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Abstract This paper focuses on hierarchical classification 

problems where the classes to be predicted are organized in 

the form of a tree. The standard top-down divide and 

conquer approach for hierarchical classification consists of 

building a hierarchy of classifiers where a classifier is built 

for each internal (non-leaf) node in the class tree. Each 

classifier discriminates only between its child classes. 

After the tree of classifiers is built, the system uses them to 

classify test examples one class level at a time, so that 

when the example is assigned a class at a given level, only 

the child classes need to be considered at the next level. 

This approach has the drawback that, if a test example is 

misclassified at a certain class level, it will be misclassified 

at deeper levels too. In this paper we propose hierarchical 

classification methods to mitigate this drawback. More 

precisely, we propose a method called Hierarchical 

Ensemble of Hierarchical Rule Sets (HEHRS), where 

different ensembles are built at different levels in the class 

tree and each ensemble consists of different rule sets built 

from training examples at different levels of the class tree. 

We also use a Particle Swarm Optimisation (PSO) 

algorithm to optimise the rule weights used by HEHRS to 

combine the predictions of different rules into a class to be 

assigned to a given test example. In addition, we propose a 

variant of a method to mitigate the aforementioned 

drawback of top-down classification. These three types of 

methods are compared against the standard top-down 

hierarchical classification method in six challenging 

bioinformatics datasets, involving the prediction of protein 

function. Overall HEHRS with the rule weights optimised 

by the PSO algorithm obtains the best predictive accuracy 

out of the four types of hierarchical classification method. 

 

Keywords. Particle Swarm Optimisation, Hierarchical 

Classification, Protein Function Prediction 

1. Introduction 

Data mining consists of a set of concepts and 

techniques used to find useful knowledge in real-world 

data [42], [13]. In this project the discovered knowledge 

is represented as classification rules. A rule consists of 

an antecedent (a set of attribute values) and a 

consequent (class): 

IF <attrib = value> AND ... AND <attrib = value> 

THEN <predicted class> 

This kind of knowledge representation has the 

advantage of being intuitively comprehensible to the 

user. This is important, because in certain fields a major 

goal of data mining is to discover knowledge that is not 

only accurate, but also comprehensible [42], [13] in 

order to give the user insights about the data, the 

application domain and also provide a way in which to 

validate the model and predictions produced. 

In this paper the classes are arranged in a tree 

structure where each node (class) has only one parent – 

with the exception of the root of the tree, which does not 

have any parent and does not correspond to any class. 

For example, if there were a hierarchical dataset about 

animals the classes might be structured in the following 

way. The top level classes might be cat and dog, then 

the cat class might have child classes Siamese and 

Burmese, the dog class might have child classes called 

Greyhound and Datsun. Hierarchical class datasets 

present two main new challenges when compared to flat 

class datasets. Firstly, many (depending on the depth) 

more classes must be assigned to the examples. 

Secondly, the prediction of a class becomes increasingly 

difficult as deeper levels are considered, due to the 

smaller number of examples per class. 

In this paper we apply classification techniques to 

predict protein function, a very active research topic in 

bioinformatics. It is important to discover the function 

for new proteins to advance our understanding of the 
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workings of the cell and to create more effective 

medical treatments. It can be a very time consuming 

task to “manually” assign a single protein with a 

function. When using data mining techniques it is 

possible to predict the function of many proteins, 

quickly and with reasonable accuracy. Also, the patterns 

discovered in the process can be used to gain insight 

into the general nature of the relationship between 

protein biochemical properties and function in different 

sets of proteins. 

The datasets examined in this paper, as with many 

other bioinformatics datasets, pose a significant problem 

for any classification technique as they have a relatively 

large number of attributes, in this case ranging from 126 

to 708 attributes. The large number of attributes 

increases the search space for the classification 

algorithm which often leads to sub-optimal 

performance. 

In this paper we propose novel ensemble based data 

mining methods tailored to the hierarchical 

classification problem and apply them to six protein 

data sets. Although some research has applied ensemble 

methods to protein data sets [21], [6], [39] and to 

hierarchical data sets [11], previous research 

concentrates on “classical” ensemble techniques such as 

bagging, or ignores any hierarchy present. Some work 

has been conducted in the field of hierarchical multi-

label protein function prediction [7], [3] but their 

approaches rely on modifying the base classification 

algorithm, rather than using ensemble techniques. 

The remainder of this paper is organised as follows. 

Section 2 presents a brief introduction to top-down 

hierarchical classification. Section 3 describes our 

proposed techniques for hierarchical classification. 

Section 4 describes the creation of the bioinformatics 

data sets. Section 5 reports the results of the 

experiments. Section 6 discusses conclusions and future 

research directions. 

2. Top-Down Hierarchical 
Classification 

This paper focuses on hierarchical classification 

problems where the classes to be predicted are 

organized in the form of a tree, hereafter referred to as a 

class tree. The simplest – and naïve – way to deal with 

hierarchical classification is to ignore the class 

hierarchy completely and so only predict classes at the 

bottommost level, indirectly predicting the classes at 

higher levels. For instance, in a 3-level classification 

problem, if the algorithm predicts for a given example 

the class 2.1.5, it is also predicting class 2 at the first 

level and class 2.1 at the second level. This approach 

avoids the complexity associated with a hierarchical 

classification algorithm at the expense of not 

discovering more generalised knowledge expressed by 

higher level rules. It discovers only lowest level, 

specific rules. Such specific rules tend to be less 

accurate than generic rules (predicting classes at higher 

levels of the hierarchy), because each of the low-level, 

specific rules is usually covering a smaller number of 

examples than a high-level, generic rule – since the 

number of examples per class at the bottommost class 

level tends to be smaller than the number of examples 

per class at higher levels of the class tree. Another 

problem with this naïve approach is that it does not use 

information associated with higher-level classes in order 

to guide the prediction of lower-level classes. This point 

is explained in more detail below. 

To avoid the problems associated with the 

aforementioned naïve approach, it is possible to use a 

top-down approach based on the divide-and-conquer 

principle [36]. This top-down approach has the 

important advantage of using information associated 

with higher-level classes in order to guide the prediction 

of lower-level classes. For instance, if class 1.X.X.X 

(where X denotes any digit) is predicted at the first level 

and the tree node for that class has only the child nodes 

1.1.X.X and 1.2.X.X, only these two class nodes should 

be considered and not the children belonging to node 

2.X.X.X. In general, any model constructed in the top-

down divide and conquer tree only has to discriminate 

between sibling classes. When it comes to the 

classification of an example, each classifier chooses 

which child classifier to send the example to, or if the 

classifier is at the leaf level what final class the 

examples should be assigned to. For instance, the root 

classifier, which discriminates between classes 1.X.X.X 

and 2.X.X.X will decide if an example should be sent to 

the classifier discriminating between the child classes of 

class 1.X.X.X or 2.X.X.X. If the example is first 

classified as 1.X.X.X then it will be sent to the classifier 

discriminating between classes 1.1.X.X and 1.2.X.X. 

