
1

Hierarchical Classification of Protein Function with Ensembles
of Rules and Particle Swarm Optimisation

Nicholas Holden and Alex A. Freitas

Computing Laboratory,

University of Kent,

Canterbury, CT2 7�F, UK

{nh56, A.A.Freitas}@kent.ac.uk

Abstract This paper focuses on hierarchical classification

problems where the classes to be predicted are organized in

the form of a tree. The standard top-down divide and

conquer approach for hierarchical classification consists of

building a hierarchy of classifiers where a classifier is built

for each internal (non-leaf) node in the class tree. Each

classifier discriminates only between its child classes.

After the tree of classifiers is built, the system uses them to

classify test examples one class level at a time, so that

when the example is assigned a class at a given level, only

the child classes need to be considered at the next level.

This approach has the drawback that, if a test example is

misclassified at a certain class level, it will be misclassified

at deeper levels too. In this paper we propose hierarchical

classification methods to mitigate this drawback. More

precisely, we propose a method called Hierarchical

Ensemble of Hierarchical Rule Sets (HEHRS), where

different ensembles are built at different levels in the class

tree and each ensemble consists of different rule sets built

from training examples at different levels of the class tree.

We also use a Particle Swarm Optimisation (PSO)

algorithm to optimise the rule weights used by HEHRS to

combine the predictions of different rules into a class to be

assigned to a given test example. In addition, we propose a

variant of a method to mitigate the aforementioned

drawback of top-down classification. These three types of

methods are compared against the standard top-down

hierarchical classification method in six challenging

bioinformatics datasets, involving the prediction of protein

function. Overall HEHRS with the rule weights optimised

by the PSO algorithm obtains the best predictive accuracy

out of the four types of hierarchical classification method.

Keywords. Particle Swarm Optimisation, Hierarchical

Classification, Protein Function Prediction

1. Introduction

Data mining consists of a set of concepts and

techniques used to find useful knowledge in real-world

data [42], [13]. In this project the discovered knowledge

is represented as classification rules. A rule consists of

an antecedent (a set of attribute values) and a

consequent (class):

IF <attrib = value> AND ... AND <attrib = value>

THEN <predicted class>

This kind of knowledge representation has the

advantage of being intuitively comprehensible to the

user. This is important, because in certain fields a major

goal of data mining is to discover knowledge that is not

only accurate, but also comprehensible [42], [13] in

order to give the user insights about the data, the

application domain and also provide a way in which to

validate the model and predictions produced.

In this paper the classes are arranged in a tree

structure where each node (class) has only one parent –

with the exception of the root of the tree, which does not

have any parent and does not correspond to any class.

For example, if there were a hierarchical dataset about

animals the classes might be structured in the following

way. The top level classes might be cat and dog, then

the cat class might have child classes Siamese and

Burmese, the dog class might have child classes called

Greyhound and Datsun. Hierarchical class datasets

present two main new challenges when compared to flat

class datasets. Firstly, many (depending on the depth)

more classes must be assigned to the examples.

Secondly, the prediction of a class becomes increasingly

difficult as deeper levels are considered, due to the

smaller number of examples per class.

In this paper we apply classification techniques to

predict protein function, a very active research topic in

bioinformatics. It is important to discover the function

for new proteins to advance our understanding of the

2

workings of the cell and to create more effective

medical treatments. It can be a very time consuming

task to “manually” assign a single protein with a

function. When using data mining techniques it is

possible to predict the function of many proteins,

quickly and with reasonable accuracy. Also, the patterns

discovered in the process can be used to gain insight

into the general nature of the relationship between

protein biochemical properties and function in different

sets of proteins.

The datasets examined in this paper, as with many

other bioinformatics datasets, pose a significant problem

for any classification technique as they have a relatively

large number of attributes, in this case ranging from 126

to 708 attributes. The large number of attributes

increases the search space for the classification

algorithm which often leads to sub-optimal

performance.

In this paper we propose novel ensemble based data

mining methods tailored to the hierarchical

classification problem and apply them to six protein

data sets. Although some research has applied ensemble

methods to protein data sets [21], [6], [39] and to

hierarchical data sets [11], previous research

concentrates on “classical” ensemble techniques such as

bagging, or ignores any hierarchy present. Some work

has been conducted in the field of hierarchical multi-

label protein function prediction [7], [3] but their

approaches rely on modifying the base classification

algorithm, rather than using ensemble techniques.

The remainder of this paper is organised as follows.

Section 2 presents a brief introduction to top-down

hierarchical classification. Section 3 describes our

proposed techniques for hierarchical classification.

Section 4 describes the creation of the bioinformatics

data sets. Section 5 reports the results of the

experiments. Section 6 discusses conclusions and future

research directions.

2. Top-Down Hierarchical
Classification

This paper focuses on hierarchical classification

problems where the classes to be predicted are

organized in the form of a tree, hereafter referred to as a

class tree. The simplest – and naïve – way to deal with

hierarchical classification is to ignore the class

hierarchy completely and so only predict classes at the

bottommost level, indirectly predicting the classes at

higher levels. For instance, in a 3-level classification

problem, if the algorithm predicts for a given example

the class 2.1.5, it is also predicting class 2 at the first

level and class 2.1 at the second level. This approach

avoids the complexity associated with a hierarchical

classification algorithm at the expense of not

discovering more generalised knowledge expressed by

higher level rules. It discovers only lowest level,

specific rules. Such specific rules tend to be less

accurate than generic rules (predicting classes at higher

levels of the hierarchy), because each of the low-level,

specific rules is usually covering a smaller number of

examples than a high-level, generic rule – since the

number of examples per class at the bottommost class

level tends to be smaller than the number of examples

per class at higher levels of the class tree. Another

problem with this naïve approach is that it does not use

information associated with higher-level classes in order

to guide the prediction of lower-level classes. This point

is explained in more detail below.

To avoid the problems associated with the

aforementioned naïve approach, it is possible to use a

top-down approach based on the divide-and-conquer

principle [36]. This top-down approach has the

important advantage of using information associated

with higher-level classes in order to guide the prediction

of lower-level classes. For instance, if class 1.X.X.X

(where X denotes any digit) is predicted at the first level

and the tree node for that class has only the child nodes

1.1.X.X and 1.2.X.X, only these two class nodes should

be considered and not the children belonging to node

2.X.X.X. In general, any model constructed in the top-

down divide and conquer tree only has to discriminate

between sibling classes. When it comes to the

classification of an example, each classifier chooses

which child classifier to send the example to, or if the

classifier is at the leaf level what final class the

examples should be assigned to. For instance, the root

classifier, which discriminates between classes 1.X.X.X

and 2.X.X.X will decide if an example should be sent to

the classifier discriminating between the child classes of

class 1.X.X.X or 2.X.X.X. If the example is first

classified as 1.X.X.X then it will be sent to the classifier

discriminating between classes 1.1.X.X and 1.2.X.X.

This classifier will decide if the example should be sent

to the classifier discriminating between the child classes

of class 1.1.X.X or 1.2.X.X. If the example is then

classified as 1.1.X.X then the next classifier

(discriminating between 1.1.1.X and 1.1.2.X) will

decide if it should be sent to the classifiers

discriminating between the child classes of 1.1.1.X or

1.1.2.X and so on.

