 School of Computing, Room S107,

 Canterbury, Kent, CT2 7NF – England

 E-mail: A.A.Freitas@kent.ac.uk

 Tel: +44 (0)1227 827220

 Fax: +44 (0)1227 762811

3
 Federal University of Technology – Parana

 Av. 7 de setembro, 3165, Bloco D, 3
o
 floor

 Curitiba / PR – Brazil

 E-mail: hslopes@utfpr.edu.br

 Tel: +55 (41) 33104694

 Fax: +55 (41) 33104683

Abstract Proteins can be grouped into families according to some features such as hydrophobicity,

composition or structure, aiming to establish common biological functions. This paper presents

MAHATMA – Memetic Algorithm-based Highly Adapted Tool for Motif Ascertainment – a

system that was conceived to discover features (particular sequences of amino acids, or motifs)

that occur very often in proteins of a given family but rarely occur in proteins of other families.

These features can be used for the classification of unknown proteins, that is, to predict their

function by analyzing their primary structure. Experiments were done with a set of enzymes

extracted from the Protein Data Bank. The heuristic method used was based on Genetic

Programming using operators specially tailored for the target problem. The final performance was

measured using sensitivity (Se), specificity (Sp) and hit rate. The best results obtained for the

enzyme dataset suggest that the proposed evolutionary computation method is effective in finding

predictive features (motifs) for protein classification.

Keywords Evolutionary algorithms  Genetic programming  Data mining  Proteins patterns

discovery

2

1 Introduction

This paper proposes a computational tool based on a genetic programming method, a type of

evolutionary algorithm, specially devised for the automatic discovery of protein motifs

(“signatures” or “patterns” characterizing proteins), using as input the primary structure (see

below) of proteins.

Proteins are very large molecules responsible for several functions in living organisms, such as:

transport of small molecules, sustentation, regulation, increase of reaction speed and others.

Biological organisms have thousands of different types of proteins, which are constituted basically

of amino acids linked in linear chains through peptide connections. The amino acid sequence of a

protein´s polypeptide chain, also called primary structure, is inextricably linked to its function

(Lehninger et al. 1998). Some different regions of the sequence form secondary structures like

alpha (α) helices or beta (β) strands. The tertiary structure is formed by packing some structural

elements into one or several compact units called domains. The final configuration of the protein

also may contain several polypeptide chains arranged in a quaternary structure. Active intra-

molecular forces like covalent peptide bonds and disulfide bonds cause proteins to assume specific

three-dimensional shapes that are directly related to their biological functions (Branden and Tooze

1999). Proteins are grouped into super families, families and subfamilies according to these

biological functions (Friedberg 2006; Rost et al 2003; Jensen et al, 2002).

For instance, according to Lehninger et al (1998), proteins can be categorized into broad

groups such as enzymes (highly specialized proteins with catalytic activity – e.g. catalase, that

catalyzes the decomposition of hydrogen peroxide into water and oxygen), transport proteins

(which in blood plasma bind and carry molecules or ions from one organ to another – e.g.

hemoglobin, which transports oxygen), storage proteins (required for the growth of the

germinating seedling for some plants – e.g. ovalbumin, casein and ferritin), motile proteins (which

endow cells and organisms with the ability to contract, change shape or move – e.g. myosin and

actin), structural proteins (which serve as supporting structures, offering strength or protection –

e.g. collagen and keratin), defense proteins (which defend organisms against invasions by other

species or protect them from injury – e.g. immunoglobulin and fibrinogen), regulatory proteins

(which help to regulate cellular or physiological activity – e.g. insulin) and others.

Genome-sequencing technology has produced a huge amount of data about proteins and their

primary structure (amino acid sequence). However, there are a large number of proteins whose

function is unknown. Hence, an active research area consists of predicting proteins’ functions

based on proteins’ primary sequences. Despite the existence of several methods to solve this kind

of protein function prediction problem (Chua et al 2006; Zhao et al 2008), it still remains one of

the main challenges in the current post-genomic era.

Evolutionary algorithms are search and optimisation methods inspired by the principle of

natural selection in biological evolution. In essence, they evolve a population of candidate

solutions (“individuals”) to a target problem, doing a search in the space of candidate solutions

guided by a “fitness function”, which measures the quality of candidate solutions. In general the

higher the fitness of individuals, the more likely they are to be selected to reproduce, creating new

candidate solutions that inherit characteristics of their “parent” individuals. Hence, the population

gradually evolves to better and better candidate solutions as measured by the fitness function.

Genetic programming is a particular type of evolutionary algorithms where an individual

(candidate solution) consists not only of data (variables or constants), but also of operators (or

functions) applied to the individual’s data. Hence, in genetic programming individuals can be said

to represent “programs”, in a loose sense, or “executable structures”.