This classifier will decide if the example should be sent 

to the classifier discriminating between the child classes 

of class 1.1.X.X or 1.2.X.X. If the example is then 

classified as 1.1.X.X then the next classifier 

(discriminating between 1.1.1.X and 1.1.2.X) will 

decide if it should be sent to the classifiers 

discriminating between the child classes of 1.1.1.X or 

1.1.2.X and so on.  

3. Proposed Methods to 
Improve Top-Down 
Hierarchical Classification 

3.1. Hierarchical Ensemble of Hierarchical Rule 
Sets (HEHRS) 

Ensemble classifiers normally try to combine the 

predictions from separate classifiers in order to increase 

predictive accuracy [40]. The two main considerations 

when designing an ensemble of classifiers are the 

accuracy of the component classifiers and the diversity 

of the component classifiers. In single classifiers the 
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accuracy is the most important factor. However in 

ensemble classifiers each classifier need not necessarily 

be especially accurate for the ensemble to make an 

accurate prediction. Skalak [34] discusses an example of 

this phenomenon where a classifier that is 69% accurate 

is combined with classifiers that are 23% accurate and 

25% accurate, and this boosts overall accuracy to 88%. 

The diversity of the component classifiers is very 

important in ensemble approaches, because component 

classifiers must make different errors to make the 

overall ensemble more accurate [5], [1]. There is often a 

trade-off between accuracy and diversity in classifiers, 

as it is often easier to make more diverse (uncorrelated) 

classifiers when the classification accuracies of the 

individual classifiers are lowered.  

One of the most popular kinds of ensemble method is 

bagging [4]. In bagging the training set is re-sampled 

several times in some way to generate separate 

classifiers, so that each classifier is trained with a 

different training set. The predictions of these classifiers 

are classically combined by a voting scheme which may 

or not be weighted. There are many methods to try and 

increase the performance of the combining scheme used 

in bagging [9], [10], [18]. Some of the most advanced 

and successful of these methods are genetic algorithms 

[18], [35], [38], [33].  

In essence, the proposed ensemble method for 

hierarchical classification can be considered as a new 

variation of bagging adapted to hierarchical 

classification.  In this method, an ensemble of rules is 

created by varying the sets of positive and negative 

examples according to the class hierarchy. In order to 

classify test examples, the predictions of the rules are 

combined by using a weighted voting scheme. Such a 

method should improve the accuracy beyond the use of 

a non-ensemble based technique as the errors in each 

model can be, to some extent, mitigated by combing the 

predictions made by multiple models, as discussed 

previously. As the bioinformatics data sets used in this 

paper make it more difficult to induce accurate models – 

because of the high number of classes, attributes and the 

sparseness of the data at lower levels – the potential 

benefits from using such an error correcting technique 

become greater. 

3.1.1 Technical Details of the HEHRS Method 

Let us first describe the basic idea of the proposed 

method at a high level of abstraction. Recall that in the 

standard top-down hierarchical classification approach a 

rule set is built to distinguish between a set of sibling 

class nodes, using the training examples belonging to 

those sibling class nodes. By contrast, in the proposed 

HEHRS method K rule sets will be built for each set of 

sibling nodes in the class tree, where K is the number of 

class levels between the current level (inclusive) and the 

deepest class level (inclusive) which is a descendant 

from either of the current class nodes. For instance for a 

non-leaf node in level 2 of the class tree and a class tree 

with 4 levels (not counting the root node which is at the 

0th level), K=3 rule sets will be generated, namely one 

rule set for each of the class levels 2, 3 and 4. All these 

rule sets contain rules predicting classes at the second 

level of the class tree, but they are called here 

hierarchical rule sets because they have been produced 

from examples at different levels of the class tree. In 

addition, to continue with this example, these three rule 

sets also form an ensemble of rule sets, and the 

proposed method builds several ensembles like this, at 

different levels of the class tree. Therefore, the 

ensembles also form a hierarchy, namely a hierarchy of 

ensembles, where each ensemble consists of a 

hierarchical rule set. Hence, this approach is here called 

Hierarchical Ensemble of Hierarchical Rule Sets 

(HEHRS). 

Let us now describe HEHRS in more detail, starting 

with notation issues. In general an ensemble of rule sets 

created for a given set of sibling class nodes is denoted 

as Es, where S is a set of sibling class nodes. A rule set 

within this ensemble (one of the K rule sets) is denoted 

by the letter i, where i corresponds to the level at which 

the rule set is built. Therefore any rule set belonging to 

Es at the level i, used to distinguish between a set of 

sibling class nodes S, is denoted by Esi. Note that each 

rule in Esi will predict one of the classes in S, so there 

will be one or more rules (i.e. a subset of the rules in 

Esi) predicting each class in S. A set of rules in Esi built 

at level i predicting a single class d in S is denoted as 

Esid. As discussed previously Esid consists of K rule sets, 

each containing rules produced from a different level of 

the class tree. For each level i and for each class c which 

is a descendant class of d, the rule induction algorithm 

will discover rules predicting class d, using as positive 

examples the examples having class c, and using as 

negative examples the examples having any class 

different from c at level i that is a descendant of d in the 

class tree. These concepts are illustrated in Fig. 1. Note 

that Fig. 1 refers to a hierarchy of rule sets, rather than 

the class hierarchy. Hence, each node (d) in Fig. 1 

denotes an ensemble of rule sets for a given class (as 

explained next). 
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Figure 1: Hierarchical Ensemble of Hierarchical Rule Sets (HEHRS) 

 

In Fig. 1 the grey boxes represent the scope of the 

classification performed by a given rule set (Esi) or 

ensemble (Es). In the case of Es the scope of the 

classification involves the sibling classes S. The main tree 

– i.e, the large tree at the centre of Fig. 1 – shows the 

hierarchy of ensembles in a standard top-down approach. 

The expanded (smaller) trees show the rule sets (Esi) 

generated by HEHRS. For each set of sibling classes (S) in 

the main tree, there is a hierarchy of rule sets in the 

corresponding smaller tree, indicated by the presence of 

several grey boxes in the smaller tree. The label S in Fig. 1 

shows an example set of sibling classes (2.1 and 2.2) 

predicted by an ensemble, and the label d within S shows 

one of the classes (2.1) in the set S. 

Table 1: Values (Classes) taken by variable c at each level 

i used to construct the Rule Sets in Es ID:1, in Figure 1 

 

Table 1 shows in detail the variation in the sets of 

examples used at different class levels when inducing 

classification rules for HEHRS, with respect to Fig. 1. 