3. Proposed Methods to
Improve Top-Down
Hierarchical Classification

3.1. Hierarchical Ensemble of Hierarchical Rule
Sets (HEHRS)

Ensemble classifiers normally try to combine the

predictions from separate classifiers in order to increase

predictive accuracy [40]. The two main considerations

when designing an ensemble of classifiers are the

accuracy of the component classifiers and the diversity

of the component classifiers. In single classifiers the

3

accuracy is the most important factor. However in

ensemble classifiers each classifier need not necessarily

be especially accurate for the ensemble to make an

accurate prediction. Skalak [34] discusses an example of

this phenomenon where a classifier that is 69% accurate

is combined with classifiers that are 23% accurate and

25% accurate, and this boosts overall accuracy to 88%.

The diversity of the component classifiers is very

important in ensemble approaches, because component

classifiers must make different errors to make the

overall ensemble more accurate [5], [1]. There is often a

trade-off between accuracy and diversity in classifiers,

as it is often easier to make more diverse (uncorrelated)

classifiers when the classification accuracies of the

individual classifiers are lowered.

One of the most popular kinds of ensemble method is

bagging [4]. In bagging the training set is re-sampled

several times in some way to generate separate

classifiers, so that each classifier is trained with a

different training set. The predictions of these classifiers

are classically combined by a voting scheme which may

or not be weighted. There are many methods to try and

increase the performance of the combining scheme used

in bagging [9], [10], [18]. Some of the most advanced

and successful of these methods are genetic algorithms

[18], [35], [38], [33].

In essence, the proposed ensemble method for

hierarchical classification can be considered as a new

variation of bagging adapted to hierarchical

classification. In this method, an ensemble of rules is

created by varying the sets of positive and negative

examples according to the class hierarchy. In order to

classify test examples, the predictions of the rules are

combined by using a weighted voting scheme. Such a

method should improve the accuracy beyond the use of

a non-ensemble based technique as the errors in each

model can be, to some extent, mitigated by combing the

predictions made by multiple models, as discussed

previously. As the bioinformatics data sets used in this

paper make it more difficult to induce accurate models –

because of the high number of classes, attributes and the

sparseness of the data at lower levels – the potential

benefits from using such an error correcting technique

become greater.

3.1.1 Technical Details of the HEHRS Method

Let us first describe the basic idea of the proposed

method at a high level of abstraction. Recall that in the

standard top-down hierarchical classification approach a

rule set is built to distinguish between a set of sibling

class nodes, using the training examples belonging to

those sibling class nodes. By contrast, in the proposed

HEHRS method K rule sets will be built for each set of

sibling nodes in the class tree, where K is the number of

class levels between the current level (inclusive) and the

deepest class level (inclusive) which is a descendant

from either of the current class nodes. For instance for a

non-leaf node in level 2 of the class tree and a class tree

with 4 levels (not counting the root node which is at the

0th level), K=3 rule sets will be generated, namely one

rule set for each of the class levels 2, 3 and 4. All these

rule sets contain rules predicting classes at the second

level of the class tree, but they are called here

hierarchical rule sets because they have been produced

from examples at different levels of the class tree. In

addition, to continue with this example, these three rule

sets also form an ensemble of rule sets, and the

proposed method builds several ensembles like this, at

different levels of the class tree. Therefore, the

ensembles also form a hierarchy, namely a hierarchy of

ensembles, where each ensemble consists of a

hierarchical rule set. Hence, this approach is here called

Hierarchical Ensemble of Hierarchical Rule Sets

(HEHRS).

Let us now describe HEHRS in more detail, starting

with notation issues. In general an ensemble of rule sets

created for a given set of sibling class nodes is denoted

as Es, where S is a set of sibling class nodes. A rule set

within this ensemble (one of the K rule sets) is denoted

by the letter i, where i corresponds to the level at which

the rule set is built. Therefore any rule set belonging to

Es at the level i, used to distinguish between a set of

sibling class nodes S, is denoted by Esi. Note that each

rule in Esi will predict one of the classes in S, so there

will be one or more rules (i.e. a subset of the rules in

Esi) predicting each class in S. A set of rules in Esi built

at level i predicting a single class d in S is denoted as

Esid. As discussed previously Esid consists of K rule sets,

each containing rules produced from a different level of

the class tree. For each level i and for each class c which

is a descendant class of d, the rule induction algorithm

will discover rules predicting class d, using as positive

examples the examples having class c, and using as

negative examples the examples having any class

different from c at level i that is a descendant of d in the

class tree. These concepts are illustrated in Fig. 1. Note

that Fig. 1 refers to a hierarchy of rule sets, rather than

the class hierarchy. Hence, each node (d) in Fig. 1

denotes an ensemble of rule sets for a given class (as

explained next).

4

Figure 1: Hierarchical Ensemble of Hierarchical Rule Sets (HEHRS)

In Fig. 1 the grey boxes represent the scope of the

classification performed by a given rule set (Esi) or

ensemble (Es). In the case of Es the scope of the

classification involves the sibling classes S. The main tree

– i.e, the large tree at the centre of Fig. 1 – shows the

hierarchy of ensembles in a standard top-down approach.

The expanded (smaller) trees show the rule sets (Esi)

generated by HEHRS. For each set of sibling classes (S) in

the main tree, there is a hierarchy of rule sets in the

corresponding smaller tree, indicated by the presence of

several grey boxes in the smaller tree. The label S in Fig. 1

shows an example set of sibling classes (2.1 and 2.2)

predicted by an ensemble, and the label d within S shows

one of the classes (2.1) in the set S.

Table 1: Values (Classes) taken by variable c at each level

i used to construct the Rule Sets in Es ID:1, in Figure 1

Table 1 shows in detail the variation in the sets of

examples used at different class levels when inducing

classification rules for HEHRS, with respect to Fig. 1.

For example, let us consider the construction of the

ensemble of rule sets Es labelled ID:1 in the top-right

part of Fig. 1. This ensemble will consist of rules

predicting either class 1 or class 2, i.e., the set of sibling

classes S = {1, 2}. So, the variable d, indicating the

class to be predicted by a rule in Es, will take on the

value 1 or 2. This ensemble Es will consist of four rule

sets, each of them denoted Esi, i=1,…,4, where the i-th

rule set is constructed from examples in the i-th level of

the class tree.

As can be seen in Table 1 at the first level i is set to 1.

The rule induction algorithm is given the training set

with examples belonging to classes (c) 1 and 2, it then

returns a rule set predicting classes (d) 1 and 2 for the

first rule set Esi.. S={1,2}, i=1. At the second level i is

set to 2. The rule induction algorithm is given the

training set with examples belonging to classes (c) 1.1,

1.2, 2.1 and 2.2 (descendants of the classes in S). It then

returns a rule set with rules discriminating between

these classes. The rules predicting classes 1.1 and 1.2

(Esid where i=2 and d=1) have their consequent changed

to predict class (d) 1. The rules predicting classes 2.1

and 2.2 (Esid where i=2 and d=2) are changed to predict

class (d) 2 and are added, with the other rules now

predicting class 1, to the second rule set Esi., S={1,2},

i=2. At the third level i is set to 3. As there are no third

level descendant classes of class 2 (in the right-hand

side of Table 1 the term "NA" means "not applicable")

only rules predicting class 1 will be contained in this Esi.

The rule induction algorithm is given a training set

containing examples belonging to classes (c) 1.1.1 and

1.1.2. The rules predicting the classes 1.1.1 and 1.1.2

have their consequent class changed to predict class (d)

1. They are then added to Esid where i=3 and d=1, which

in this case is equal to Esi where i=3. An analogous

procedure (as described in Table 1) is performed at level

4 (i = 4) where again, because this is quite an

unbalanced class tree, there are only rules predicting

class (d) 1 in the rule set Esi where i=4.