The proposed genetic programming method – called MAHATMA (Memetic Algorithm-based

Highly Adapted Tool for Motif Ascertainment) – finds sub-sequences of amino acids (patterns,

features or motifs expressions) that occur very often in proteins of a given class (family) but rarely

occur in proteins of other classes. Those discovered motifs can be further used for the

characterization of families of proteins as well as for the automatic classification of unknown-class

proteins.

The remainder of this paper is organized as follows. Section 2 presents algorithmic details of

the proposed genetic programming method, like individual representation, selection method,

genetic operators, and others. Sections 3 and 4 present the set up of the computational experiments

and their results, respectively. In these sections parameter tuning experiments and results are

reported in order to decide which components of the method to use and to explain their influence

in the performance of the method. Finally, conclusions and future research directions are provided

in section 5. This paper is an extended version of (Tsunoda et al. 2009).

3

2 The Proposed Genetic Programming Method

Eiben and Smith (2003) state that there are many variants of evolutionary algorithms (EAs)

with a common basic idea: given an initial population of individuals, the environmental pressure

causes natural selection (survival of the fittest) and hence the improvement (a rise in the fitness) of

the population.

The genetic algorithm (GA) proposed by John Holland at the University of Michigan is a

subclass of evolutionary algorithms (EAs) that has proven to be successful in solving some

difficult problems (Goldberg 1989). GAs are based on the mechanics of natural selection, in others

words, inspired from the Darwinian theory of evolution.

Genetic programming (GP) (Koza 1992; 1994) was used mainly for its ability to perform

adaptive and robust searches. Besides, as an evolutionary computation technique, it operates in

parallel over a population of candidate solutions, allowing a simultaneous exploration of different

regions of the search space in the solution domain. This characterizes a global search, less likely to

get trapped in local optima, by comparison with many local-search methods.

The combination of Evolutionary Algorithms with local search operators that work within the

EA loop has been termed “memetic algorithms” (Moscato 1989). This term also applies to EAs

that use operators based on problem-specific knowledge. According to Eiben and Smith (2003),

memetic algorithms (MA) or hybrid algorithms (HA) have been shown to be orders of magnitude

faster and more accurate than EAs on some problems, and are the “state of the art” on many search

or optimisation problems.

2.1 Basic Algorithm and Individual Representation

MAHATMA – Memetic Algorithm-based Highly Adapted Tool for Motif Ascertainment – is a

hybrid genetic programming (GP) based tool (Koza 1992; Hsu 2009). In GP – like in other types

of evolutionary algorithms – each individual corresponds to a candidate solution to the target

problem. As mentioned in the Introduction, the key characteristic that distinguishes GP from other

evolutionary algorithms is that the former evolves candidate solutions representing “executable

structures”, consisting of both data and operators (functions); whilst in other types of evolutionary

algorithms such as GAs a candidate solution typically consists of data only (and not

operators/functions).

In this work the goal of the GP method is to find a set of rules combining protein motifs which,

when used as predictive features by a classification algorithm, lead to a high protein-classification

accuracy. In this work, an individual is represented by a tree (Figure 1). There are three kinds of

nodes: root node, intermediate nodes and leaf nodes. The root and intermediate nodes represent the

logical operations: and, or and not. The leaf nodes are variable-length sequences of amino acids

representing candidate protein motifs.

Fig. 1 MAHATMA individual representation

Hence, each individual represents the antecedent (IF part) of an IF-THEN classification rule

consisting of a motif formed by applying logical operations to the names of amino acids in the

proteins’ amino acid sequences. Each amino acid name can be abbreviated by a single letter. For

instance, the individual shown in Figure 1 can be read as the rule antecedent: IF “(a protein has the

aminoacid sub-sequence MD or MM) and (a protein has the aminoacid sub-sequences LQE and

IGA)”.

4

Table 1 presents the 20 “standard” monomeric units of proteins, the amino acids (Lesk 2001). It

is from these substances that proteins are synthesized.

Table 1 The amino acids and their three-letter and one-letter codes

Amino acid
Three
letter

symbol

One
letter

symbol*

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D

Cysteine Cys C

Glutamic acid Glu E

Glutamine Gln Q

Glycine Gly G

Histidine His H

Isoleucine Ile I

Leucine Leu L

Lysine Lys K

Methionine Met M

Phenylalanine Phe F

Proline Pro P

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y

Valine Val V

* The one letter symbol for an undertemined or “nonstandard” amino acid is X.

The class predicted by the THEN part of a rule is computed by using a deterministic procedure

that assigns the best possible class to the rule (individual), to be explained later.

Figure 2 presents MAHATMA’s flowchart. The steps of this flowchart will be explained in the

following sub-sections.