For example, let us consider the construction of the 

ensemble of rule sets Es labelled ID:1 in the top-right 

part of Fig. 1. This ensemble will consist of rules 

predicting either class 1 or class 2, i.e., the set of sibling 

classes S = {1, 2}. So, the variable d, indicating the 

class to be predicted by a rule in Es, will take on the 

value 1 or 2. This ensemble Es will consist of four rule 

sets, each of them denoted Esi, i=1,…,4, where the i-th 

rule set is constructed from examples in the i-th level of 

the class tree. 

As can be seen in Table 1 at the first level i is set to 1. 

The rule induction algorithm is given the training set 

with examples belonging to classes (c) 1 and 2, it then 

returns a rule set predicting classes (d) 1 and 2 for the 

first rule set Esi.. S={1,2}, i=1. At the second level i is 

set to 2. The rule induction algorithm is given the 

training set with examples belonging to classes (c) 1.1, 

1.2, 2.1 and 2.2 (descendants of the classes in S). It then 

returns a rule set with rules discriminating between 

these classes. The rules predicting classes 1.1 and 1.2 

(Esid where i=2 and d=1) have their consequent changed 

to predict class (d) 1. The rules predicting classes 2.1 

and 2.2 (Esid where i=2 and d=2) are changed to predict 

class (d) 2 and are added, with the other rules now 

predicting class 1, to the second rule set Esi., S={1,2}, 

i=2. At the third level i is set to 3. As there are no third 

level descendant classes of class 2 (in the right-hand 

side of Table 1 the term "NA" means "not applicable") 

only rules predicting class 1 will be contained in this Esi. 

The rule induction algorithm is given a training set 

containing examples belonging to classes (c) 1.1.1 and 

1.1.2. The rules predicting the classes 1.1.1 and 1.1.2 

have their consequent class changed to predict class (d) 

1. They are then added to Esid where i=3 and d=1, which 

in this case is equal to Esi where i=3. An analogous 

procedure (as described in Table 1) is performed at level 

4 (i = 4) where again, because this is quite an 

unbalanced class tree, there are only rules predicting 

class (d) 1 in the rule set Esi where i=4. 

Note also that when the level i is set to 2 and the class 

(d) being predicted by the ensemble is 1, the rule 

induction algorithm produces a rule set discriminating 

between classes (c) 1.1 and 1.2 (along with 2.1 and 2.2), 

which at first glance seems counter-intuitive – as they 

Class (d) in set of sibling classes S 

Level (i) d = 1 d = 2 

1 1 2 

2 1.1, 1.2 2.1, 2.2 

3 1.1.1, 1.1.2 NA 

4 1.1.1.1, 1.1.1.2, 1.1.2.1, 

1.1.2.2 

NA 
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are both descendants of class 1, the class (d) being 

predicted. The reason for this is to try and encourage 

diversity in the rules generated. As the rule induction 

algorithm is unaware of the hierarchical relationships 

between classes, the algorithm could produce the same 

(or very similar) rule sets for, say, the following two 

classification scenarios: (a) class 1 vs. class 2; and (b) 

class 1.1 vs. other non-descendant classes of class 1 

(i.e., classes 2.1 and 2.2). Although it is still possible 

that the same or very similar rules will be generated 

between different levels and classes even when using 

the method described in this section, the probability 

(dependant on the make-up of the training set) of this 

happening is smaller, when including the examples 

belonging to sibling classes as negative examples when 

inducing rules. Recall that to make an effective 

ensemble it is very important that the component 

classifiers be diverse, even if at the expense of some 

accuracy [34], [5], [1].  

3.1.2 Combining the Predictions from the 
Multiple Rules in HEHRS 

After the entire hierarchical ensemble of hierarchical 

rule sets has been induced in the training phase, all the 

induced rules can be used to predict the class of a new 

example in the test set. In this testing phase, in order to 

combine the predictions of the rules in the hierarchical 

ensemble into a single predicted class at each level of 

the class tree for a given test example, each rule in the 

ensemble is assigned a weight. That is, for each 

ensemble of rule sets Es, each rule in Es is assigned a 

weight. 

The weight of a rule is a measure of its predictive 

accuracy. When the class predicted by a rule is the 

majority class (a class having more examples than the 

rest of the training set combined) its weight is computed 

by the product of the rule's sensitivity and specificity 

[19], as shown in Equation 1, where TP, F�, FP and T� 

are, respectively, the number of true positives, false 

negatives, false positives and true negatives associated 

with the rule [42].  

When a rule predicts a minority class (i.e., any class 

different from the majority class) the precision [19], 

shown in Equation 2, is used as the rule’s weight. This 

approach, based on measuring rule quality either as the 

product of sensitivity and specificity or as precision, 

depending on the relative frequency of the class 

predicted by the rule, is an attempt to get a more 

“balanced” weight in extreme cases.  

When there are a small number of examples in the 

class being predicted, when compared to the overall size 

of the training set, then the way in which specificity 

accounts for the number of false positives becomes 

problematic. This is because sensitivity multiplied by 

specificity weights the sensitivity (TP / (TP + F�)) and 

the specificity (T� / (T� + FP)) equally, ignoring the 

actual number of true positives and false positives. 

Therefore, in the case where the minority class is being 

predicted, it is possible to obtain a good rule quality 

even though the ratio of TP / (TP + FP) – i.e. the 

precision – is bad. Such a situation will likely produce a 

low accuracy as although a high sensitivity and 

relatively high specificity may be obtained, many 

examples may be misclassified as this minority class 

(due to the absolute number of false positives). The 

opposite is true for the majority class; the absolute 

number of false positives becomes less important for 

producing good accuracy as the number of true positives 

will likely be much higher. Sensitivity multiplied by 

specificity increases the importance of obtaining a low 

number of false positives when compared to precision. 

This is because it is more useful to consider the ratio T� 

/ (T� + FP), rather than ratio of the large number of true 

positives to the low possible number of false positives 

(as it is implicitly the case with precision). For a more 

detailed discussion see [20]. 

Sensitivity × Specificity =  

TP / (TP + F�) × T� / (T� + FP) 

Equation 1: Rule Weight (Majority Class) 

 Precision = TP / (TP + FP) 

Equation 2: Rule Weight (Minority Class)  

During the testing phase, a test example is classified in a 

top-down fashion, as follows. Let S be the set of sibling 

classes out of which one class must be assigned to the 

example. Initially, S contains the set of classes in the 

first class level. For each class d in S, the weight of 

class d is given by the summation of the weights of all 

the rules in the ensemble of rule sets Es that cover the 

test example and predict class d. The class with the 

greatest weight is assigned to the test example at the 

first level. Next the example is pushed down to the 

second level, where the set S is updated to contain the 

child classes of the class assigned to the example in the 

first level – the ensemble Es is also updated accordingly. 

Again, for each class d in the current S the weight of 

class d is computed – adding the weights of all rules in 

the current Es that cover the test example and predict 

class d – and the class with the greatest weight is 

assigned to the test example at the current (second) 

level, and so on. This process is repeated until the test 

example reaches a leaf node in the class tree. 