Note also that when the level i is set to 2 and the class

(d) being predicted by the ensemble is 1, the rule

induction algorithm produces a rule set discriminating

between classes (c) 1.1 and 1.2 (along with 2.1 and 2.2),

which at first glance seems counter-intuitive – as they

Class (d) in set of sibling classes S

Level (i) d = 1 d = 2

1 1 2

2 1.1, 1.2 2.1, 2.2

3 1.1.1, 1.1.2 NA

4 1.1.1.1, 1.1.1.2, 1.1.2.1,

1.1.2.2

NA

5

are both descendants of class 1, the class (d) being

predicted. The reason for this is to try and encourage

diversity in the rules generated. As the rule induction

algorithm is unaware of the hierarchical relationships

between classes, the algorithm could produce the same

(or very similar) rule sets for, say, the following two

classification scenarios: (a) class 1 vs. class 2; and (b)

class 1.1 vs. other non-descendant classes of class 1

(i.e., classes 2.1 and 2.2). Although it is still possible

that the same or very similar rules will be generated

between different levels and classes even when using

the method described in this section, the probability

(dependant on the make-up of the training set) of this

happening is smaller, when including the examples

belonging to sibling classes as negative examples when

inducing rules. Recall that to make an effective

ensemble it is very important that the component

classifiers be diverse, even if at the expense of some

accuracy [34], [5], [1].

3.1.2 Combining the Predictions from the
Multiple Rules in HEHRS

After the entire hierarchical ensemble of hierarchical

rule sets has been induced in the training phase, all the

induced rules can be used to predict the class of a new

example in the test set. In this testing phase, in order to

combine the predictions of the rules in the hierarchical

ensemble into a single predicted class at each level of

the class tree for a given test example, each rule in the

ensemble is assigned a weight. That is, for each

ensemble of rule sets Es, each rule in Es is assigned a

weight.

The weight of a rule is a measure of its predictive

accuracy. When the class predicted by a rule is the

majority class (a class having more examples than the

rest of the training set combined) its weight is computed

by the product of the rule's sensitivity and specificity

[19], as shown in Equation 1, where TP, F�, FP and T�

are, respectively, the number of true positives, false

negatives, false positives and true negatives associated

with the rule [42].

When a rule predicts a minority class (i.e., any class

different from the majority class) the precision [19],

shown in Equation 2, is used as the rule’s weight. This

approach, based on measuring rule quality either as the

product of sensitivity and specificity or as precision,

depending on the relative frequency of the class

predicted by the rule, is an attempt to get a more

“balanced” weight in extreme cases.

When there are a small number of examples in the

class being predicted, when compared to the overall size

of the training set, then the way in which specificity

accounts for the number of false positives becomes

problematic. This is because sensitivity multiplied by

specificity weights the sensitivity (TP / (TP + F�)) and

the specificity (T� / (T� + FP)) equally, ignoring the

actual number of true positives and false positives.

Therefore, in the case where the minority class is being

predicted, it is possible to obtain a good rule quality

even though the ratio of TP / (TP + FP) – i.e. the

precision – is bad. Such a situation will likely produce a

low accuracy as although a high sensitivity and

relatively high specificity may be obtained, many

examples may be misclassified as this minority class

(due to the absolute number of false positives). The

opposite is true for the majority class; the absolute

number of false positives becomes less important for

producing good accuracy as the number of true positives

will likely be much higher. Sensitivity multiplied by

specificity increases the importance of obtaining a low

number of false positives when compared to precision.

This is because it is more useful to consider the ratio T�

/ (T� + FP), rather than ratio of the large number of true

positives to the low possible number of false positives

(as it is implicitly the case with precision). For a more

detailed discussion see [20].

Sensitivity × Specificity =

TP / (TP + F�) × T� / (T� + FP)

Equation 1: Rule Weight (Majority Class)

 Precision = TP / (TP + FP)

Equation 2: Rule Weight (Minority Class)

During the testing phase, a test example is classified in a

top-down fashion, as follows. Let S be the set of sibling

classes out of which one class must be assigned to the

example. Initially, S contains the set of classes in the

first class level. For each class d in S, the weight of

class d is given by the summation of the weights of all

the rules in the ensemble of rule sets Es that cover the

test example and predict class d. The class with the

greatest weight is assigned to the test example at the

first level. Next the example is pushed down to the

second level, where the set S is updated to contain the

child classes of the class assigned to the example in the

first level – the ensemble Es is also updated accordingly.

Again, for each class d in the current S the weight of

class d is computed – adding the weights of all rules in

the current Es that cover the test example and predict

class d – and the class with the greatest weight is

assigned to the test example at the current (second)

level, and so on. This process is repeated until the test

example reaches a leaf node in the class tree.

To validate a prediction made by HEHRS for a given

example a simple procedure can be implemented. After

the example has been fully classified to the leaf level it

is possible to examine all the rules that covered it. All

the rules that have consequent classes that are parents of

the final leaf classification can be used to present an

overview of the classification process to the user.

Taking the union of the terms in the antecedents of these

rules will produce a combined rule that will show why

the example has been classified to that particular leaf

class node. In the same fashion it would be possible to

6

show such a combined rule for each separate ensemble

used in the HEHRS tree.

3.2. Optimising HEHRS' Rule Weights with PSO

As computed by Equations 1 and 2, the weight of a

rule in HEHRS depends only on the predictive accuracy

of that individual rule, and it does not take into account

the complex interactions of the rules in an ensemble. It

is possible to optimise the set of rule weights by taking

rule interaction into account, by defining two elements:

(a) An evaluation function that measures the quality

of a candidate set of rule weight values. The evaluation

function to be maximised is the normalised total number

of correct predictions made at each internal (non-leaf)

class node and each leaf class node.

(b) An optimization method, which searches for the

optimal set of rule weight values in the space of

candidate weight values. In this work we use, as an

optimization method, a Particle Swarm Optimization

(PSO) algorithm.

PSO is a meta-heuristics that maintains a population

of particles – each of them a candidate solution to the

target problem – that iteratively move around the search

space [26]. The position of a particle in the search space

represents the contents of its candidate solution, and so

moving the particles correspond to generating new

candidate solutions. First, each particle is initialised

with randomly deviating (±1) position generated from

the rule weight equations and random velocity. Each

particle keeps track of the best position it has ever held,

according to the evaluation function. At each iteration,

each particle finds its best neighbour (in a local or

global neighbourhood). The particle then moves

towards a combination of its best neighbour’s position

and its own best ever position, with a velocity calculated

as shown below. This process is repeated until a

maximum number of iterations have been performed.

To calculate the velocity and so the new position of a

particle, Equations 3 and 4, are used:

vid(t) = W*(vid(t–1)) + ϕ1*Rand()*(pid – xid(t–1)) +

ϕ2*Rand()* (pgd – xid(t–1))

Equation 3: A Particle’s Velocity at time t

xid(t) = xid(t-1) + vid(t)

Equation 4: A Particle’s Position at time t

Where xid is the particle i’s position in dimension d, t

is the iteration (time) index, vid is particle i’s velocity in

dimension d, W is an inertial constant to prevent the

particle gaining too much speed. ϕ1 and ϕ2 are user-

defined personal and social learning constants,

respectively. pgd is the best position of the particle’s

neighbours in dimension d and pid is the best position

particle i has ever held in dimension d. In addition to W,

a maximum velocity is also used to prevent the particle

from flying out of the search space. Rand() generates a

random number in [0…1].

