
Classification with Cluster-based Bayesian Multi-Nets
using Ant Colony Optimization

Khalid M. Salama, Alex A. Freitas

School of Computing, University of Kent, Canterbury, UK.

Abstract

Bayesian Multi-net (BMN) classifiers consist of several local models, one for
each data subset, to model asymmetric, more consistent dependency relation-
ships among variables in each subset. This paper extends an earlier work of ours
and proposes several contributions to the field of clustering-based BMN classi-
fiers, using Ant Colony Optimization (ACO). First, we introduce a new medoid-
based method for ACO-based clustering in the Ant-ClustBMB algorithm to learn
BMNs. Both this algorithm and our previously introduced Ant-ClustBIB for
instance-based clustering have their effectiveness empirically compared in the
context of the “cluster-then-learn” approach, in which the ACO clustering step
completes before learning the local BN classifiers. Second, we propose a novel
“cluster-with-learn” approach, in which the ACO meta-heuristic performs the
clustering and the BMN learning in a synergistic fashion. Third, we adopt
the latter approach in two new ACO algorithms: ACO-ClustBIB , using the
instance-based method, and ACO-ClustBMB , using the medoid-based method.
Empirical results are obtained on 30 UCI datasets.

Keywords: Data mining, Ant Colony Optimization, Bayesian Network
Classifiers, Cluster-based Bayesian Multi-nets

1. Introduction

Bayesian networks (BNs) excel in inference via modelling (in)dependency
relationships between variables [1, 2]. BNs can also be used for the data mining
classification problem [3, 4]. In this context, a BN classifier is a specific category
of probabilistic networks that assigns, to a new data instance, the class which
has the largest posterior probability, given the values of the predictor attributes
of that instance. Several types of BN classifiers were introduced in the liter-
ature; Näıve-Bayes, Tree Augmented Näıve-Bayes (TANs), Bayesian networks
Augmented Näıve-Bayes (BANs) and General Bayesian Networks (GBNs) [5, 6].

Unlike BN classifiers, where a single network (probably a complex structure
with a large number of edges) is built to model the variable dependencies from
the whole dataset, a Bayesian Multi-net (BMN) classifier consists of several
local networks, one for each subset of the dataset, to model an asymmetric set of

Preprint submitted to Swarm and Evolutionary Computation March 30, 2014

variable dependencies for each data subset. Typically, data subsets are obtained
by partitioning the dataset based on the class values [6, 7]. Alternatively, data
partitions can be automatically discovered by a learning algorithm, where each
partition holds more consistent variable dependencies given the data subset
in the partition. Consequently, more effective local BN classifiers, with less
structural complexity, are built for each data subset.

1.1. Motivation

Ant Colony Optimization (ACO) [8] is a meta-heuristic inspired by the be-
haviour of natural ant colonies. ACO has been successfully employed in several
machine learning research areas, namely classification [9, 10, 11, 12], clustering
[13, 14, 15], and learning general-purpose BNs [16, 17, 18, 19]. Recently, the
authors have introduced ABC-Miner [20, 21, 22], the first ACO-based algorithm
to build BN classifiers, which has been shown to obtain better predictive perfor-
mance, overall, when compared to some greedy BN learning algorithms. Hence,
we carry on developing ACO-based BN classifiers.

The motivation behind this work is as follows. Most algorithms used in the
literature based on BN approach for classification focus on building a single
model (BN classifier) on the whole dataset. Only a few works have proposed
to build several local Bayesian models via clustering the dataset, and in gen-
eral those few works use greedy search methods. Hence, based on the BMN
advantage of capturing asymmetric, more consistent variable dependency rela-
tionships from a well-partitioned dataset, it seems sensible to explore the use
of a non-greedy, robust global search method to find a good partitoning of the
data for the BMN approach. We pursue this direction by applying ACO, a
meta-heuristic global search method which is less prone to get stuck in local op-
tima than greedy search methods, to learn more effective (in terms of predictive
accuracy) and less complex (in terms of the number of edges) BN classifiers.
This work is a major extension of our recent work [23], which was the first work
to utilize the ACO meta-heuristic for building clustering-based BMN classifiers.