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Ala_val.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/L/Lys_arg.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Asn_gln.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Asp_glu.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/Cys_met.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Asp_glu.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Asn_gln.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/G/Gly_trp.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/H/His_pro.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/L/Leu_ile.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/L/Leu_ile.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/L/Lys_arg.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/Cys_met.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/T/Tyr_phe.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/H/His_pro.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/S/Ser_thr.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/S/Ser_thr.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/G/Gly_trp.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/T/Tyr_phe.gif
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Ala_val.gif

5

Fig. 2 MAHATMA flowchart

2.2 Selection Method and Genetic Operators

The system uses stochastic tournament selection, which works as follows (Banzhaf et al 1998).

First, k individuals are randomly drawn from the current population, with replacement, where k is

determined as a percentage of the population size. In this work, k is 3% of the population size (this

is a user-defined parameter). Then, the k individuals are prompted to “play a tournament”, where

the probability of an individual to win the tournament is proportional to its fitness value. A copy of

the winner of a tournament is then passed on, as a parent, to genetic operators such as crossover

and mutation. Notice that each tournament selects just one parent, so that the tournament selection

procedure has to be called N times to produce N parents, where N is the population size. The

choice of k must be done carefully, since this parameter modulates the degree of the selective

pressure. The larger k, the higher the selective pressure will be, possibly leading the algorithm to

converge rapidly into a “local maximum”. On the other hand, a k too small will impose no

selective pressure, turning the method into a random search.

We emphasize that MAHATMA has two kinds of operators: structural operators (usual in GP

Koza 1992)) and leaf operators (based on genetic algorithms (Goldberg 1989; Larose 2006)). The

structural operators are: reproduction, crossover, mutation, editing and encapsulation.

The reproduction operator just copies a selected individual to the next generation. The

encapsulation keeps the best M motifs found throughout the evolutionary process, where M is a

user-defined parameter. In other words, the encapsulation operator identifies a potentially useful

subtree and gives it a tag so that it can be referenced and used later.

The leaf operators modify the sequence of amino acids by genetic operators (e.g. crossover and

mutation) in order to produce offspring (Goldberg 1989; Larose 2006).

6

2.2.1 Structural Operators

These operators modify an individual’s structure. MAHATMA´s structural mutation introduces

random changes in structures. For example, in the “parent” individual in the left part of Figure 3,

the AND at the intermediate node is selected as the mutation point. A subtree is randomly

generated and inserted at that point, to produce the “child” individual.

Fig. 3 MAHATMA structural mutation operator

The structural crossover operator produces new offspring taking parts from each of the two

parents. It is also called sexual recombination. For example, in the two “parent” individuals in the

left part of Figure 4, one random point in each parent is select. Each of these points is a rooted

subtree crossover point. The right part of Figure 4 shows the two offspring resulting from

crossover.

Fig. 4 MAHATMA structural crossover operator

The edition operation provides a means to edit and simplify expressions as genetic

programming is running. Edition is an asexual operator and it recursively applies a set of

simplifying operations (editing rules, Table 1) in order to optimize the rule. If any function has no

side effects, the edition operator will evaluate that function and replace it with the value obtained

by the evaluation. Figure 5 shows an expression before and after the MAHATMA´s editing

operation.

7

Table 2 Editing rules

Before operation After operation

X or X X

A and A A

not not B B

(C and C) or C C

D and (D or D) D

Fig. 5 MAHATMA edition operator

2.2.2 Leaf Operators

These operators modify the contents of leaf nodes (sequences of amino acids representing

motifs). MAHATMA uses the classical one-point crossover often used in GAs, where a crossover

point is randomly selected and then the two parents swap their genetic material from the crossover

point up to the right-hand end of the individual (Hsu 2009). Notice, however, that this kind of

crossover was originally designed for a fixed-length individual representation, unlike the variable-

length motif representation used in this work. Therefore, this work has adapted the conventional

one-point crossover to a variable-length representation, as follows. The crossover point (which is

still randomly generated) indicates the percentage of the genome of each parent where the

swapping of genes starts. The percentile (relative position) is the same for both parents, but the

actual (absolute) position where the gene swapping starts can be different, since the parents can

have different numbers of genes. This is illustrated in Figure 6, where the crossover percentage is

60%. The absolute position of the crossover point for each parent is computed by multiplying 0.6

by the number of genes of the parent and rounding up the result. This results in crossover points at

positions 4 and 5 in the first and second parents, respectively. The genetic material being swapped

is shown in Figure 6.

Fig. 6 One-point crossover between variable-length parents: (a) original parents, (b) offspring

The crossover operator introduced here also has another feature that distinguishes it from

conventional crossover operators. This feature consists of monotonically increasing the fitness of

8

the children with respect to their parents, and it was introduced to eliminate the potentially-

destructive effect of crossover (which can produce offspring with fitness worse than the parents).

This idea works as follows. After crossover has been done, all the corresponding four individuals

(two parents and two children) are compared to each other and the best two individuals are passed

to the next population, no matter whether the individuals being passed are parent or offspring.