The main motivations for using PSO is that it

performs a global search in the search space (rather than

the greedy search performed by local search

algorithms), and has been empirically shown to be a

powerful optimizer, often outperforming more

traditional population-based optimizers such as

evolutionary algorithms (EAs) [25], [28]. In any case,

we do not claim that PSO is the “optimal” algorithm for

our rule weight optimization problem. It produced very

good results – as will be shown later – but it is possible

that other global search optimization methods such as

EAs would produce a similarly good result. The issue of

comparing PSO and EAs is out of the scope of this

paper, and is left for future research.

Two versions of the PSO for rule weight optimization

are proposed in this work, one where negative weight

values are allowed and another one where they are not.

In the former case, if a rule is extremely unreliable it

may be assigned a negative weight, detracting from the

class predicted by that rule. An example of where a

negative value may be appropriate for a rule is where

that rule covers more examples of other classes than its

own consequent class and so, in fact, signals that other

classes are more likely. In the version where negative

values are not allowed, the lowest possible rule weight

is 0, where a rule will not have any influence in the

classification of a test example.

The two main elements of the proposed PSO for rule

weight optimization are the particle representation and

the fitness function. The particle representation consists

of a vector with n components, each of them denoted wi,

i = 1,…,n, where wi is the weight associated with i-th

rule and n is the total number of rules. That is:

nwwwParticle ,...,, 21=

The fitness function measures the quality of a particle,

i.e., the quality of a candidate set of rule weights. In

order to compute the fitness of a particle, for each

example in the training set, the system extracts the rule

weights from the particle and uses those weights to

decide which class will be assigned to the example. This

decision is made by computing, for each class, the total

weight of rules that cover the example and have that

class, as discussed earlier. The class chosen to be

assigned to the example is the class with the largest total

weight. After every training example has been

completely classified (i.e., assigned a class at a leaf

node in the class tree), the value of the fitness function

for the current particle is the classification accuracy on

the training set, this is the average accuracy across all

four class levels.

In some cases it does not matter what the weights

associated with certain rules are during the training

phase, for instance if all examples are always correctly

classified by all rules, then as long as the weights are all

positive it does not matter what the weight values are.

This can cause a problem, as even though all examples

7

are correctly classified by all rules during the training

phase they may not be during the testing phase.

Therefore during the testing phase the exact weights

may become important. To combat this situation it is

detected whether any rules do not take part in any

contentions (where two or more rules predict different

classes for any given example) during the training

phase, if they do not they will not have their weights

optimised and default to the normal rule weights. Such

contentions (or lack of) can be detected by assigning a

flag to each rule (with a default value of off); the sets of

rules covering each example can then be examined. If

any set of rules contain rules with different consequent

classes then the contention flag is set to on for those

rules, meaning that the weight for those rules should be

optimised. The rules left with a flag of off should not

have their weight optimised.

Note that, ideally, the fitness function should be based

on the classification accuracy on a hold out set, i.e. the

original training set should be divided into a building set

(used to build the rules) and a validation, hold out set,

used to compute the classification accuracy to be used

as the fitness of a particle. This would have the

advantage of avoiding overfitting of the rule weights

optimised by the PSO to the training set. However, it

was not feasible to use such a hold out set in our

experiments, due to the sparseness of data at lower

levels of the class tree. It would be impossible to induce

rules for some classes if examples from the training set

were reserved for a hold out set. We consider the

benefits of creating rules for all classes outweigh the

problems due to possible overfitting from the lack of a

hold out set. Initial tests confirmed this hypothesis as

the decrease in overall predictive accuracy due to being

unable to induce rules for some classes was quite

severe.

3.3. Rule-Based Extended Multiplicative Method

This method is derived from a method proposed by

Sun et al. [37] to reduce the problem of blocking in

hierarchical multi-label classification. The blocking

problem was described by Sun et al. in the following

way. Each class node in the class tree is associated with

a probabilistic classifier, learned during the training

phase. In the testing phase, an example with unknown

class is classified in a top-down fashion, as follows. For

each class node in the first level of the class tree, the

example is assigned that class if the corresponding

classifier predicts that class with a probability greater

than a predefined threshold. An example is said to be

rejected by a classifier if the probability of the example

having the class predicted by the classifier is smaller

than or equal to the threshold. For each of the (parent)

classes assigned to the example at the first level, the

example is pushed down the class tree to the child class

nodes of those parent classes. Then, for each of those

child classes the example is either assigned that child

class or is rejected by the corresponding classifier

depending on the probability of that class as computed

by the classifier, etc. This top-down classification

process is repeated until the example reaches the leaf

nodes of the class tree. In this context, blocking occurs

when an example is wrongly rejected by a classifier in

an internal (non-leaf) node of the class tree, and so the

example can never be shown to the classifiers that are

descendants of the classifier that made the wrong

rejection. As a result, the example can never be

correctly classified at class levels deeper than d, where d

is the level of the classifier that wrongly rejected the

example.

One of the methods proposed by Sun et al. to cope

with the blocking problem consists of assigning an

example to a leaf class in the class tree if the multiplied

probabilities of the example belonging to the internal

(non-leaf) classes along the path from the root node to

the leaf class node exceed a certain threshold. The

authors called their approach the Extended

Multiplicative Method (EMM).

Note that in Sun et al.’s work an example can be

assigned to more than one class at each hierarchical

level, which is characteristic of multi-label classification

problems. This is not the case in the data sets used in

this paper, where a single class must be assigned for

each level. In addition, EMM was proposed in the

context of probabilistic classifiers, which again is not

the case in our work, where the classifier consists of a

set of IF-THEN classification rules.

Therefore, we adapted EMM to the context of our

work, where the classification of test set examples is

performed by classification rules and we must assign

only one class label per hierarchical level for each

example. In this context, there is no need for the

threshold used by EMM, since a testing example is

simply assigned the best predicted class at each

hierarchical class level. In addition, note that different

leaf class nodes can be at different depths in the class

tree. Hence, just multiplying the probabilities along

each path from the root to a leaf class node is not

appropriate because, when we compare the probabilities

associated with different leaf classes in order to choose

the best leaf class to be assigned to the testing example,

shallower leaf class nodes would have an advantage

over deeper ones – given the reductive nature of

multiplying positive numbers smaller than 1.

Furthermore, there is no innate sense of probabilistic

matching given a (non-fuzzy) rule-based classifier, so it

is natural to use a measure of rule quality instead of

probabilistic matching.

Given this discussion, our variant of EMM, called

Rule-based EMM, finds the best "path" consisting of a

series of rules discovered by HEHRS – one rule for each

class level. It considers every possible path by

considering not only the best rule covering the current

test example at each class level, but all possible rules

that cover the current test example. The best path is

considered to be the path with the highest value of
the geometric mean of all the rule weights along the

8

path from the root to the class leaf node, as given by

Equation 5.

l
lwwwyPathQualit ...21 ××=

Equation 5: EMM for Rules Path Quality

Where yPathQualit is the score for a certain path

and ,,...,1, liwi = is the weight associated with the rule

covering the example at class level i in that path and l is

the number of rules that cover the example (i.e. the

number of class levels) in that path. The formula used to

compute each rule weight is given by Equations 1 and 2.

4. The Creation of the
Bioinformatics Data Sets

The hierarchical classification methods proposed in

the previous section were evaluated in six challenging

real-world datasets involving the prediction of protein

function. The protein functional classes to be predicted

in these data sets are the functional classes of GPCRs

(G-Protein-Coupled Receptors) or Enzymes.