1.2. A Brief Note on Our Earlier Work Being Extended in This Paper

The research described in this paper builds on our recent work on an ACO
algorithm for clustering-based Bayesian Multi-Net learning [23]. That work
introduced two basic ideas, namely:

– First, we modified the instance similarity and cluster-membership mea-
sures of the K-modes clustering algorithm, which was previously used to
create data clusters before learning the BN classifiers in [24]. The mod-
ification consisted of proposing different instance similarity and cluster-
membership measures that cope better with nominal attributes in the
context of classification, which is the objective of the current work.

– Second, we introduced the Ant-ClustBIB algorithm that employs ACO to
learn clustering-based BMNs, using an instance-based method for ACO

2

clustering solution representation. The Ant-ClustBIB employed the con-
ventional‘ ‘clustering-then-learn” approach, where the data clusters are
completely generated before starting the BMN learning phase. Given the
good results obtained by Ant-ClustBIB we extend that algorithm in order
to try to improve its performance, as discussed in the next subsection.

1.3. Contributions of This Work

This paper extends our aforementioned previous work, and gives the follow-
ing contributions to the area of clustering-based BMN learning:

– First, we propose a new type of ACO clustering solution representa-
tion, the medoid-based representation, and utilize it in the new Ant-
ClustBMB algorithm to learn BMNs. Note that both the instance-based
Ant-ClustBIB and the medoid-based Ant-ClustBMB algorithms employ
the sequential two-phase “cluster-then-learn” approach, in which the ACO
meta-heuristics is used in a separate clustering phase before learning BMN
classifiers.

– Second, we propose a novel “cluster-with-learn” approach, in which the
ACO meta-heuristic performs both the clustering and the BMN learning
in a synergistic fashion, in one integrated phase.

– Third, we incorporate the cluster-with-learn approach into two ACO-based
clustering methods: the ACO-ClustBIBand the ACO-ClustBMBalgorithms
proposed in this paper.

– Fourth, we used two local BN classifiers: Näıve-Bayes and TAN, instead
of just Näıve-Bayes as in [23]. We used these two algorithms since they
tend to work well in small datasets, which is the case in our cluster-
based approach after partitioning the whole (big) dataset into smaller data
subsets. Besides, using more complex local BN learning algorithm would
dramatically increase the computational time of the whole algorithm.

Moreover, in this work, we extend our experimental evaluations as follows.
First, we run four sets of experiments, each used a different number of clusters
(a parameter defining the number of local BN classifiers): 2 clusters in the first
set, 4 clusters in the second set, 6 clusters in the third set, and 8 clusters in the
fourht set. In our previous work [23], we only used three number of clusters: 2,
4, and 6. Second, we increased the number of the datasets from 18 to 30.

1.4. Paper Organization

The rest of the paper is structured as follows. The next section gives some
background on various related topics: the different roles of classification and
clustering in our work; an overview on BNs, BN classifiers and BMNs; and
an overview on Ant Colony Optimization. We describe the clustering algorithm
used for building BMNs in Section 3. Section 4 describes the ACO algorithm for
clustering that uses the instance-based solution representation. Our proposed

3

extensions to the clustering technique for learning BMN classifiers are discussed
in Section 5. We introduce the new medoid-based solution representation for
the ACO-based clustering in Section 6. Section 7 describes the clustering then
BMN learning approach, realized in the Ant-ClustBIB and the Ant-ClustBMB

algorithms. Section 8 describes the clustering with BMN learning approach, re-
alized in the ACO-ClustBIB and the ACO-ClustBMB algorithms. Experimental
methodology and result analyses are discussed in Sections 9 and 10, respectively.
We conclude with general remarks in Section 11.

2. Background

2.1. Classification vs. Clustering

Since this work involves both classification and clustering, it is worth empha-
sizing the different roles of these tasks in this research. In data mining [3, 25],
classification is a supervised learning task that aims to build, from labelled in-
stances, a model (classifier) used to predict the class of unlabelled instances.
Clustering is an unsupervised learning task, where the target is to group a set
of objects (instances) in such a way that objects in the same group (cluster)
are more similar (in some sense) to each other than to those in other groups.
Figure 1 shows a graphical illustration between the two tasks.

Figure 1: (a) Clustering: the data instances are grouped into three different clusters according
to their location in the data space. (b) Classification: the labeled data instances are separated
according to the classes they belong to. Note that instances belonging to the same cluster
(because they are near to each other), can belong to different classes, as shown in the right-
hand side of the figure.