To validate a prediction made by HEHRS for a given 

example a simple procedure can be implemented. After 

the example has been fully classified to the leaf level it 

is possible to examine all the rules that covered it. All 

the rules that have consequent classes that are parents of 

the final leaf classification can be used to present an 

overview of the classification process to the user. 

Taking the union of the terms in the antecedents of these 

rules will produce a combined rule that will show why 

the example has been classified to that particular leaf 

class node. In the same fashion it would be possible to 
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show such a combined rule for each separate ensemble 

used in the HEHRS tree. 

3.2. Optimising HEHRS' Rule Weights with PSO 

As computed by Equations 1 and 2, the weight of a 

rule in HEHRS depends only on the predictive accuracy 

of that individual rule, and it does not take into account 

the complex interactions of the rules in an ensemble. It 

is possible to optimise the set of rule weights by taking 

rule interaction into account, by defining two elements:  

(a) An evaluation function that measures the quality 

of a candidate set of rule weight values. The evaluation 

function to be maximised is the normalised total number 

of correct predictions made at each internal (non-leaf) 

class node and each leaf class node.  

(b) An optimization method, which searches for the 

optimal set of rule weight values in the space of 

candidate weight values. In this work we use, as an 

optimization method, a Particle Swarm Optimization 

(PSO) algorithm.  

PSO is a meta-heuristics that maintains a population 

of particles – each of them a candidate solution to the 

target problem – that iteratively move around the search 

space [26]. The position of a particle in the search space 

represents the contents of its candidate solution, and so 

moving the particles correspond to generating new 

candidate solutions. First, each particle is initialised 

with randomly deviating (±1) position generated from 

the rule weight equations and random velocity. Each 

particle keeps track of the best position it has ever held, 

according to the evaluation function. At each iteration, 

each particle finds its best neighbour (in a local or 

global neighbourhood). The particle then moves 

towards a combination of its best neighbour’s position 

and its own best ever position, with a velocity calculated 

as shown below. This process is repeated until a 

maximum number of iterations have been performed. 

To calculate the velocity and so the new position of a 

particle, Equations 3 and 4, are used:  

vid(t) = W*(vid(t–1)) + ϕ1*Rand()*(pid – xid(t–1)) + 

ϕ2*Rand()* (pgd – xid(t–1)) 

Equation 3: A Particle’s Velocity at time t 

xid(t) = xid(t-1) + vid(t) 

Equation 4: A Particle’s Position at time t 

Where xid is the particle i’s position in dimension d, t 

is the iteration (time) index, vid is particle i’s velocity in 

dimension d, W is an inertial constant to prevent the 

particle gaining too much speed. ϕ1 and ϕ2 are user-

defined personal and social learning constants, 

respectively. pgd is the best position of the particle’s 

neighbours in dimension d and pid is the best position 

particle i has ever held in dimension d. In addition to W, 

a maximum velocity is also used to prevent the particle 

from flying out of the search space. Rand() generates a 

random number in [0…1]. 

The main motivations for using PSO is that it 

performs a global search in the search space (rather than 

the greedy search performed by local search 

algorithms), and has been empirically shown to be a 

powerful optimizer, often outperforming more 

traditional population-based optimizers such as 

evolutionary algorithms (EAs) [25], [28]. In any case, 

we do not claim that PSO is the “optimal” algorithm for 

our rule weight optimization problem. It produced very 

good results – as will be shown later – but it is possible 

that other global search optimization methods such as 

EAs would produce a similarly good result. The issue of 

comparing PSO and EAs is out of the scope of this 

paper, and is left for future research.  

Two versions of the PSO for rule weight optimization 

are proposed in this work, one where negative weight 

values are allowed and another one where they are not. 

In the former case, if a rule is extremely unreliable it 

may be assigned a negative weight, detracting from the 

class predicted by that rule. An example of where a 

negative value may be appropriate for a rule is where 

that rule covers more examples of other classes than its 

own consequent class and so, in fact, signals that other 

classes are more likely. In the version where negative 

values are not allowed, the lowest possible rule weight 

is 0, where a rule will not have any influence in the 

classification of a test example.  

The two main elements of the proposed PSO for rule 

weight optimization are the particle representation and 

the fitness function. The particle representation consists 

of a vector with n components, each of them denoted wi, 

i = 1,…,n, where wi is the weight associated with i-th 

rule and n is the total number of rules. That is:   

nwwwParticle ,...,, 21=  

The fitness function measures the quality of a particle, 

i.e., the quality of a candidate set of rule weights. In 

order to compute the fitness of a particle, for each 

example in the training set, the system extracts the rule 

weights from the particle and uses those weights to 

decide which class will be assigned to the example. This 

decision is made by computing, for each class, the total 

weight of rules that cover the example and have that 

class, as discussed earlier. The class chosen to be 

assigned to the example is the class with the largest total 

weight. After every training example has been 

completely classified (i.e., assigned a class at a leaf 

node in the class tree), the value of the fitness function 

for the current particle is the classification accuracy on 

the training set, this is the average accuracy across all 

four class levels. 

In some cases it does not matter what the weights 

associated with certain rules are during the training 

phase, for instance if all examples are always correctly 

classified by all rules, then as long as the weights are all 

positive it does not matter what the weight values are. 

This can cause a problem, as even though all examples 
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are correctly classified by all rules during the training 

phase they may not be during the testing phase. 

Therefore during the testing phase the exact weights 

may become important. To combat this situation it is 

detected whether any rules do not take part in any 

contentions (where two or more rules predict different 

classes for any given example) during the training 

phase, if they do not they will not have their weights 

optimised and default to the normal rule weights. Such 

contentions (or lack of) can be detected by assigning a 

flag to each rule (with a default value of off); the sets of 

rules covering each example can then be examined. If 

any set of rules contain rules with different consequent 

classes then the contention flag is  set to on for those 

rules, meaning that the weight for those rules should be 

optimised. The rules left with a flag of off should not 

have their weight optimised. 

Note that, ideally, the fitness function should be based 

on the classification accuracy on a hold out set, i.e. the 

original training set should be divided into a building set 

(used to build the rules) and a validation, hold out set, 

used to compute the classification accuracy to be used 

as the fitness of a particle. This would have the 

advantage of avoiding overfitting of the rule weights 

optimised by the PSO to the training set. However, it 

was not feasible to use such a hold out set in our 

experiments, due to the sparseness of data at lower 

levels of the class tree. It would be impossible to induce 

rules for some classes if examples from the training set 

were reserved for a hold out set. We consider the 

benefits of creating rules for all classes outweigh the 

problems due to possible overfitting from the lack of a 

hold out set. Initial tests confirmed this hypothesis as 

the decrease in overall predictive accuracy due to being 

unable to induce rules for some classes was quite 

severe. 