G-protein-coupled receptors are proteins involved in

signalling. They span cell walls so that they influence

the chemistry inside the cell by sensing the chemistry

outside the cell. More specifically, when a ligand (a

substance that binds to a protein) is received by a

GPCR, it causes the attached G-proteins to activate and

detach, this is a mechanical biological switch that

causes the released G-Protein to affect other reactions

within the cell. This kind of protein is particularly

important for medical applications because it is believed

that 40%-50% of current drugs target GPCR activity

[14]. Enzymes are another subset of proteins; they are

catalysts which are used to speed up and make possible

many of the chemical reactions that take place within

the cell, without being altered themselves during the

reaction. They are usually very specific and only

catalyse one type of reaction within the cell. Often they

can be turned on and off by another ligand. This is used

to control both the speed of reaction and the course of

overall reaction pathways that take place within the cell.

The protein functional classes are given unique

hierarchical indexes by [15] in the case of GPCRs and

by [12] (Enzyme Commission Codes) in the case of

enzymes. In the case of GPCRs, examples (proteins)

have up to 5 class levels, but only 4 levels are used in

the datasets created in this work, as the data in the 5th

level is too sparse for training – i.e., in general there are

too few examples of each class at the 5th level. In any

case, it should be noted that predicting all the first four

levels of GPCR’s classes is already a challenging task.

Indeed, most works on the classification of GPCRs limit

the predictions to just the topmost or the two topmost

class levels (families and subfamilies but not groups,

etc.) [2], [17], [24], [29]. All 4 levels of the Enzyme

Commission Codes are used in the created Enzymes

data sets.

The data used in our experiments was constructed

from data in UniProt [41] and GPCRDB [15]. UniProt is

a well known biological database, containing sequence

data and a rich annotation about a large number of

different kinds of proteins. It also has cross-references

for other major biological databases such as Prosite

[32], Prints [31], Pfam [30] and Interpro [23] [27] (see

below). It was extensively used in this work as a source

of data for creating the data sets used in our

experiments. Only the UniProtKB/Swiss-Prot was used

as a data source, as it contains a higher quality,

manually annotated set of proteins. Unlike Uniprot,

GPCRDB is a biological database specialised on GPCR

proteins.

We did experiments with four different kinds of

predictor attributes, each of them representing a kind of

“protein signature”, or “motif”, namely: FingerPrints

from the Prints database, Prosite patterns, Pfam and

Interpro entries. Prosite patterns are regular expressions

describing short fragments of protein sequences. Such

patterns are especially good at detecting highly

conserved functional regions like catalytic sites in

enzymes [22], as they do not allow partial hits. They

also have the advantage of being comprehensible to the

user. In other words, in general, a protein either contains

or does not contain a Prosite pattern, involving an “all-

or-nothing” matching. However due to this rigidity there

tend to be a large number of false negatives associated

with each Prosite pattern [27]. Pfam entries are different

from Prosite patterns in that they employ Hidden

Markov Models rather than regular expressions. Prints

uses motifs in a similar way to Prosite, however it

contains multiple non-overlapping motifs in a single

entry. Prints therefore provides a more flexible

descriptive language for a protein signature. Another

difference is that Prosite patterns usually correspond to

functional regions, whilst it is often the case that a

Prints motif (FingerPrint) refers only to a highly

conserved region with no specific function. Interpro

integrates several protein motif databases into one.

We created six data sets to evaluate the proposed

hierarchical classification methods, three GPCR data

sets and three Enzyme data sets. For the GPCR data sets

the predictor attributes were Prints, Prosite and Interpro

entries and the protein's molecular weight and sequence

length. For the Enzyme data sets the predictor attributes

were Prosite, Interpro and Pfam entries and the protein's

molecular weight and sequence length.

Any duplicate examples (proteins) in a data set are

removed in a pre-processing step, i.e., before the

hierarchical classification algorithm is run, to avoid

redundancy. For both GPCR and Enzyme data sets, if

there are fewer than 10 examples in any given class in

the class tree that class is merged with its parent class. If

the parent class is the root node, the entire small class is

removed from the data set. This process ensures there is

9

enough training and test data per class to carry out the

experiments. (If a class had less than 10 examples,

during the 10-fold cross-validation procedure there

would be at least one iteration where there would be no

example of that class in the test set, an undesirable

situation.) Any binary attribute that has a value which

occurs in only one example is removed from the

corresponding data set, since these binary attributes in

general do not have a good predictive power. An initial

random sample of 15000 enzymes from the UniProt

database was used to generate the enzyme data sets.

Less than the original 15000 examples occur in the final

data sets because of the duplicate and small class

removal process.

After data pre-processing, the final datasets used in

the experiments have the numbers of attributes,

examples (proteins) and classes per level (expressed as

level 1/ level 2/level 3/level 4) indicated in Table 1.

Table 1: Main characteristics of the datasets used in the experiments
 GPCR/Prints GPCR/Prosite GPCR/Interpro EC/Prints EC/Prosite EC/pfam

#Attributes 283 129 450 382 585 708

#Examples 5422 6261 7461 14038 14048 13995

#Classes 8/46/76/49 9/50/79/49 12/54/82/50 6/45/92/208 6/42/89/187 6/41/96/190

5. Computational Results

This section reports computational results evaluating

the methods proposed in section 3 in the created

datasets described in section 4. Recall that section 3

proposed 3 types of hierarchical classification methods,

namely:

(a) Hierarchical Ensemble of Hierarchical Rule Sets

(HEHRS) with rule weights computed by equations 1

and 2;

(b) HEHRS with rule weights optimized by PSO –

two versions of the PSO were proposed, with and

without a lower limit of 0 for the rule weights; these two

versions are hereafter referred to as LimPSO-HEHRS

and PSO-HEHRS, respectively. Both versions of PSO

are a "vanilla" PSO [26] with standard parameter

settings [8]: W=0.73, ϕ1 = ϕ2 = 2.05.

(c) The Extended Multiplicative Method adapted for

rule-based (rather than probabilistic) classifiers –

hereafter called Rule-EMM for short.

These methods are compared against a baseline

method, namely the standard top-down approach for

hierarchical classification. This approach consists of

simply running a rule induction algorithm at each

internal (non-leaf) node of the class tree, as described in

section 2. In the proposed and baseline methods the base

rule induction algorithm used in our experiments was

the well-known Ripper algorithm [42].

Throughout the entire set of experiments 10-fold cross

validation [42] is used. Since PSO is a stochastic

method, the PSO-HEHRS and Lim PSO-HEHRS

methods are run 10 times each – with different random

seeds used to create the initial population in each run –

for each one of the 10 folds. As the remainder of the

methods are deterministic, they are run just once for

each of the 10 folds.