This work is ultimately addressing a classification problem, the problem of
learning BMN classifiers. As such, the performance of the proposed methods is
evaluated mainly in terms of predictive accuracy, as usual. In order to solve that
classification problem, however, we use clustering-based methods. That is, we
use clustering methods as a means to learn more accurate BMN classifiers, rather
than just generating well-separated goups of data instances. More precisely, we

4

use clustering methods to partition the data into a set of coherent clusters,
where each cluster is supposed to contain relatively similar instances – at least
the degree of similarity among instances within a cluster should be larger than
the degree of similarity among instances in different clusters. Then a local BN
classifier is learned from each cluster.

Note that, since in this work we use clustering to support the main objective
of building more accurate classification models, the quality of a clustering solu-
tion is assessed by the predictive accuracy of the local BN classifiers constructed
from the corresponding clusters. That is, we are not interested in evaluating
the clustering results per se, we are only interested in the clustering results as
a means to improve the classification results.

2.2. Bayesian Network Classifiers

A Bayesian Network (BN) is a type of probabilistic graphical model where
nodes represent variables (features or attributes) and directed edges represent
dependencies between variables. Each variable Xi is associated with a condi-
tional probability table (CPT), which encodes the probability of each value of
that variable given each combination of values of Parents(Xi) in the graph G
[26, 2, 27].

A BN classifier is a specific type of probabilistic graphic model where the
class variable is given a special treatement and the model is built with the
specific purpose of representing dependencies that are relevant for predicting
the class label of an instance, given the values of its predictor variables. That
is, a BN classifier computes the probability of each value c of the class variable C
given an instance x (with the attribute set X), and then labels the instance with
the class having the highest probability, as specified in the following formulas:

C(x) = argmax
∀ c∈C

P (C = c|x = x1, x2, ..., xn), (1)

and according to the Bayes’ Theorem and probability factorization:

posterior probability︷ ︸︸ ︷
P (C = c|x = x1, x2, ..., xn)α

prior probability︷ ︸︸ ︷
P (C = c)

n∏
i=1

likelihood︷ ︸︸ ︷
P (xi|Parents(Xi)) , (2)

where C ∈ Parents(Xi) ∀ Xi ∈ X.
There are many different types of BN classifiers, varying mainly in the num-

ber and types of probability values (entries in the CPTs) that they need to
compute [5, 7, 6, 28]. For the purposes of this paper, the main distinction that
needs to be made is the difference between k-dependency BN classifiers and
Bayesian Multi-Nets (the focus of this paper, discussed in the next Subsection).

Here we are using the term k-dependency BN classifier in a broad sense
to refer to a type of BN classifier where the class node is the “root” of the
network, there are edges pointing from the class node to each of the other
variables in the network, and each predictor variable (attribute) has at most
k parents in the network – not counting the class, which is the parent of all

5

nodes. k-dependency BN classifiers can be further categorized according to the
value of the maximum number of parents for each variable (i.e. the value of
k). The case where k = 0, where each predictor attribute has only the class
node as its parent, is the well-known Näıve-Bayes classifier, which assumes that
attributes are independent from each other given the class. The case where k
= 1 is generally referred to as a Tree-Augmented Näıve-Bayes (TAN), since the
dependencies among attributes are represented by a tree (each attribute has at
most one parent attribute). More generally, when the value of k is 2 or more,
the BN classifier is usually called a Bayesian network Augmented Näıve-Bayes
(BAN).

Broadly speaking, the larger the value of k, the stronger the graphical
model’s ability in representing more dependencies among the variables, but the
larger the number of parameters (entries in the CPTs) to be estimated – which
leads to longer processing times and increased risk of overfitting. It should be
noted that, in a k-dependency BN classifier, there is a single network structure
modelling dependencies among variables in the entire dataset. This is not the
case with Bayesian Multi-net classifiers, discussed next.