This work introduces four kinds of mutation operators tailored for the variable-length sequence

of amino acids represented by each individual, as follows:

a) Addition to the Left (AE) – a letter – representing an amino acid – is randomly generated and

inserted into the leftmost end of the sequence of amino acids;

b) Addition to the Right (AR) – analogous to AE, with the difference that the new amino acid is

inserted into the rightmost end of the sequence of amino acids;

c) Multiple Mutations (MM) – each of the amino acids from a randomly-generated starting

position up to the end of the sequence is replaced by another randomly-generated amino acid.

The starting position can be any position in the sequence except the first and the last positions.

d) Removal (RM) – the amino acid in a randomly-chosen position is removed from the

sequence. Notice that after removal of an amino acid the sequence will still have at least three

amino acids. If this condition is not met then this operator is not applied, and another mutation

operator is applied instead.

These mutation operators also have the feature of monotonically increasing the fitness of

offspring with respect to the parents, as explained for the crossover operator. That is, if the fitness

of the offspring is worse than the fitness of the parent then the offspring is thrown away and the

parent is passed to the next generation.

The system also has an extra genetic operator designed specifically for the target problem. This

operator, called the expansion operator, performs a kind of local search in the solution space, so

that the MAHATMA can be considered a hybrid method or a memetic algorithm (Moscato 1989).

The expansion operator works as follows.

The basic idea is to increase the length of the motif represented by an individual – making that

motif more specific to a given class – while at the same time increasing the motif’s ability to

discriminate between different classes of proteins. The operator starts by randomly selecting a

protein among those that contain the motif represented by the individual to be expanded. (If there

is no protein with that motif, the operator is not applied.) The selected protein is then used as a

source of amino acids to be inserted into the individual, as follows.

First, the amino acid which is located immediately to the left of the motif in the protein is

inserted into the leftmost end of the individual’s sequence of amino acids, and the individual’s

fitness is recomputed. If the new fitness is worse than the previous one, then this operation is

undone – i.e. the just-added amino acid is removed from the individual’s sequence of amino acids

– and the expansion based on the current protein is terminated. Otherwise the just-inserted amino

acid is kept in the individual, and the process continues. Next, the amino acid which is located

immediately to the right of the motif in the protein is inserted into the rightmost end of the

individual’s sequence of amino acids, and the fitness of the individual is recomputed. Again, if the

new fitness is worse than the previous one, this operation is undone and the expansion based on

the current protein is terminated. Otherwise the just-inserted amino acid is kept in the individual,

and the process continues. This process is repeated, considering amino acids that are 2,3,….,

positions away from the motif in the current protein, alternating between amino acids to the left

and to the right of that motif, until an attempt to further expand the individual would lead to a

reduction in its fitness.

Next, this process is repeated for all other proteins that also contain the individual’s motif and

that belong to the same class as the class of the protein that was used in the first step of the

operator.

Hence, the expansion operator aims at generating the longest (most specific) motif for a given

class, but notice that the expansion process never decreases the fitness of the individual being

expanded. Therefore, this operator also has the feature of monotonically increasing the fitness of

the offspring with respect to its parent, like the crossover and mutation leaf operators.

2.3 Fitness Function

As mentioned earlier, an individual represents a protein motif that will be used as a predictor

attribute by a given classification algorithm. Since the goal is to maximize classification accuracy,

9

the quality of a motif is determined by its ability in discriminating enzymes of different classes.

That is, ideally a motif should represent an amino acid sequence that occurs in many proteins of a

given class and in no (or few) proteins of other classes. The fitness function was designed to take

this basic principle into account. Hence, the fitness of an individual (motif) is computed as

follows.

At first, MAHATMA computes, for each class i, i=1,…,6 (for the enzyme dataset used in this

work), the relative frequency of occurrence of the motif in that class. This is simply the number of

proteins of the i-th class where the motif occurs in the protein’s primary sequence. Secondly, it

computes, for each class i, a measure of the ability of the motif to discriminate between class i and

the other classes, denoted Disci and given by the equation 1, where Fi is the relative frequency of

the individual’s motif in the i-th class, n is the number of classes (n = 6 in this work), and k is the

number of classes that contain at least one protein whose primary sequence contains the

individual’s motif. Hence, the fitness function can be formally stated as follows:

 (1)

where the rightmost term of the formula simply computes the average relative frequency of the

motif in all the (n – 1) classes j with j i. This term is subtracted from 1, so that the term between

square brackets is to be maximized – the higher its value, the better the value of Disci. Similarly,

the value of Fi (the first term of the formula) is also to be maximized, so that a high value of Disci

means that the motif occurs very often in class i but rarely in the other classes.

Finally, once the value of Disci has been calculated for all classes i, i=1,…,n, the motif is

associated with the class i that has the largest value of Disci, and that value is considered the

fitness of the individual.

Hence, the motif is considered as a characteristic pattern of proteins belonging to class i. In

other words, the occurrence of that motif in a protein of unknown class will be considered, by the

classification algorithm, as evidence that the protein belongs to class i.