3.3. Rule-Based Extended Multiplicative Method 

This method is derived from a method proposed by 

Sun et al. [37] to reduce the problem of blocking in 

hierarchical multi-label classification. The blocking 

problem was described by Sun et al. in the following 

way. Each class node in the class tree is associated with 

a probabilistic classifier, learned during the training 

phase. In the testing phase, an example with unknown 

class is classified in a top-down fashion, as follows. For 

each class node in the first level of the class tree, the 

example is assigned that class if the corresponding 

classifier predicts that class with a probability greater 

than a predefined threshold. An example is said to be 

rejected by a classifier if the probability of the example 

having the class predicted by the classifier is smaller 

than or equal to the threshold. For each of the (parent) 

classes assigned to the example at the first level, the 

example is pushed down the class tree to the child class 

nodes of those parent classes. Then, for each of those 

child classes the example is either assigned that child 

class or is rejected by the corresponding classifier 

depending on the probability of that class as computed 

by the classifier, etc. This top-down classification 

process is repeated until the example reaches the leaf 

nodes of the class tree. In this context, blocking occurs 

when an example is wrongly rejected by a classifier in 

an internal (non-leaf) node of the class tree, and so the 

example can never be shown to the classifiers that are 

descendants of the classifier that made the wrong 

rejection. As a result, the example can never be 

correctly classified at class levels deeper than d, where d 

is the level of the classifier that wrongly rejected the 

example. 

One of the methods proposed by Sun et al. to cope 

with the blocking problem consists of assigning an 

example to a leaf class in the class tree if the multiplied 

probabilities of the example belonging to the internal 

(non-leaf) classes along the path from the root node to 

the leaf class node exceed a certain threshold. The 

authors called their approach the Extended 

Multiplicative Method (EMM).  

Note that in Sun et al.’s work an example can be 

assigned to more than one class at each hierarchical 

level, which is characteristic of multi-label classification 

problems. This is not the case in the data sets used in 

this paper, where a single class must be assigned for 

each level. In addition, EMM was proposed in the 

context of probabilistic classifiers, which again is not 

the case in our work, where the classifier consists of a 

set of IF-THEN classification rules. 

Therefore, we adapted EMM to the context of our 

work, where the classification of test set examples is 

performed by classification rules and we must assign 

only one class label per hierarchical level for each 

example. In this context, there is no need for the 

threshold used by EMM, since a testing example is 

simply assigned the best predicted class at each 

hierarchical class level. In addition, note that different 

leaf class nodes can be at different depths in the class 

tree. Hence, just multiplying the probabilities along 

each path from the root to a leaf class node is not 

appropriate because, when we compare the probabilities 

associated with different leaf classes in order to choose 

the best leaf class to be assigned to the testing example, 

shallower leaf class nodes would have an advantage 

over deeper ones – given the reductive nature of 

multiplying positive numbers smaller than 1. 

Furthermore, there is no innate sense of probabilistic 

matching given a (non-fuzzy) rule-based classifier, so it 

is natural to use a measure of rule quality instead of 

probabilistic matching.  

Given this discussion, our variant of EMM, called 

Rule-based EMM, finds the best "path" consisting of a 

series of rules discovered by HEHRS – one rule for each 

class level. It considers every possible path by 

considering not only the best rule covering the current 

test example at each class level, but all possible rules 

that cover the current test example. The best path is 

considered to be the path with the highest value of 
the geometric mean of all the rule weights along the 
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path from the root to the class leaf node, as given by 

Equation 5. 

 

                                                 

l
lwwwyPathQualit ...21 ××=  

Equation 5: EMM for Rules Path Quality 

Where yPathQualit  is the score for a certain path 

and ,,...,1, liwi = is the weight associated with the rule 

covering the example at class level i in that path and l is 

the number of rules that cover the example (i.e. the 

number of class levels) in that path. The formula used to 

compute each rule weight is given by Equations 1 and 2. 

4. The Creation of the 
Bioinformatics Data Sets 

The hierarchical classification methods proposed in 

the previous section were evaluated in six challenging 

real-world datasets involving the prediction of protein 

function. The protein functional classes to be predicted 

in these data sets are the functional classes of GPCRs 

(G-Protein-Coupled Receptors) or Enzymes.  

G-protein-coupled receptors are proteins involved in 

signalling. They span cell walls so that they influence 

the chemistry inside the cell by sensing the chemistry 

outside the cell. More specifically, when a ligand (a 

substance that binds to a protein) is received by a 

GPCR, it causes the attached G-proteins to activate and 

detach, this is a mechanical biological switch that 

causes the released G-Protein to affect other reactions 

within the cell. This kind of protein is particularly 

important for medical applications because it is believed 

that 40%-50% of current drugs target GPCR activity 

[14]. Enzymes are another subset of proteins; they are 

catalysts which are used to speed up and make possible 

many of the chemical reactions that take place within 

the cell, without being altered themselves during the 

reaction. They are usually very specific and only 

catalyse one type of reaction within the cell. Often they 

can be turned on and off by another ligand. This is used 

to control both the speed of reaction and the course of 

overall reaction pathways that take place within the cell.  

The protein functional classes are given unique 

hierarchical indexes by [15] in the case of GPCRs and 

by [12] (Enzyme Commission Codes) in the case of 

enzymes. In the case of GPCRs, examples (proteins) 

have up to 5 class levels, but only 4 levels are used in 

the datasets created in this work, as the data in the 5th 

level is too sparse for training – i.e., in general there are 

too few examples of each class at the 5th level. In any 

case, it should be noted that predicting all the first four 

levels of GPCR’s classes is already a challenging task. 

Indeed, most works on the classification of GPCRs limit 

the predictions to just the topmost or the two topmost 

class levels (families and subfamilies but not groups, 

etc.) [2], [17], [24], [29]. All 4 levels of the Enzyme 

Commission Codes are used in the created Enzymes 

data sets. 

The data used in our experiments was constructed 

from data in UniProt [41] and GPCRDB [15]. UniProt is 

a well known biological database, containing sequence 

data and a rich annotation about a large number of 

different kinds of proteins. It also has cross-references 

for other major biological databases such as Prosite 

[32], Prints [31], Pfam [30] and Interpro [23] [27] (see 

below). It was extensively used in this work as a source 

of data for creating the data sets used in our 

experiments. Only the UniProtKB/Swiss-Prot was used 

as a data source, as it contains a higher quality, 

manually annotated set of proteins. Unlike Uniprot, 

GPCRDB is a biological database specialised on GPCR 

proteins. 