2.3. Bayesian Multi-nets

Unlike the aforementioned k-dependency BN classifiers, a Bayesian Multi-
net (BMN) classifier consists of a set of local Bayesian networks (BNs), more
precisely one local BN for each subset of instances in the dataset. The basic
idea is that the actual dependencies among variables might be significantly
different across different subsets of instances, and in this case it makes sense
to build a different local BN, capturing a different set of dependencies among
attributes, for each of those local subsets of instances. For instance, for a given
pair of variables Xi and Xj , the actual dependency between them might be best
represented as (Xi → Xj) in one instance subset and as (Xj → Xi) in another
instance subset, and there might be no dependency between them in another yet
instance subset. Even if the same kind of dependency (with the same direction)
is represented in two different instance subsets, it is possible that the precise
values of the CPTs associated with that dependency would be different in the
two instance subsets. Hence, the idea of learning a variable-dependency BN
(and associated CPTs) specific for each subset of instances, instead of a “one-
size-fits-all” BN (like in k-dependency BN classifiers), is intuitively appealing,
and could improve the predictive accuracy.

Typically, instance subsets (hereafter referred to as data subsets) are triv-
ially obtained by partitioning the dataset according to the class values. In this
case, each local BN is built from the instances belonging to a distinct value
of the class variable [7, 29]. In more precise notation, in a class-based BMN
the dataset D is partitioned into |C| data subsets, where |C| is the cardinality
of the domain of the class variable (i.e. the number of class values), and each
data subset Dc contains only the instances labeled by the class value c. Note
that the class attribute is not represented anymore in each data subset, and
therefore a general Bayesian network BNl (which is not a classifier by itself) is
built for each data subset Dc. Thus, a Bayesian multi-net classifier is a set of

6

local BNs {BN1, BN2, ..., BN|C|} that, together with the prior probability of C,
classifies an instance x by choosing the class C(x) that maximizes the posterior
probability, as shown in the following equation:

C(x) = argmax
∀ c∈C

P (x = x1, x2, ..., xn|BNc)× P (C = c), (3)

It is important to note, though, that partitioning the data according to the
values of the class variable is not necessarily the best approach to maximize the
predictive accuracy of a BMN classifier. One can use a type of machine learning
algorithm to learn the best partition (the one maximizing the predictive accu-
racy of the BMN classifier). The basic idea is to search for partitions where the
variable dependency relationships are more consistent within each data subset,
so that a more effective local BN is built for each data subset. For example,
if we have a world-wide demographic dataset, we might not find a “statisti-
cally” strong relationship between two variables like [Gender] and [Education].
However, if the dataset is partitioned, for instance, by geographic regions, we
can find a strong dependency relationship between [Education] and [Gender] in
one partition, and a different strong dependency relationship between [Educa-
tion] and [Income Level] in another partition that does not include the previous
relationship. Therefore, local models can better represent the dependency rela-
tionships in data sub-domains, rather than having one model to represent the
whole domain of the dataset.

As a natural approach to achieve that goal, the dataset D can be clustered
into K data subsets by a clustering algorithm, where K is an input value,
and each cluster (subset) Dk may contain instances labeled by different class
values. Hence, unlike the class-based BMN approach, in the clustering-based
BMN approach a local BN classifier BNCk is built for each Dk with X =
{X1, X2, ..., Xn} and C variables. A clustering-based BMN classifies an instance
x by assigning x to its nearest cluster Dk (the cluster which the instance belongs
to), and then uses the local BN classifier BNCk, which is built on Dk, to
compute the class value C(x) that maximizes the posterior probability, as shown
in Equation 4. As mentioned earlier, the clustering-based BMN approach is our
focus in this work.

C(x) = argmax
∀c∈C

P (c|x, BNCk),x ∈ Dk (4)

The graphical difference between class-based Bayesian multi-nets and clustering-
based Bayesian multi-nets is illustrated in Figure 2.

2.4. Ant Colony Optimization

Ant Colony Optimization (ACO) is a meta-heuristic search and optimization
method that is inspired by the “intelligent” behaviour of natural ant colonies
when they are foraging for food, and it has been widely used to solve (mainly
combinatorial) optimization problems [8, 30]. There are also many works ap-
plying ACO to data mining, both in clustering and in classification – some of

7

Figure 2: Given a dataset with four input attributes and a binary class variable: (a) represents
a class-based BMN with two local BNs, one for each class value, (b) represents a clustering-
based BMN with two arbitrary data clusters. Each local BN (classifier) has a different network
structure that asserts the variable dependencies in its corresponding data subset. Note that
the class variable is present in the local models of (b), unlike (a).

these works are briefly mentioned below. The basic principle of ACO is that
a population of artificial ants cooperate with each other to find the best path
in a graph, representing a candidate solution to the target problem. The way
the artificial ants cooperate with each other is inspired by the way that natural
ants cooperate to find the shortest path between two points in a given terrain,
like their nest and a food source. The basic pseudo-code of an ACO algorithm,
at a high level of abstraction, is presented in Algorithm 1.