2.4 Result Designation

As explained earlier, each individual represents a motif which is associated with a given class

of proteins. Therefore, it is not enough to return, as solution found by the method, only the best

motif found throughout the evolutionary process – as usual in conventional evolutionary

algorithms. It is necessary to return a set of motifs, in order to perform a comprehensive

classification of proteins into known families. In this work, we return the best M motifs found

throughout the evolutionary process, where M is a user-defined parameter.

3 Set Up of the Computational Experiments

The data set to be mined consists of data about enzymes. The data was extracted from the PDB

(Protein Data Bank), version 102, by identifying the PDB entries which had an EC number. This is

an enzyme code provided by IUBMB (International Union of Biochemistry and Molecular

Biology). From a data mining viewpoint, each EC number corresponds to a class, i.e., a specific

protein function. More precisely, the EC number consists of four digits, where each pair of

adjacent digits is separated by a dot (“.”), and it specifies the chemical reaction catalyzed by the

corresponding enzyme. For instance, the enzyme Alcohol dehydrogenase has the number

EC.1.1.1.1.

Note that this is a hierarchical classification consisting of four levels, so that the first digit

represents the most general classes and the last digit the most specific subclasses. In this work we

address the prediction of the first digit only, corresponding to the prediction of the most general

class to which the example belongs.

We emphasize that this is still a useful, challenging prediction, and other projects have also

focused on the prediction of the first digit only – see e.g. . The first digit can take on six different

n

j

ijj

ii
k

F
FDisc

1

,

)1(
1

10

values, corresponding to the following six different classes: EC.1 – oxidoreductases; EC.2 –

transferases; EC.3 – hydrolases; EC.4 – lyases; EC.5 – isomerases and EC.6 – ligases.

Some of the enzymes stored in the PDB contained non-standard amino acids, from which no

useful motif can be discovered. Therefore, as part of our data preparation procedure, we have only

retrieved from PDB the enzymes whose primary sequence has at least 30 standard amino acids.

After this simple filtering, the total number of proteins retrieved from the PDB was 8,399,

distributed across the six classes as follows: 1,583 proteins in class EC.1; 1,866 in class EC.2;

3,385 in class EC.3; 775 in class EC.4; 481 in class EC.5 and 309 in class EC.6.

4 Computational Results

As described earlier, MAHATMA has several parameters. Hence, this paper describes

experiments performed to find good values for some of these parameters. In these experiments the

expansion operator was initially turned off, because this is a computationally expensive operator

and we wanted to perform some relatively quick experiments to set other parameters. The leaf

operators (mutation and crossover operators) were set during experiments with a genetic algorithm

that discovers protein motifs in a stand-alone fashion, without being hybridized with GP as in

MAHATMA (Tsunoda and Lopes 2005).

To evaluate the predictive accuracy of the classification algorithm we used the well-known

five-fold cross validation method (Witten and Frank 2005) in all experiments reported in this

paper. The average values of specific predictive accuracy measures on the test set (unseen during

training) over all five folds are the so-called cross-validated predictive accuracy measures.

The initial parameter settings are: number of generations: 20, population size: 500, structural

crossover and mutation probability: 60% each, hill climbing: 10% probability, leaf crossover and

mutation probabilities: 20% and 70%, stochastic tournament size: 3%, edition active and

expansion deactivated. From now on these parameter values will be referred to as the initial

values.

For each fold of the cross-validation procedure, GP method is run once for each class, since

each run has to use that fold’s training set to find motifs (rules/patterns) discriminating one class

(the “positive” class) from all the other classes (collectively considered the “negative class”).

Hence, each run of GP method discovers a set of possible rules (each represented by an individual)

which tend to occur in proteins of the positive class and tend not to occur in proteins from the

other classes.

The number of motifs discovered for each class (i.e., the number of individuals output by

MAHATMA as the discovered “solution”) is a user-defined parameter. At present this parameter

specifies the same value for all the classes, for the sake of simplicity, but in future research it

might be interesting to allow the number of motifs discovered for each class to be variable,

depending for instance on the number of examples available for each class. The returned motifs

(individuals) are the ones with the best fitness in the last generation.

For each cross-validation fold, once a set of motifs has been discovered (from the training set)

for each class, the entire set of discovered motifs can be used to classify examples in the test set of

the current cross-validation fold (i.e. examples whose class is unknown by the system) in two

different ways, as follows.

Firstly, each individual can be interpreted as a rule of the form IF <motif_condition> THEN

<motif_class>, where motif_condition is the logical expression associated with the motif –

involving all nodes of the corresponding individual, see e.g. Fig. 1; and motif_class is the positive

class associated with the rule that was discovered. Hence, this kind of rule suggests that if the

logical expression associated with a rule antecedent is satisfied by an example (protein), then the

rule predicts the motif’s class for that example.

The entire set of rules corresponding to all discovered (for all classes) is then used as follows.