We did experiments with four different kinds of 

predictor attributes, each of them representing a kind of 

“protein signature”, or “motif”, namely: FingerPrints 

from the Prints database, Prosite patterns, Pfam and 

Interpro entries. Prosite patterns are regular expressions 

describing short fragments of protein sequences. Such 

patterns are especially good at detecting highly 

conserved functional regions like catalytic sites in 

enzymes [22], as they do not allow partial hits. They 

also have the advantage of being comprehensible to the 

user. In other words, in general, a protein either contains 

or does not contain a Prosite pattern, involving an “all-

or-nothing” matching. However due to this rigidity there 

tend to be a large number of false negatives associated 

with each Prosite pattern [27]. Pfam entries are different 

from Prosite patterns in that they employ Hidden 

Markov Models rather than regular expressions. Prints 

uses motifs in a similar way to Prosite, however it 

contains multiple non-overlapping motifs in a single 

entry. Prints therefore provides a more flexible 

descriptive language for a protein signature. Another 

difference is that Prosite patterns usually correspond to 

functional regions, whilst it is often the case that a 

Prints motif (FingerPrint) refers only to a highly 

conserved region with no specific function. Interpro 

integrates several protein motif databases into one. 

We created six data sets to evaluate the proposed 

hierarchical classification methods, three GPCR data 

sets and three Enzyme data sets. For the GPCR data sets 

the predictor attributes were Prints, Prosite and Interpro 

entries and the protein's molecular weight and sequence 

length. For the Enzyme data sets the predictor attributes 

were Prosite, Interpro and Pfam entries and the protein's 

molecular weight and sequence length. 

Any duplicate examples (proteins) in a data set are 

removed in a pre-processing step,   i.e., before the 

hierarchical classification algorithm is run, to avoid 

redundancy. For both GPCR and Enzyme data sets, if 

there are fewer than 10 examples in any given class in 

the class tree that class is merged with its parent class. If 

the parent class is the root node, the entire small class is 

removed from the data set. This process ensures there is 
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enough training and test data per class to carry out the 

experiments. (If a class had less than 10 examples, 

during the 10-fold cross-validation procedure there 

would be at least one iteration where there would be no 

example of that class in the test set, an undesirable 

situation.) Any binary attribute that has a value which 

occurs in only one example is removed from the 

corresponding data set, since these binary attributes in 

general do not have a good predictive power. An initial 

random sample of 15000 enzymes from the UniProt 

database was used to generate the enzyme data sets. 

Less than the original 15000 examples occur in the final 

data sets because of the duplicate and small class 

removal process.  

After data pre-processing, the final datasets used in 

the experiments have the numbers of attributes, 

examples (proteins) and classes per level (expressed as 

level 1/ level 2/level 3/level 4) indicated in Table 1. 

  

Table 1: Main characteristics of the datasets used in the experiments 
 GPCR/Prints GPCR/Prosite GPCR/Interpro EC/Prints EC/Prosite EC/pfam 

#Attributes 283 129 450 382 585 708 

#Examples 5422 6261 7461 14038 14048 13995 

#Classes 8/46/76/49 9/50/79/49 12/54/82/50 6/45/92/208 6/42/89/187 6/41/96/190 

 

5. Computational Results 

This section reports computational results evaluating 

the methods proposed in section 3 in the created 

datasets described in section 4. Recall that section 3 

proposed 3 types of hierarchical classification methods, 

namely:  

(a) Hierarchical Ensemble of Hierarchical Rule Sets 

(HEHRS) with rule weights computed by equations 1 

and 2; 

(b) HEHRS with rule weights optimized by PSO – 

two versions of the PSO were proposed, with and 

without a lower limit of 0 for the rule weights; these two 

versions are hereafter referred to as LimPSO-HEHRS 

and PSO-HEHRS, respectively. Both versions of PSO 

are a "vanilla" PSO [26] with standard parameter 

settings [8]: W=0.73, ϕ1 = ϕ2 = 2.05. 

(c) The Extended Multiplicative Method adapted for 

rule-based (rather than probabilistic) classifiers – 

hereafter called Rule-EMM for short. 

These methods are compared against a baseline 

method, namely the standard top-down approach for 

hierarchical classification. This approach consists of 

simply running a rule induction algorithm at each 

internal (non-leaf) node of the class tree, as described in 

section 2. In the proposed and baseline methods the base 

rule induction algorithm used in our experiments was 

the well-known Ripper algorithm [42]. 

Throughout the entire set of experiments 10-fold cross 

validation [42] is used. Since PSO is a stochastic 

method, the PSO-HEHRS and Lim PSO-HEHRS 

methods are run 10 times each – with different random 

seeds used to create the initial population in each run – 

for each one of the 10 folds. As the remainder of the 

methods are deterministic, they are run just once for 

each of the 10 folds. 

Table 2: Predictive accuracy (%) with Prints attributes and GPCR classes 

Class level Rule-EMM PSO-HEHRS 

LimPSO-

HEHRS HEHRS Baseline 

1 91.0±0.65 91.5±0.8 91.3±0.83 90.6±0.41 91.2±0.74 

2 65.1±1.25 82.0±1.09 81.7±1.06 77.9±0.46 80.3±1.12 

3 37.5±0.84 56.1±1.43 56.1±1.2 55.1±0.95 53.5±1.5 

4 44.0±3.49 83.1±3.03 83.0±2.78 82.1±2.33 78.3±2.53 

Table 3: Predictive accuracy (%) with InterPro attributes and GPCR classes 

Class level Rule-EMM PSO-HEHRS 

LimPSO-

HEHRS HEHRS Baseline 

1 90.2±0.69 91.0±0.71 91.1±0.76 89.7±0.3 90.3±0.71 

2 68.5±0.79 83.3±0.97 82.9±0.82 79.1±0.47 81.1±0.74 

3 36.4±1.03 55.2±1.33 55.4±1.15 54.6±1.16 52.8±0.87 

4 46.0±2.86 86.9±1.78 86.6±1.81 86.5±2.23 82.4±2.65 

Table 4: Predictive accuracy (%) with Prosite attributes and GPCR classes 

Class level Rule-EMM PSO-HEHRS 

LimPSO-

HEHRS HEHRS Baseline 

1 87.4±0.88 87.8±0.62 87.5±1.0 86.3±1.36 87.6±0.92 

2 49.8±1.18 63.5±1.77 62.9±1.91 61.5±1.79 63.9±1.43 

3 18.1±0.59 32.2±1.74 32.3±1.91 29.5±1.62 29.3±1.56 

4 12.8±2.39 45.5±3.18 45.5±3.93 36.5±2.46 35.4±1.84 
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Table 5: Predictive accuracy (%) with Prints attributes and Enzyme classes 