Unlike conventional, greedy local search methods, in ACO the ants perform
a global search for new solutions in the search space, influenced by the amounts
of pheromone representing the qualities of solutions found so far. In nature,
pheromone is a chemical substance which the ants are attracted to. In ACO,
pheromone is a type of information with the analogous meaning of attracting
artificial ants: the larger the amount of pheromone in a given region of the search
space, the higher the probability that the ants will visit that region during the
solution construction process.

When an ant constructs a complete candidate solution, it deposits an amount
of pheromone proportional to the solution’s quality in the region of the search
space where that solution is located. Hence, with time the ants tend to con-

8

Algorithm 1 Pseudo-code of basic ACO algortihm

Begin ACO
ConstructionGraph← Problem definition;
Initialize();
best← ϕ; /* best solution found so far */
repeat

current← ant.ConstructSolution()
ApplyLocalSearch(current)
if Quality(current) > Quality(best) then

best← current;
end if ant.UpdatePheromone(current);

until termination condition

return best;
End

verge to paths representing near-optimal solutions in the search space. The
global search aspect of ACO stems from the fact that a population of ants
explores many different regions of the search space in parallel, and they make
probabilistic decisions about which region of the search space to move next. The
global search behaviour of ACO makes it less likely to get trapped into local
optima, compared to conventional (greedy and deterministic) local search meth-
ods. Note that, in one commonly used variation of the ACO algorithm, multiple
ants construct solutions independently in one iteration before the iteration-best
ant updates the pheromone to guide the search in the subsequent iterations.
The existence of multiple ants is not mentioned in the high-level pseudocode of
Algorithm 1 in order to keep it simple.

ACO has been employed for learning general -purpose BNs in several works
[16, 17, 18, 19]. In the area of Bayesian classification, the authors have recently
introduced ABC-Miner [20, 21] and its extended version, ABC-Miner+ [22], at
present the only algorithms that use ACO for learning a BN classifier in the
structure of a BAN and a Markov blanket respectively; rather than a Bayesian
Multi-net. Besides, ACO has contributed effectively in tackling the classification
problem. Ant-Miner was the first ACO algorithm for classification rule discovery
[10]. A recent and comprehensive survey on Ant-Miner and several of its variants
or extended versions, as well as on several other types of ACO algorithms for
data mining, is presented in [31]. Ant-Tree-Miner [32] and cACDT [33] are
recently-developed ACO algorithms for building decision trees.

In the field of clustering, ACO has introduced several algorithms, briefly
reviewed in [13]. Amongst them, we extended the work in [14] (described in
Section 4) for our clustering-based BMN classification algorithms. The choice
of this particular ACO technique for clustering is based on its fitness in terms
of problem representation and procedure adaptability to our learning task.

9

3. Data Clustering for Learning BMNs

3.1. Literature Review on BMN Learning

In class-based BMNs, building the local models for each data subset can be
performed as a general BN learning process. A well-known greedy algorithm
for learning a BN structure is Algorithm-B, proposed in [34], which searches
for the network structure that optimizes the value of a scoring function, such
as K2, cross-entropy or the Kullback distance [6, 35]. Chow-Liu tree Multi-net
[6, 7, 35] is a remarkable algorithm for learning local BNs due to its simplicity
and effectiveness. The algorithm builds a tree-like network structure, based on
the mutual information between the variables.

An extension to the Chow-Liu tree Multi-net was proposed in [35], which
involves maximizing the cross-class divergence. The Bayesian class-matched
multi-net algorithm [36] is another extension that uses a scoring function based
on detection-rejection behavior. The recursive Bayesian Classifier induction
[37] can build multiple local BNs for the same class by further dividing its data
subset recursively.