Table 2: Predictive accuracy (%) with Prints attributes and GPCR classes

Class level Rule-EMM PSO-HEHRS

LimPSO-

HEHRS HEHRS Baseline

1 91.0±0.65 91.5±0.8 91.3±0.83 90.6±0.41 91.2±0.74

2 65.1±1.25 82.0±1.09 81.7±1.06 77.9±0.46 80.3±1.12

3 37.5±0.84 56.1±1.43 56.1±1.2 55.1±0.95 53.5±1.5

4 44.0±3.49 83.1±3.03 83.0±2.78 82.1±2.33 78.3±2.53

Table 3: Predictive accuracy (%) with InterPro attributes and GPCR classes

Class level Rule-EMM PSO-HEHRS

LimPSO-

HEHRS HEHRS Baseline

1 90.2±0.69 91.0±0.71 91.1±0.76 89.7±0.3 90.3±0.71

2 68.5±0.79 83.3±0.97 82.9±0.82 79.1±0.47 81.1±0.74

3 36.4±1.03 55.2±1.33 55.4±1.15 54.6±1.16 52.8±0.87

4 46.0±2.86 86.9±1.78 86.6±1.81 86.5±2.23 82.4±2.65

Table 4: Predictive accuracy (%) with Prosite attributes and GPCR classes

Class level Rule-EMM PSO-HEHRS

LimPSO-

HEHRS HEHRS Baseline

1 87.4±0.88 87.8±0.62 87.5±1.0 86.3±1.36 87.6±0.92

2 49.8±1.18 63.5±1.77 62.9±1.91 61.5±1.79 63.9±1.43

3 18.1±0.59 32.2±1.74 32.3±1.91 29.5±1.62 29.3±1.56

4 12.8±2.39 45.5±3.18 45.5±3.93 36.5±2.46 35.4±1.84

10

Table 5: Predictive accuracy (%) with Prints attributes and Enzyme classes

Class level Rule-EMM PSO-HEHRS

LimPSO-

HEHRS HEHRS Baseline

1 48.9±2.41 97.8±0.34 97.8±0.41 96.7±0.35 97.4±0.28

2 33.5±2.61 95.0±0.47 95.2±0.67 93.3±0.29 94.6±0.46

3 32.8±1.03 94.1±0.34 94.3±0.65 90.1±0.97 93.8±0.54

4 29.7±0.91 93.4±0.69 93.7±0.79 93.3±0.75 92.8±0.87

Table 6: Predictive accuracy (%) with Pfam attributes and Enzyme classes

Class level Rule-EMM PSO-HEHRS

LimPSO-

HEHRS HEHRS Baseline

1 37.0±0.24 98.0±0.2 98.0±0.32 92.3±1.01 95.8±1.84

2 23.3±0.8 96.2±0.43 96.3±0.37 88.7±1.07 94.0±2.04

3 23.5±0.74 94.9±0.5 94.9±0.45 87.6±1.01 92.6±2.26

4 23.5±0.75 96.0±0.48 96.1±0.33 95.1±0.89 94.5±1.19

Table 7: Predictive accuracy (%) with Prosite attributes and Enzyme classes

Class level Rule-EMM PSO-HEHRS

LimPSO-

HEHRS HEHRS Baseline

1 40.7±0.4 98.7±0.3 98.7±0.24 96.6±0.48 98.5±0.24

2 28.1±0.42 97.4±0.45 97.3±0.41 94.1±0.27 97.1±0.42

3 26.2±0.44 96.2±0.39 96.0±0.34 92.4±0.45 95.9±0.19

4 23.3±0.44 95.2±0.34 95.3±0.41 95.2±0.42 95.0±0.42

Table 8: Overall performance according to WEKA’s Student t-test, when compared to Baseline
Overall Scores Against Baseline – Best possible score for each cell in the first 4 rows is 6

(number of data sets)

Class level Rule-EMM PSO-HEHRS LimPSO-HEHRS HEHRS

1 -3 3 2 -4

2 -6 4 3 -6

3 -6 4 4 -1

4 -6 4 5 4

Totals -21 15 14 -7

Table 9: The Un-weighted Misclassification cost, with Student t-tests comparing each approach against the baseline

Data Set Rule-EMM

PSO-

HEHRS

LimPSO-

HEHRS HEHRS Baseline

GPCR Prints 28.3±0.78 18.72±0.62 18.88±0.69 20.76±0.33 19.86±0.61

GPCR Interpro 25.53±0.5 17.13±0.51 17.19±0.5 19.21±0.31 18.44±0.36

GPCR Prosite 37.62±0.66 30.8±0.74 31.21±0.79 32.83±1.13 31.43±0.94

Enzyme Prints 60.5±1.74 4.78±0.39 4.67±0.55 6.74±0.4 5.2±0.42

Enzyme Pfam 69.45±0.51 3.68±0.29 3.65±0.26 9.68±0.91 5.73±1.83

Enzyme Prosite 66.59±0.41 2.99±0.29 3.07±0.22 5.68±0.32 3.21±0.23

Accumulative

t-test score

against baseline -6 5 3 -6

Table 10: The Weighted Misclassification cost, with Student t-tests comparing each approach against the baseline

Data Set Rule-EMM

PSO-

HEHRS

LimPSO-

HEHRS HEHRS Baseline

GPCR Prints 22.24±0.65 15.1±0.65 15.31±0.75 17.01±0.3 15.98±0.66

GPCR Interpro 20.62±0.53 14.3±0.63 14.35±0.65 16.38±0.23 15.51±0.53

GPCR Prosite 30.31±0.77 24.91±0.7 25.33±0.95 26.87±1.29 25.25±0.96

Enzyme Prints 57.74±2.16 3.73±0.36 3.66±0.49 5.4±0.27 4.16±0.32

Enzyme Pfam 68.23±0.43 3.04±0.25 3.0±0.27 9.33±0.96 5.21±1.89

Enzyme Prosite 64.62±0.38 2.2±0.31 2.27±0.23 4.9±0.37 2.42±0.24

Accumulative

t-test score

against baseline -6 4 3 -6

11

Tables 2 through 7 show the predictive accuracy that

the different methods achieved in each data set during

10-fold cross validation. The numbers after the “±”

symbol are standard deviations. In these tables a cell is

coloured dark grey if there is a statistically significant

win of the method in the corresponding column against

the baseline method, according to a two-tailed Student's

t-test with significance level of 0.05. The t-test used is

WEKA’s implementation of Nadeau and Bengio’s

corrected re-sampled t-test [41]. This more conservative

corrected t-test takes into account the ratio of training

and test examples in an attempt to limit the number of

significant results occurring by chance. A cell is

coloured light grey if there is a statistically significant

loss when compared to the baseline method. Table 8

shows the cumulative scores – calculated based on the

results of the Student's t-test – for each method, at each

class level, for all data sets. For each data set, in Table 8

one is added to the score of each cell if its

corresponding method (indicated by the column label)

at the corresponding class level (indicated by the row

label) significantly beats the baseline approach in that

data set. One is deducted from the score in the cell for a

loss against the baseline approach in the same manner.

The totals in the bottom row of the table are simply the

summed results – over all data sets – from each class

level for each method.

Tables 9 and 10 show the un-weighted and weighted –

respectively – misclassification costs associated with

each experiment. The misclassification cost is computed

by finding the shortest path in the class tree from the

predicted class node to the actual class node. In the case

of the weighted misclassification cost this path is then

weighted (the values of the edges of the path are added),

with edges between the root node and the first class

level given a weight of 0.26, the edges between the first

a second class level given a weight of 0.13, between the

second and third a weight of 0.07 and between the third

and fourth class levels a weight of 0.04. The reason for

this weighting is to assign a higher cost to more general

misclassifications. These general errors are more serious

than the finer grained errors at lower levels of the class

tree, as if a general error is made, no information about

the true class of an example is gained.

In the case of the un-weighted misclassification score,

each edge is assigned a weight of one. The

misclassification score for each example is then

normalised by dividing the number of edges between

the predicted and the actual class nodes in the class tree

by the number of edges in the worst possible score for

that example. The latter can be found by finding the

weight (number of edges) from the actual class to any

leaf node via the root node, and taking the largest

weight as the worst possible misclassification score. The

scores from every test example classification are then

added and divided by the total number of test examples

to give the final misclassification score. The

accumulative t-test score at the bottom of Tables 9 and

10 shows the number of times the corresponding

method is significantly better (+1) or worse (-1) than the

baseline approach across all the experiments. The

misclassification costs shown in Tables 9 and 10 are

useful as (unlike the accuracy rates shown in Tables 2

through 8) they take into account the hierarchical

structure of the classes, and so they provide a way to

quickly assess the performance of a hierarchical

approach. They can also be tailored to concentrate on

general or fine grained errors using weighting.