For each new example in the test set, the example is submitted to all discovered rules and the

system computes the number of rules in each class whose antecedents are satisfied by the example.

Finally, the test example is assigned the class with the highest number of rules satisfied by the

example, subject to the condition that at least 60% of the rules for the chosen class have to be

satisfied by the example. If this latter condition is not satisfied, then the test protein is simply

assigned the most frequent class in the training set (in our dataset, EC3). Note that in this case the

motif (individuals/rules) discovered by MAHATMA are directly used for the classification of test

examples.

11

A second and very different approach to classify examples in the test set consist of passing each

of the discovered motifs to a separate classification algorithm, which simply uses the set of

discovered motifs as a set of predictor attributes. That is, in this approach each motif is used as a

binary attribute, taking the value 1 or 0 to indicate whether or not the pattern (motif) occurs in each

example (protein). In this case in principle any classification algorithm can be used with the set of

motifs discovered by MAHATMA.

We report first the results of experiments with the first approach, using the discovered motifs to

directly classify examples in the test set. Results of experiments with the second approach, using a

well-known decision tree induction algorithm as the classification algorithm, are reported later in

the paper.

Each result table reports the following cross-validated measures of predictive accuracy:

sensitivity (Se), specificity (Sp), performance (P) (Se multiplied by Sp) (Lopes 1996) and hit rate

(HR). Se and Sp are defined in equations (2) and (3). Mahatma´s HR is defined as equation (4),

where proteinCount is the count of proteins in test set. In equations (2), (3), (4) the terms TP, FP,

TN and FN denote, respectively, the numbers of true positives, false positives, true negatives and

false negatives observed in the test set – these are well-known terms used to measure predictive

accuracy in the classification task of machine learning and data mining, see e.g. (Witten & Frank

2005).

We have bolded the best results (better performance) in each of the tables of results.

 (2)

 (3)

ntproteinCou

TP
HitRate (4)

The first step was to find a good value for the number of generations (G) and population size

(PS). The results obtained via 5-fold cross-validation are reported in Table 3.

Table 3. MAHATMA’s performance varying number of generations and population size
G PS Se (%) Sp (%) P (%) HR(%)

20 500 87.28±0.12 43.35±0.31 61.51±0.21 79.03±0.74
40 250 86.85±0.12 37.60±0.30 57.15±0.20 78.28±0.81
50 200 86.87±0.12 42.37±0.36 60.67±0.26 77.40±1.12
70 150 85.56±0.12 32.32±0.30 52.59±0.20 77.30±0.79

The second step was to adjust structural crossover (SC) and mutation (SM) probabilities (%).

The results are reported in Table 4.

Table 4. MAHATMA’s performance varying structural mutation and crossover probabilities
SM SC Se (%) Sp (%) P (%) HR (%)

30 60 87.17±0.12 38.37±0.32 57.83±0.22 78.68±0.99
20 70 87.70±0.11 41.62±0.30 60.42±0.21 79.85±1.01
10 80 86.70±0.12 36.18±0.32 56.01±0.21 77.76±0.98
60 60 87.28±0.11 43.35±0.32 61.51±0.23 79.03±0.74
60 30 87.18±0.11 42.09±0.32 60.58±0.23 78.40±0.92
70 20 87.49±0.10 39.61±0.31 58.87±0.22 79.32±0.68
80 10 88.31±0.10 42.34±0.28 61.15±0.20 81.34±0.87

The third step adjusted the hill climbing (HC) probability (%). As shown in Table 5, higher

values for this parameter do not assure better results. In fact, when we used 70%, performance

decreased significantly. This happens because this parameter does not guarantee the offspring’s

improvement. It simply states that a parent will be copied for next generation if the offspring has

lower fitness than that parent.

)(FNTP

TP
Se

)(FPTN

TN
Sp

12

Since the experiments that generated the table 5 led to the conclusion that higher predictive

accuracy was achieved with hill climbing probability 40% - instead of 0% or 70%, this value

(40%) was used to run the experiments summarized in tables 6 and 7.

Table 5. MAHATMA’s performance varying hill climbing probability
HC Se (%) Sp (%) P (%) HR (%)

0% 87.31±0.11 42.38±0.30 60.83±0.21 79.19±0.89
40% 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84
70% 87.12±0.11 38.52±0.34 57.93±0.24 77.98±0.85

The fourth step fixed a good value for the parameter tournament size. This parameter was given

special attention, because it is potentially one of the most important parameters of an evolutionary

algorithm. The reason is that this parameter directly determines the selective pressure of the

algorithm. The larger the tournament size, the larger the selective pressure. The results of

experiments with different values of tournament size are reported in Table 6.