As for clustering-based BMN learning, it seems the “clustering-based” term
has not been introduced in the BMN learning literature before this work. How-
ever, a distinct research direction in the field of learning BMNs has been ex-
ploiting the idea of building several BN classifiers based on arbitrary partitions
of the data, using different techniques [38, 39, 40, 24, 41].

Broadly speaking, the idea of partitioning the dataset into arbitrary groups
of instances to build local BN classifiers can be achieved in two ways. The first
is recursive tree-like partitioning, in which the system chooses one attribute at
a time to expand the partitioning tree with a set of branches – one branch for
each nominal value or each interval of numerical values of the chosen attribute.
The BN classifiers are built on the leaf nodes, where each leaf node represents a
specific data subset characterized by the attribute values occurring in the path
from the root node to the leaf node in question. The second is the clustering
approach, in which a conventional clustering algorithm is utilized to partition
the data into data subsets. The BN classifiers are built on the output clustering
solution, and each cluster is characterized by the attribute values of the centroid
(pivot instance) of the cluster.

Näıve-Bayes Tree (NBTree), introduced in [38], is the first algorithm that
can be classified under the category tree-like partitioning. The algorithm follows
the same procedure as the well-known decision tree C4.5 algorithm. That is, it
recursively selects the attribute with the highest utility to expand the tree. If the
utility of this attribute is significantly better than the utility of the current node,
the attribute is used to further partition the current (sub) dataset; otherwise
the current node is considered a leaf node, and a Näıve-Bayes classifier is built
from the data subset in that leaf.

Another recent work in this category is learning Recursive Bayesian Multi-
nets (RBMN) [39], which utilizes a greedy, heuristic decision tree learning ap-
proach with local Enhanced Näıve-Bayes (ENB) classifiers in the leaves. The

10

RBMN algorithm also tackles the problem of learning BN models from incom-
plete data via constructive induction with Bound and Collapse (BC) and Ex-
pectation Maximization (EM) methods [39]. Wrapper and filter methods to
determine the branching attribute in BMN classifiers were introduced in [40].

As for the second category, where a direct partitioning of the dataset is
applied using a clustering algorithm, Case-Based Bayesian Network Classifiers
(CBBN) [24, 41] is the only approach – as far as we know - introduced in the
area of clustering-based BMN learning. Since this is the most related approach
to our work, it is described in the next subsection.

3.2. Clustering in the CBBN Algorithm

Santos et. al introduced the Case-Based Bayesian Network Classifier (CBBN)
algorithm in [24], which utilizes what we call the “cluster-then-learn” two-phase
approach. The key idea of this approach is using a clustering algorithm to parti-
tion the dataset into subsets. When the clustering phase is completely finished,
a set of local BN classifiers, one for each subset, is built. In [24], the well-known
K-means clustering algorithm was used. This algorithm iteratively selects K
data instances from the dataset to be the centroids of the K clusters (where
K is the user-specified number of clusters), assigns each instance to its nearest
centroid, and recalculates each centroid by taking the mean value of each at-
tribute across the instances in that centroid’s cluster. These steps are repeated
until the centroids converge to fixed values.

In K-means, an instance x is assigned to cluster j according to this formula:

Cluster(x) = argmin
∀ k∈{1,..,K}

Distance(x, cenk), (5)

where cenk is the centroid of the k-th cluster. The distance between two in-
stances is computed using the Euclidean distance, as follows:

Euclidean(x1,x2) =
n∑

v=1

√
(x1v − x2v)

2
, (6)

where n is the number of attributes in the instance x.
This kind of distance measure and centroid calculation, for assigning in-

stances to clusters, is appropriate for datasets containing only continuous at-
tributes. However, since most of the work in the field of BN classifier learning
(including this work) focus on data with nominal attributes, some aspects of
the basic K-means need to be modified to cope with such datasets.

The CBBN algorithm [24] used K-modes, a variation of the K-means algo-
rithm adapted to nominal attributes. K-modes has the same overall structure
of K-means. Nevertheless, how the distance between two instances is computed,
and how the centroids of the clusters are updated are different in the two al-
gorithms. In K-modes, the difference between two nominal values of the same
attribute in two data instances is either 0, if the two values are the same, or 1,
if the two values are the different. The Euclidean distance (Equation 6) is com-
puted between the two instances according to their attribute value differences.