 Let us first analyze the results with respect to

accuracy rate (Tables 2 through 8). The pure HEHRS –

without rule weights optimized by PSO – achieved a

disappointing performance: it obtained an overall score

of –7. Observing both Table 8 and the more detailed

results per dataset in Tables 2 through 7, one can see

that, in all the 6 datasets, HEHRS obtains results

significantly worse than the baseline method's results in

the first two (shallower) class levels. On the other hand,

in all the 6 datasets HEHRS obtains results significantly

better than the baseline method's results in the fourth

(deepest) class level. The consistency of these results is

interesting, considering that the 6 datasets contain very

different numbers of attributes and examples, as well as

different kinds of biological motifs as predictor

attributes – as indicated in Table 1.

The poor performance of HEHRS is likely due to its

bias towards deeper classes. As it predicts a class based

upon the addition of rule weights, classes that are deeper

will have more nodes and so more weights when

compared to shallower ones. This explanation is

supported by the differences seen between the GPCR

and Enzyme data sets. In the GPCR data sets the

number of examples in each class is quite unbalanced,

with one class having a large portion of the examples,

this is even more so the case at lower levels. This is an

advantage for HEHRS at the lower levels (3 and 4)

because it tends to try and classify more examples as the

deeper class, which also happens to be one of the

largest. The classes are more balanced in the enzyme

data set but again the bias towards deeper classes still

reaps rewards in the fourth level.

One method of dealing with this bias would be to

average the rule weights rather than adding them.

However, it is likely that this would cause the opposite

problem in HEHRS – a bias towards shallower classes.

This is because, in general, rules at deeper class levels

tend to have lower qualities, due to the higher number

of classes and lower number of examples per class.

Hence, the averaging process would favour the classes

with fewer descendants, giving fewer and higher

weights. Investigating the effect of this averaging

process empirically could be a topic for future research.

The Rule-EMM method achieved by far the worst

results, significantly losing to the baseline method in 21

out of 24 cases. This very bad performance is most

likely due to the way in which a decision list is

generated by the rule induction algorithm and its

interaction with the EMM approach. The Rule-EMM

method is reliant on not choosing only the best

12

matching rule (as in RIPPER), but all rules that match

the test example at all (at each class level) in a rule list.

This is the trade off needed when attempting to find all

possible paths to class leaf nodes. The trade off does not

seem to pay off with the current rule induction

algorithm, RIPPER. It is possible that if the rules

produced by the rule induction algorithm were

unordered the misclassifications would become less of a

problem, since unordered rules tend to be more modular

than ordered rules. Investigating this hypothesis is an

interesting topic for future research.

In general the best performing methods in terms of

predictive accuracy are LimPSO-HEHRS and PSO-

HEHRS, with the version of PSO without a lower limit

on the rule weights (PSO-HEHRS) beating the PSO

version with a lower limit (LimPSO-HEHRS) by only

one test. Both methods obtained a good performance,

with an overall score of 15 or 14, respectively – the

maximum possible score is 24 (4 class levels times 6

datasets).

These conclusions derived from the analysis of

accuracy rates are also reflected in general in the

misclassification costs, with HEHRS and Rule-EMM

getting the same overall negative score against the

baseline and the two versions of the PSO getting an

overall positive score against the baseline. Also, when

the finer grained misclassifications are weighted more

evenly (as with the un-weighted misclassification costs)

the difference between LimPSO-HEHRS and PSO-

HEHRS becomes more apparent, with PSO-HEHRS

outperforming LimPSO-HEHRS significantly in 2 out

of 6 tests.

Using the PSO to optimise rule weights has the

disadvantage that a PSO run is very computationally

expensive. On a machine with a P4 3.0 GHz CPU it

takes about five hours to optimise the weights for the

rules generated from a single 10 times 10-fold cross

validation run (depending on the number of rules). Also

HEHRS itself requires more computational time as

many more rule sets must be induced using larger

training sets (when compared to the baseline approach).

On the same machine the models for a single run of the

baseline approach are induced within ten minutes,

whereas the HEHRS models take up to an hour on the

larger datasets. These models do not variate between

approaches and so can be cached, increasing efficiency

when comparing multiple approaches. However, note

that maximising classification accuracy is usually

considered more important than minimizing the

processing time taken by a classification algorithm. This

is particularly the case in real-world scenarios like the

bioinformatics problems addressed in this work, where

the time taken by a run of the PSO algorithm is a very

small fraction of the time that was spent in preparing

our datasets for data mining purposes (about 4 months).

This scenario is also often found in other data mining

applications, where most of the time taken by the entire

knowledge discovery process is spent preparing data.

6. Conclusions and Future
Research

This work proposed new hierarchical classification

methods that use characteristics of hierarchical class

data (where the classes are arranged in a tree structure)

to try to improve predictive accuracy, with respect to a

standard top-down hierarchical classification method.

More precisely, three main types of hierarchical

classification methods were proposed, namely: (a)

HEHRS (Hierarchical Ensemble of Hierarchical Rule

Sets), a method based on exploiting the hierarchical

nature of the data to create different training sets to be

given as input to a bagging-like ensemble method; (b)

two versions of a Particle Swarm Optimisation (PSO)

method for optimising the rule weights used by HEHRS

to classify test examples; and (c) Rule-EMM, the rule-

based version of the Extended Multiplicative Method,

which tries to reduce the problem of misclassifications

at shallower class levels leading to misclassifications at

deeper class levels in the standard top-down approach

for hierarchical classification.

Out of these three types of methods, the pure HEHRS

method and Rule-EMM produced disappoint results, in

general significantly worse than the standard top-down

approach. However, the development of a PSO

algorithm to optimise rule weights for HEHRS was very

effective, leading to a hierarchical classification system

that obtained, overall, predictive accuracies significantly

better than the accuracies obtained by the standard top-

down approach. These results were to a large extent

consistent across 6 different bioinformatics datasets

involving the hierarchical classification of protein

functions, a set of challenging real-world bioinformatics

problems with large numbers of predictor attributes and

large numbers of classes to be predicted. Indeed, in this

work we predicted GPCR and Enzyme classes up to the

fourth level of the class hierarchy, whilst most of the

literature addresses the less challenging problem of

predicting GPCR and Enzyme classes only at the first

and sometimes second level of the class hierarchy [2],

[17], [24], [29].

There are several potential avenues for future

research. Since optimising the rule weights used by

HEHRS with the PSO method proved to be very

effective, perhaps the rule weights used by Rule-EMM

could be optimised in just as an effective way. In

addition, as mentioned earlier, it would be interesting to

investigate the performance of Rule-EMM when the

base rule induction algorithm used to discover

classification rules produces an unordered rule set,

rather than an ordered rule list (see Section 5). Also, it

would be interesting to investigate if the performance of

HEHRS can be improved by averaging (rather than

adding) rule weights, as mentioned in Section 5.

13

References
[1] R. Battiti, A.M. Colla, Democracy in Neural Nets:

Voting Schemes for Accuracy, Neural Networks, pp.

691-707, vol. 7, 1994.

[2] M. Bhasin, G.P. Raghava. GPCRpred: an SVM-based

method for prediction of families and subfamilies of G-

protein coupled receptors. Nucleic Acids Res. 1, 32

(Web Server issue), pp. 383-9, 2004.