Table 6. MAHATMA’s performance varying tournament size
TS Se (%) Sp (%) P (%) HR (%)

1% 86.85±0.14 37.60±0.34 57.15±0.27 77.87±0.89
3% 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84
5% 87.10±0.14 42.31±0.39 60.71±0.31 77.99±1.08
7% 86.94±0.13 42.43±0.37 60.74±0.28 77.05±0.71

Surprisingly, the value of tournament size had little impact in the predictive accuracy. In any

case, we decided to fix the default value of this parameter to 3%, since this value led to slightly

higher predictive accuracy.

Having fixed this parameter, the next experiment evaluated the influence of the expansion

operator in the classification accuracy. The expansion operator was somewhat effective, leading to

a slight increase of the predictive accuracy (performance of 64.69%), but the processing time

increased exponentially (twenty two hours instead of thirty seven minutes).

Finally, we performed experiments to determine the influence – in the predictive accuracy – of

another important parameter of the algorithm, the number of motifs (NM) used for each class. In

the experiments reported so far this parameter was set to 5 motifs per class. The new experiments

produced the results shown in Table 7.

Table 7. MAHATMA’s performance varying number of motifs per class
NM Se (%) Sp (%) P (%) HR (%)

1 86.15±0.17 28.76±0.25 49.78±0.15 78.42±0.91
5 87.26±0.16 35.68±0.27 55.80±0.16 81.19±0.87

10 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84
15 87.64±0.15 41.98±0.30 60.66±0.21 80.25±0.75
20 87.11±0.16 41.61±0.31 60.20±0.22 81.15±0.73

As it can be observed in Table7, there was some variation in predictive accuracy when the

number of motifs changed. However, three values of this parameter were considerably more

successful than the value of 5 which had been used in earlier experiments. Hence, it is important to

return a larger number of motifs per class, in order to give more predictor attributes to the

classification algorithm.

For comparison purposes, as described earlier, the list of the top ten best motifs (or rules) for

each class, as well as the corresponding training and test sets of course, were converted as input

(arff file) for the WEKA data mining tool, in order to allow the discovered motifs to be used as

predictor attributes by a separate classification algorithm. As the classification algorithm we chose

J4.8, a Java implementation of the very well-known C4.5 algorithm (Quinlan 1993). This choice

was motivated for the following reasons. First, J4.8 produces a decision tree, a classification model

that tends to be comprehensible to the user, allowing him/her to interpret discovered knowledge.

This is important in bioinformatics applications such as protein function prediction (Freitas et al.

2010), and also in data mining in general, where the goal is to give the user some new insight

about the predictive relationships that hold in the data. Second, J4.8 is available in the WEKA data

mining tool (Witten and Frank 2005), which has the advantage of being a public domain and

widely used tool.

Using the J48 classification algorithm, the results were sensitivity (Se), specificity (Sp) and

performance (P) values of 82.88±6.03, 96.81±1.78 and 89.50±3.02, respectively; and a Hit Rate of

13

85.36% ± 2.59 (also measured by 5-fold cross-validation). These results are in general better than

the results produced using the discovered motifs directly for classification, as reported in Tables 3

through 7, with the exception that using J4.8 led to a somewhat smaller Se than the best results in

Tables 3 to 7.

5 Conclusions

We have proposed a Genetic Programming method (which can also be regarded as a hybrid

genetic programming/genetic algorithm system) for protein motif discovery, aiming to classify

proteins with unknown functional class.

We have performed experiments to adjust the parameters of our method in an enzyme subset of

the PDB (Protein Data Bank), containing 8,399 enzymes..

The proposed MAHATMA system uses not only conventional GP (and GA-like) operators, but

also operators specifically designed for the problem of finding protein motifs. Despite the

complexity of the algorithm, the use of these problem-specific operators was very beneficial in the

sense that it allowed MAHATMA to reach better motifs (motifs with higher fitness).

The predictive performance was measured by three different criteria, viz. using sensitivity (Se),

specificity (Sp) and Hit Rate (HR), in two different scenarios: using the motifs discovered by

MAHATMA directly for classification, and using the discovered motifs as predictor attributes for

another classification algorithm. Overall the latter approach led to better Sp and much better HR,

but worse Se.

Future work includes more extensive tests of the system in datasets involving enzymes’

secondary structures (Kaminska et al 2009) and comparisons with other methods. Also, it is

intended to apply this system to alternative sets of proteins, like transmembranes, globins,

hormones and others.

In addition, the fact that the best predictive accuracy was obtained when the motifs discovered

by MAHATMA were used as predictor attributes by another algorithm, rather than using the

motifs discovered directly for classification, suggests that the procedure currently used to combine

the predictions of the set of discovered motifs could be improved. This will also be object of future

research.