11

In addition, the centroid of a cluster is given by the mode value of each attribute
–i.e., the value with the highest number of occurrences across all instances in
the cluster. After the K-modes algorithm finishes partitioning the dataset into
several clusters, a BMN is constructed by learning a local BN classifier for each
data cluster.

4. An Overview of the ACO Algorithm for Clustering

The ACO algorithm for clustering [14] assigns each of the N instances in
the dataset to one out of K clusters. The construction graph contains N ×K
decision components; each instance with each possible cluster assignment. Each
ant in the colony starts with a list of N elements with unassigned clusters
(an empty solution). Then the ant selects a cluster assignment from the con-
struction graph for each element. The selection is performed probabilistically,
based on the pheromone amount associated with each instance-cluster decision
component. When every instance has been assigned to a cluster, the ant has a
complete candidate clustering solution. The procedure of the clustering solution
construction is shown in Algorithm 2.

Algorithm 2 Pseudo-code of IB Clustering Solution Construction

Begin
ClustSolution = ϕ;
for i = 1 → N do

ki = ant.SelectClusterAssignment(i);
ClustSolution[i] = ki;

end for
return ClustSolution;
End

This method of clustering solution representation is referred to as “instance-
based” (IB), where a solution consists of N elements, the index of an element
represents the instance, and the element represents the cluster assignment of
this instance. Figure 3 shows a graphical example of such a method.

After each ant constructs a candidate solution, the quality of the solution is
evaluated. Then the best l ants (a user-specified parameter) perform pheromone
update. The algorithm stops after a certain number of iterations or when the
colony converges on a clustering solution. The algorithm’s goal is to minimize
the sum of Euclidean distances between each data instance and the center of
the cluster to which the instance belongs [14]. Hence, a candidate clustering
solution S is evaluated accordingly:

Quality(S) =
K∑

k=1

Nk∑
i=1

Euclidean(xki, cenk), (7)

where Nk is the number of instances in the k-th cluster, xki is the i-th instance
in the k-th cluster, and cenk is the centroid of the k-th cluster.

12

Figure 3: (a) represents the construction graph of a IB clustering representation for an 8-
instance dataset and 3 clusters. Each node in the graph represents an (instance, cluster)
assignment decision component. The nodes for instance i are connected to the nodes for
instance i+1. The bold-face edges represent the ant’s path to construct the example clustering
solution in (b). Instances with same-colored nodes represents instances in the same cluster.
According to this representation, the number of candidate clustering solutions is KN .

For a more detailed discussion on the ACO algorithm for clustering, the
reader is referred to [14].

5. A Brief Review of Extensions to the Clustering Technique for Clas-
sification

Proposed by the authors in [23], these extensions were motivated to over-
come two drawbacks of the K-modes algorithm used by CBBN [24] for data
clustering. More precisely, the K-modes clustering algorithm has two short-
comings in tackling nominal attributes. We proposed two extensions, one for
each shortcoming in the clustering technique, in order to better achieve the
classification objective of the learning approach. These extensions are briefly
reviewed here, to make this paper more self-contained.

First, when measuring the distance between two nominal attribute values,
K-modes returns a very coarse-grained value, either 0 (if the values are the
same) or 1 (if they are different). Our first extension to K-modes avoids this
problem, by measuring the similarity between instances with nominal attributes
with the following value difference metric [42]:

13

Similarity(x1,x2) = 1−
n∑

v=1

|C|∑
l=1

|P (Cl|x1v)− P (Cl|x2v)|, (8)

where n is the number of attributes and P (Cl|xv) is conditional probability of
the class value Cl given the class value xv. This conditional probability is the
ratio of the number of instances with attribute value xv and the class value Cl

over the number of instances with attribute value xv in the dataset. Accordingly,
if a class value occurs frequently with two attribute values, then these two values
are considered similar, same if the class value does not occur frequently with
both of the attribute values. However, if a class value occurs frequently with an
attribute value, but does not occur frequently with the other attribute values,
then these two attribute values are considered dissimilar.

This formula has the advantage of returning a fine-grained value (a real-
valued number in [0..1]) for the distance between two (unordered) nominal at-
tribute values. It is also very suitable for our ultimate classification goal, since
according to this formula two nominal attribute values (in different instances)
are considered similar to the extent that they predict the same class. E.g.,
the values “single” and “divorced” of the attribute “marital status” might be
more similar to each other (tending to predict the same class) than to the value
“married”, depending on the class attribute being predicted.