Class level Rule-EMM PSO-HEHRS 

LimPSO-

HEHRS HEHRS Baseline 

1 48.9±2.41 97.8±0.34 97.8±0.41 96.7±0.35 97.4±0.28 

2 33.5±2.61 95.0±0.47 95.2±0.67 93.3±0.29 94.6±0.46 

3 32.8±1.03 94.1±0.34 94.3±0.65 90.1±0.97 93.8±0.54 

4 29.7±0.91 93.4±0.69 93.7±0.79 93.3±0.75 92.8±0.87 

Table 6: Predictive accuracy (%) with Pfam attributes and Enzyme classes 

Class level Rule-EMM PSO-HEHRS 

LimPSO-

HEHRS HEHRS Baseline 

1 37.0±0.24 98.0±0.2 98.0±0.32 92.3±1.01 95.8±1.84 

2 23.3±0.8 96.2±0.43 96.3±0.37 88.7±1.07 94.0±2.04 

3 23.5±0.74 94.9±0.5 94.9±0.45 87.6±1.01 92.6±2.26 

4 23.5±0.75 96.0±0.48 96.1±0.33 95.1±0.89 94.5±1.19 

Table 7: Predictive accuracy (%) with Prosite attributes and Enzyme classes 

Class level Rule-EMM PSO-HEHRS 

LimPSO-

HEHRS HEHRS Baseline 

1 40.7±0.4 98.7±0.3 98.7±0.24 96.6±0.48 98.5±0.24 

2 28.1±0.42 97.4±0.45 97.3±0.41 94.1±0.27 97.1±0.42 

3 26.2±0.44 96.2±0.39 96.0±0.34 92.4±0.45 95.9±0.19 

4 23.3±0.44 95.2±0.34 95.3±0.41 95.2±0.42 95.0±0.42 

Table 8: Overall performance according to WEKA’s Student t-test, when compared to Baseline 
Overall Scores Against Baseline – Best possible score for each cell in the first 4 rows is 6 

(number of data sets) 

Class level Rule-EMM PSO-HEHRS LimPSO-HEHRS HEHRS 

1 -3 3 2 -4 

2 -6 4 3 -6 

3 -6 4 4 -1 

4 -6 4 5 4 

Totals  -21 15 14 -7 

Table 9: The Un-weighted Misclassification cost, with Student t-tests comparing each approach against the baseline 

Data Set Rule-EMM 

PSO-

HEHRS 

LimPSO-

HEHRS HEHRS Baseline 

GPCR Prints 28.3±0.78 18.72±0.62 18.88±0.69 20.76±0.33 19.86±0.61 

GPCR Interpro 25.53±0.5 17.13±0.51 17.19±0.5 19.21±0.31 18.44±0.36 

GPCR Prosite 37.62±0.66 30.8±0.74 31.21±0.79 32.83±1.13 31.43±0.94 

Enzyme Prints 60.5±1.74 4.78±0.39 4.67±0.55 6.74±0.4 5.2±0.42 

Enzyme Pfam 69.45±0.51 3.68±0.29 3.65±0.26 9.68±0.91 5.73±1.83 

Enzyme Prosite 66.59±0.41 2.99±0.29 3.07±0.22 5.68±0.32 3.21±0.23 

Accumulative  

t-test score 

against baseline -6 5 3 -6  

Table 10: The Weighted Misclassification cost, with Student t-tests comparing each approach against the baseline 

Data Set Rule-EMM 

PSO-

HEHRS 

LimPSO-

HEHRS HEHRS Baseline 

GPCR Prints 22.24±0.65 15.1±0.65 15.31±0.75 17.01±0.3 15.98±0.66 

GPCR Interpro 20.62±0.53 14.3±0.63 14.35±0.65 16.38±0.23 15.51±0.53 

GPCR Prosite 30.31±0.77 24.91±0.7 25.33±0.95 26.87±1.29 25.25±0.96 

Enzyme Prints 57.74±2.16 3.73±0.36 3.66±0.49 5.4±0.27 4.16±0.32 

Enzyme Pfam 68.23±0.43 3.04±0.25 3.0±0.27 9.33±0.96 5.21±1.89 

Enzyme Prosite 64.62±0.38 2.2±0.31 2.27±0.23 4.9±0.37 2.42±0.24 

Accumulative  

t-test score 

against baseline -6 4 3 -6  
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Tables 2 through 7 show the predictive accuracy that 

the different methods achieved in each data set during 

10-fold cross validation. The numbers after the “±” 

symbol are standard deviations. In these tables a cell is 

coloured dark grey if there is a statistically significant 

win of the method in the corresponding column against 

the baseline method, according to a two-tailed Student's 

t-test with significance level of 0.05. The t-test used is 

WEKA’s implementation of Nadeau and Bengio’s 

corrected re-sampled t-test [41]. This more conservative 

corrected t-test takes into account the ratio of training 

and test examples in an attempt to limit the number of 

significant results occurring by chance. A cell is 

coloured light grey if there is a statistically significant 

loss when compared to the baseline method. Table 8 

shows the cumulative scores – calculated based on the 

results of the Student's t-test – for each method, at each 

class level, for all data sets. For each data set, in Table 8 

one is added to the score of each cell if its 

corresponding method (indicated by the column label) 

at the corresponding class level (indicated by the row 

label) significantly beats the baseline approach in that 

data set. One is deducted from the score in the cell for a 

loss against the baseline approach in the same manner. 

The totals in the bottom row of the table are simply the 

summed results – over all data sets – from each class 

level for each method. 

Tables 9 and 10 show the un-weighted and weighted – 

respectively – misclassification costs associated with 

each experiment. The misclassification cost is computed 

by finding the shortest path in the class tree from the 

predicted class node to the actual class node. In the case 

of the weighted misclassification cost this path is then 

weighted (the values of the edges of the path are added), 

with edges between the root node and the first class 

level given a weight of 0.26, the edges between the first 

a second class level given a weight of 0.13, between the 

second and third a weight of 0.07 and between the third 

and fourth class levels a weight of 0.04. The reason for 

this weighting is to assign a higher cost to more general 

misclassifications. These general errors are more serious 

than the finer grained errors at lower levels of the class 

tree, as if a general error is made, no information about 

the true class of an example is gained. 

In the case of the un-weighted misclassification score, 

each edge is assigned a weight of one. The 

misclassification score for each example is then 

normalised by dividing the number of edges between 

the predicted and the actual class nodes in the class tree 

by the number of edges in the worst possible score for 

that example. The latter can be found by finding the 

weight (number of edges) from the actual class to any 

leaf node via the root node, and taking the largest 

weight as the worst possible misclassification score. The 

scores from every test example classification are then 

added and divided by the total number of test examples 

to give the final misclassification score. The 

accumulative t-test score at the bottom of Tables 9 and 

10 shows the number of times the corresponding 

method is significantly better (+1) or worse (-1) than the 

baseline approach across all the experiments. The 

misclassification costs shown in Tables 9 and 10 are 

useful as (unlike the accuracy rates shown in Tables 2 

through 8) they take into account the hierarchical 

structure of the classes, and so they provide a way to 

quickly assess the performance of a hierarchical 

approach. They can also be tailored to concentrate on 

general or fine grained errors using weighting. 