[3] H. Blockeel, L. Schietgat, J. Struyf, S. Dzeroski, A.

Clare, Decision Trees for Hierarchical Multilabel

Classification: A Case Study in Functional Genomics.

In Proc. PKDD 2006, 2006.

[4] L. Breiman, Bagging Predictors. Machine Learning,

Vol. 24, pp. 123-140, 1996.

[5] G. Brown, J. Wyatt, R. Harris, X. Yao, Diversity

creation methods: a survey and categorisation.

Information Fusion, 6(1), pp. 5-20. 2005

[6] A. Bulashevska and R. Eils, Predicting protein

subcellular locations using hierarchical ensemble of

Bayesian classifiers based on Markov chains, BMC

Bioinformatics, 7:298, 2006.

[7] A. Clare, Machine learning and data mining for yeast

functional genomics. PhD thesis. University of Wales

Aberystwyth, 2003.

[8] M. Clerc, J. Kennedy, The particle swarm-explosion,

stability and convergence in a multidimensional

complex space, IEEE Transactions on Evolutionary

Computation 6 (1). 2002.

[9] P. Derbeko, R. El-Yaniv, R. Meir, Variance Optimized

Bagging. In Proc. 13th European Conf. on Machine

Learning, pp. 60-71, 2002.

[10] T.G. Dietterich. Machine learning research: Four

current directions. AI Magazine, 18(4), pp. 97-136,

1997.

[11] R. Eisner, B,.Poulin, D. Szafron, P. Lu and R.

Greiner, Improving Protein Function Prediction using

the Hierarchical Structure of the Gene Ontology, In

Proc. 2005 IEEE Symp. on Computational Intelligence

in Bioinformatics and Computational Biology, 2005.

[12] Enzyme Nomenclature,

http://www.chem.qmul.ac.uk/iubmb/enzyme/, Visited

on July 2006.

[13] U.M. Fayyad, G. Piatetsky-Shapiro and P. Smyth.

From data mining to knowledge discovery: an

overview, Advances in Knowledge Discovery and Data

Mining, AAAI/MIT, pp. 1-34, 1996.

[14] D. Fillmore, It’s a GPCR world, Modern drug

discovery, vol. 11, issue 7, pp 24-28, November 2004.

[15] GPCRDB, http://www.gpcr.org/7tm/, Visited on July.

2006.

[16] S. Guenter, H. Bunke, Optimization of Weights in a

Multiple Classifier Handwritten Word Recognition

System Using a Genetic Algorithm, ELCVIA(3), No. 1,

pp. 25-44, 2004.

[17] Y.Z. Guo, M.L. Li, K.L. Wang, Z.N. Wen, M.C. Lu,

L.X. Liu, L. Jiang, Classifying G protein-coupled

receptors and nuclear receptors on the basis of protein

power spectrum from fast Fourier transform.Amino

Acids ,30(4), pp. 397-402, Epub, 2006.

[18] S. Günter, H. Bunke, Evaluation of Classical and

Novel Ensemble Methods for Handwritten Word

Recognition, Proc 10th Int. Workshop on Structural

and Syntactic Pattern Recognition (SSPR), pp. 583-

591, 2004.

[19] D.J. Hand. Construction and Assessment of

Classification Rules. Wiley, 1997.

[20] N. Holden and A.A. Freitas, Hierarchical

classification of G-Protein-Coupled Receptors with a

PSO/ACO Algorithm, In Proc. IEEE Swarm

Intelligence Symposium (SIS-06), pp. 77-84. IEEE

Press, June 2006.

[21] Y. Huang, J. Cai, L. Ji, Y. Li, Classifying G-protein

coupled receptors with bagging classification tree,

Computational Biology and Chemistry 28(4), pp. 275-

280, 2004.

[22] N. Hulo, C. J. A. Sigrist, V. Le Saux, P. S.

Langendijk-Genevaux, L. Bordoli, A. Gattiker, E. De

Castro, P. Bucher, A. Bairoch, Recent improvements to

the PROSITE database, Nucleic Acids Research, 2004

[23] Interpro, http://www.ebi.ac.uk/interpro/, Visited on

July 2006.

[24] R. Karchin, K. Karplus , D. Haussler. Classifying G-

protein coupled receptors with support vector

machines. Bioinformatics, 18(1), pp. 147-59, 2002.

[25] J. Kennedy, and W. Spears. Matching Algorithms to

Problems: An experimental Test of the Particle Swarm

and some Genetic Algorithms on the Multimodal

Problem Generator. IEEE International Conference on

Evolutionary Computation. May 1998.

[26] J. Kennedy and R. C. Eberhart, with Y. Shi. Swarm

Intelligence, San Francisco: Morgan Kaufmann/

Academic Press, 2001.

[27] J. McDowall, InterPro: Exploring a Powerful Protein

Diagnostic Tool, ECCB05, Tutorial, pp 14, 2005.

[28] C.R. Mouser, S. A. Dunn. Comparing genetic

algorithms and particle swarm optimisation for an

inverse problem exercise. Computational Techniques

and Applications Conference (CTAC-2004). September

2004.

[29] P.K. Papasaikas, P.G. Bagos, Z.I. Litou, S.J.

Hamodrakas. A novel method for GPCR recognition

and family classification from sequence alone using

signatures derived from profile hidden Markov models.

SAR QSAR Environ Res, 14(5-6), pp. 413-20, 2003.

[30] Pfam, http://www.sanger.ac.uk/Software/Pfam/,

Visited on July 2006.

[31] Prints,

http://umber.sbs.man.ac.uk/dbbrowser/PRINTS/,

Visited on Jan. 2006.

[32] ProSite, http://us.expasy.org/prosite/, Visited on July

2006.

[33] R. Ranawana, V. Palade, MVGen - Ensemble

Learning for MCS Majority voting with a Genetic

Algorithm , Internal Report, Oxford University

Computing Laboratory, 2005.

[34] D.B. Skalak, Prototype Selection for Composite

Nearest Neighbour Classifiers, PhD Thesis, University

of Massachusetts, Amherst, MA, 1997.

[35] C.D. Stefano, A. D. Cioppa, A. Marcelli, Exploiting

Reliability for Dynamic Selection of Classifiers by

Means of Genetic Algorithms. In Proc. 7th Int. Conf.

on Document Analysis and Recognition - Volume 2,

14

ICDAR. IEEE Computer Society, Washington, DC,

671. 2003.

[36] A. Sun and E.-P. Lim, Hierarchical Text

Classification and Evaluation, In Proc. 2001 IEEE Int.

Conf. on Data Mining, pp. 521-528, 2001.

[37] A. Sun, E.-P. Lim, W. Keong Ng, J. Srivastava,

Blocking Reduction Strategies in Hierarchical Text

Classification, IEEE Transactions on Knowledge and

Data Engineering 16, 10, pp. 1305-1308, 2004.

[38] T. Peng, W. Zuo, F. He, Text Classification from

Positive and Unlabeled Documents Based on GA,

vecpar06 (7), 2006.

[39] A. Tan, D. Gilbert, Y. Deville, Multi-class protein

fold classification using a new ensemble machine

learning approach. Genome Informatics, 14, pp. 206-

217. 2003.

[40] P.-N. Tan, M. Steinbach, V. Kumar. Introduction to

Data Mining. Addison-Wesley, 2006.

[41] UniProt, http://www.ebi.uniprot.org/, Visited on July

2006.

[42] I.H. Witten, E. Frank, Data Mining: Practical machine

learning tools and techniques, 2nd Edition, Morgan

Kaufmann, San Francisco, CA, 2005.