References

Banzhaf, W., Nordin, P., Keller, R.E. and Francone, F.D. (1998) Genetic Programming: an

Introduction, Morgan Kaufmann, San Mateo, CA

Branden, C.I., Tooze, J. (1999) Introduction to protein structure. Garland Publishing Inc, New

York

Chua, H., Sung, W. and Wong, L. (2006) Exploiting indirect neighbors and topological weight to

predict protein function from protein interactions. Bioinformatics 32(13): 1623 – 1630.

doi:10.1093/bioinformatics/btl145

Eiben, A.E, Smith, J.E. (2003) Introduction to Evolutionary Computing. 2
nd

 printing. Natural

Computing Series. Springer-Verlag, Berlin

Freitas, A.A. and de Carvalho, A.C.P.L.F. (2007) A Tutorial on Hierarchical Classification with

Applications in Bioinformatics. In: D. Taniar (Ed.) Research and Trends in Data Mining

Technologies and Applications, Idea Group, pp 175-208

Freitas, A.A, Wieser, D.C, Apweiler, R. (2010) On the importance of comprehensible

classification models for protein function prediction. IEEE/ACM Trans. on Computational

Biology and Bioinformatics 7(1): 172 – 182. doi:10.1109/TCBB.2008.47

Friedberg, I. (2006) Automated protein function prediction – the genomic challenge. Briefings in

Bioinformatics 7(3):225 – 242. doi:10.1093/bib/bbl004

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization & Machine Learning,

Addison-Wesley, Reading

14

Holden, N. and Freitas, A.A. (2008) Improving the Performance of Hierarchical Classification

with Swarm Intelligence. In: E. Marchiori and J.H. Moore (eds.) Proc. Sixth European Conf.

on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics

(EvoBio-2008), Lecture Notes in Computer Science 4973:48 – 60. doi: 10.1007/978-3-540-

78757-0_5

Hsu, W.H. (2009) Genetic Programming. Encyclopedia of Data Warehousing and Mining. In:

Wang, J. (Ed.), 2
nd

 edn. Idea Group Inc. Global, pp 926-931

Jensen, L.J., Gupta, R., Blom, N., Devos, D., Tamames, J., Kesmir, C., Nielsen, H., Staerfeldt,

H.H., Rapacki, K., Workman, C., Andersen, C.A.F. , Knudsen, S., Krogh, A., Valencia A.

and Brunak, S. (2002) Prediction of human protein function from post-translational

modifications and localization features. J. Mol. Biol. 319:1257 – 1265. doi:10.1016/S0022-

2836(02)00379-0

Kaminska, K.H., Milanowska, K. and Bujnicki, J.M. (2009) The Basics of Protein Sequence

Analysis. In: J.M. Bujnicki (Ed.) Prediction of Protein Structures, Functions, and

Interactions, pp 1-38. doi: 10.1002/9780470741894

Koza, J.R. (1992) Genetic Programming – on the programming of computers by means of natural

selection, The MIT Press, Cambridge

Koza, J.R. (1994) Genetic Programming II: Automatic Discovery of Reusable Programs. The MIT

Press, Cambridge

Larose D.T. (2006) Data Mining Methods and Models, John Wiley & Sons, Hoboken, New Jersey.

Lehninger A.L., Nelson D.L. and Cox M.M. (1998) Principles of Biochemistry. 2
nd

 edn. Worth

Publishers, New York

Lesk, A.M. (2001) Introduction to Protein Architecture. Oxford University Press Inc., New York.

Lopes, H.S. (1996) Analogia e Aprendizado Evolucionário: uma Aplicação em Diagnóstico

Clínico. (In Portuguese) PhD Thesis, Brazil

Moscato, P. (1989) On evolution, search, optimization, genetic algorithms and martial arts:

towards memetic algorithms. Technical Report Caltech Concurrent Computation Program,

No. 826, California

Quinlan, J. R. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San

Mateo, CA

Rost, B., Liu, J., Nair, R., Wrzeszczynski, K.O. and Ofran, Y. (2003) Automatic prediction of

protein function. CMLS Cellular and Molecular Life Sciences, 60:2637 – 2650

Tsunoda, D.F. and Lopes,H.S. (2005) Automatic motif discovery in an enzyme database using a

genetic algorithm-based approach. Soft Computing - A Fusion of Foundations,

Methodologies and Applications 10(4):325 – 330. doi: 10.1007/s00500-005-0490-z

Tsunoda, D.F., Freitas, A.A. and Lopes, H.S. (2009) MAHATMA: a genetic programming-based

tool for protein classification. In Proc. 2009 Ninth International Conference on Intelligent

Systems Design and Applications (ISDA-09), IEEE Press, pp 1136-1142

Weinert, W. and Lopes, H.S. (2004) Neural networks for protein classification. Applied

Bioinformatics 3(1): 41 – 48

Witten I.H., Frank E. (2005) Data mining: practical machine learning tools and techniques. 2
nd

edn. Elsevier, Morgan Kaufmann, San Mateo, CA

Zhao, X.M., Wang, Y., Chen, L. and Aihara, K. (2008) Protein function prediction with high-

throughput data. Amino Acids 35(3):517 – 530. doi: 10.1007/s00726-008-0077-y