 Let us first analyze the results with respect to 

accuracy rate (Tables 2 through 8). The pure HEHRS – 

without rule weights optimized by PSO – achieved a 

disappointing performance: it obtained an overall score 

of –7. Observing both Table 8 and the more detailed 

results per dataset in Tables 2 through 7, one can see 

that, in all the 6 datasets, HEHRS obtains results 

significantly worse than the baseline method's results in 

the first two (shallower) class levels. On the other hand, 

in all the 6 datasets HEHRS obtains results significantly 

better than the baseline method's results in the fourth 

(deepest) class level. The consistency of these results is 

interesting, considering that the 6 datasets contain very 

different numbers of attributes and examples, as well as 

different kinds of biological motifs as predictor 

attributes – as indicated in Table 1.  

The poor performance of HEHRS is likely due to its 

bias towards deeper classes. As it predicts a class based 

upon the addition of rule weights, classes that are deeper 

will have more nodes and so more weights when 

compared to shallower ones. This explanation is 

supported by the differences seen between the GPCR 

and Enzyme data sets. In the GPCR data sets the 

number of examples in each class is quite unbalanced, 

with one class having a large portion of the examples, 

this is even more so the case at lower levels. This is an 

advantage for HEHRS at the lower levels (3 and 4) 

because it tends to try and classify more examples as the 

deeper class, which also happens to be one of the 

largest. The classes are more balanced in the enzyme 

data set but again the bias towards deeper classes still 

reaps rewards in the fourth level. 

One method of dealing with this bias would be to 

average the rule weights rather than adding them. 

However, it is likely that this would cause the opposite 

problem in HEHRS – a bias towards shallower classes. 

This is because, in general, rules at deeper class levels 

tend to have lower qualities, due to the higher number 

of classes and lower number of examples per class. 

Hence, the averaging process would favour the classes 

with fewer descendants, giving fewer and higher 

weights. Investigating the effect of this averaging 

process empirically could be a topic for future research. 

The Rule-EMM method achieved by far the worst 

results, significantly losing to the baseline method in 21 

out of 24 cases. This very bad performance is most 

likely due to the way in which a decision list is 

generated by the rule induction algorithm and its 

interaction with the EMM approach. The Rule-EMM 

method is reliant on not choosing only the best 
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matching rule (as in RIPPER), but all rules that match 

the test example at all (at each class level) in a rule list. 

This is the trade off needed when attempting to find all 

possible paths to class leaf nodes. The trade off does not 

seem to pay off with the current rule induction 

algorithm, RIPPER. It is possible that if the rules 

produced by the rule induction algorithm were 

unordered the misclassifications would become less of a 

problem, since unordered rules tend to be more modular 

than ordered rules. Investigating this hypothesis is an 

interesting topic for future research. 

In general the best performing methods in terms of 

predictive accuracy are LimPSO-HEHRS and PSO-

HEHRS, with the version of PSO without a lower limit 

on the rule weights (PSO-HEHRS) beating the PSO 

version with a lower limit (LimPSO-HEHRS) by only 

one test. Both methods obtained a good performance, 

with an overall score of 15 or 14, respectively – the 

maximum possible score is 24 (4 class levels times 6 

datasets).  

These conclusions derived from the analysis of 

accuracy rates are also reflected in general in the 

misclassification costs, with HEHRS and Rule-EMM 

getting the same overall negative score against the 

baseline and the two versions of the PSO getting an 

overall positive score against the baseline. Also, when 

the finer grained misclassifications are weighted more 

evenly (as with the un-weighted misclassification costs) 

the difference between LimPSO-HEHRS and PSO-

HEHRS becomes more apparent, with PSO-HEHRS 

outperforming LimPSO-HEHRS significantly in 2 out 

of 6 tests. 

Using the PSO to optimise rule weights has the 

disadvantage that a PSO run is very computationally 

expensive. On a machine with a P4 3.0 GHz CPU it 

takes about five hours to optimise the weights for the 

rules generated from a single 10 times 10-fold cross 

validation run (depending on the number of rules). Also 

HEHRS itself requires more computational time as 

many more rule sets must be induced using larger 

training sets (when compared to the baseline approach). 

On the same machine the models for a single run of the 

baseline approach are induced within ten minutes, 

whereas the HEHRS models take up to an hour on the 

larger datasets. These models do not variate between 

approaches and so can be cached, increasing efficiency 

when comparing multiple approaches. However, note 

that maximising classification accuracy is usually 

considered more important than minimizing the 

processing time taken by a classification algorithm. This 

is particularly the case in real-world scenarios like the 

bioinformatics problems addressed in this work, where 

the time taken by a run of the PSO algorithm is a very 

small fraction of the time that was spent in preparing 

our datasets for data mining purposes (about 4 months). 

This scenario is also often found in other data mining 

applications, where most of the time taken by the entire 

knowledge discovery process is spent preparing data. 

6. Conclusions and Future 
Research 

This work proposed new hierarchical classification 

methods that use characteristics of hierarchical class 

data (where the classes are arranged in a tree structure) 

to try to improve predictive accuracy, with respect to a 

standard top-down hierarchical classification method. 

More precisely, three main types of hierarchical 

classification methods were proposed, namely: (a) 

HEHRS (Hierarchical Ensemble of Hierarchical Rule 

Sets), a method based on exploiting the hierarchical 

nature of the data to create different training sets to be 

given as input to a bagging-like ensemble method; (b) 

two versions of a Particle Swarm Optimisation (PSO) 

method for optimising the rule weights used by HEHRS 

to classify test examples; and (c) Rule-EMM, the rule-

based version of the Extended Multiplicative Method, 

which tries to reduce the problem of misclassifications 

at shallower class levels leading to misclassifications at 

deeper class levels in the standard top-down approach 

for hierarchical classification. 

Out of these three types of methods, the pure HEHRS 

method and Rule-EMM produced disappoint results, in 

general significantly worse than the standard top-down 

approach. However, the development of a PSO 

algorithm to optimise rule weights for HEHRS was very 

effective, leading to a hierarchical classification system 

that obtained, overall, predictive accuracies significantly 

better than the accuracies obtained by the standard top-

down approach. These results were to a large extent 

consistent across 6 different bioinformatics datasets 

involving the hierarchical classification of protein 

functions, a set of challenging real-world bioinformatics 

problems with large numbers of predictor attributes and 

large numbers of classes to be predicted. Indeed, in this 

work we predicted GPCR and Enzyme classes up to the 

fourth level of the class hierarchy, whilst most of the 

literature addresses the less challenging problem of 

predicting GPCR and Enzyme classes only at the first 

and sometimes second level of the class hierarchy [2], 

[17], [24], [29]. 

There are several potential avenues for future 

research. Since optimising the rule weights used by 

HEHRS with the PSO method proved to be very 

effective, perhaps the rule weights used by Rule-EMM 

could be optimised in just as an effective way. In 

addition, as mentioned earlier, it would be interesting to 

investigate the performance of Rule-EMM when the 

base rule induction algorithm used to discover 

classification rules produces an unordered rule set, 

rather than an ordered rule list (see Section 5). Also, it 

would be interesting to investigate if the performance of 

HEHRS can be improved by averaging (rather than 

adding) rule weights, as mentioned in Section 5. 
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