The second drawback of the K-modes algorithm is that, when computing
the distance between an instance and the mode vector of the cluster (formed by
the mode – most frequent value – of each nominal attribute), the mode vector
is again representing very coarse-grained information. E.g., consider two binary
attributes, one of them with relative frequencies of 60% and 40% for its “yes” and
“no” values; and the other with relative frequencies of 90% and 10% for its “yes”
and “no” values, respectively. The mode of both attributes is the value “yes”,
but the mode of the second attribute is much more representative of the value
of the attribute in the training set. Unfortunately, however, when measuring
the degree of membership of an instance to a cluster, K-modes measures only
the distance between an instance and a cluster’s mode vector using that coarse-
grained notion of mode.

To avoid this problem, our second extension to K-modes consisted of mea-
suring the degree of membership of an instance x to a cluster as the average
similarity between that instance and all instances xi in that cluster, and then
assigning x to the cluster to which it has the highest degree of membership, as
specified in the following equation:

Cluster(x) = argmax
∀ k∈{1,..,K}

∑Nk

i=1 Similarity(x,xi)

Nk
, (9)

where K is the number of clusters and Nk is the number of the instance in k-th
cluster. For more details about these two extensions to the K-modes algorithm
and their motivation, the reader is referred to [23].

14

6. Introducing the Medoid-based ACO Clustering Method

The medoid-based solution representation for ACO clustering is the first
contribution of this work. The motivation behind introducing such a repre-
sentation is to mitigate a problem in the previously described instance-based
clustering solution representation, namely the fact that, according to the solu-
tion encoding scheme used by the IB method (i.e. a string of instance-cluster
assignments for all the instances as shown in Figure 3), the mapping between a
solution and its encoding is one-to-many. That is, the same clustering solution
can be represented by several instance-based encodings, as illustrated in Figure
4. The redundancy of this kind of encoding enlarges the size of the search space,
which affects the search’s efficiency, and may have a noticeable impact on the
effectiveness of the ACO algorithm in terms of the quality of the solution found.

Figure 4: The clustering of the 8 instances shown in (a) (e.g instance 1, 5 and 8 are in the
same cluster) can be represented by 3 different solution encodings (R1, R2, and R3) in (b),
using the instance-based method.

To mitigate such a problem, we propose the new medoid-based (MB) method
for clustering solution representation. In the MB representation, the clustering
solution is not represented by a full instance-cluster assignment for all the in-
stances (whose construction graph would contain N times K nodes). Rather,
a clustering solution is represented by the choice of K instances acting as the
cluster medoids, where K is the number of clusters. More precisely, in the MB
representation the construction graph is a complete (fully connected) graph
containing only N decision components, each representing an instance that is a
candidate cluster medoid.

15

The ant uses the random-proportional rule, as in Ant System [8] (except that
our ACO does not use a heuristic function), to choose K instances based on the
pheromone information associated with each decision component. The chosen
instances represent an MB clustering solution, where the k-th element (instance)
in the MB solution represents the medoid of k-th cluster. The medoid selection
is performed under the constraint that a node can be visited at most once by
an ant during a single solution construction. Figure 5 shows the construction
graph and a sample solution in the context of the MB representation.

Figure 5: (a) represents the construction graph of a MB clustering problem for an 8-instance
dataset and 3 clusters. Each node in the graph represents a candidate medoid for a cluster.
Each node is connected to all the other nodes. The bold-face edges represent the ant’s path
to construct the example clustering solution in (b). The dark-colored nodes represent the
instances selected to be the medoids of the clustering solution.

Once a MB candidate solution has been constructed by an ant, each instance
i in the dataset is assigned to the k-th cluster where the similarity between
instance i and the k-th medoid is the highest (comparing to the other medoids).
The instance-medoid similarity is calculated according to the similarity measure
in Equation 9, and this is one of the spots where the extended ACO algorithm
proposed in this work utilizes a component of the ACO algorithm described in
Section 5. Further details are discussed in Sections 7 and 8. Algorithm 3 shows
the procedure of constructing a clustering solution using the MB representation.

According to the characteristics of the MB clustering solution representa-
tion, we have a smaller search space (NK compared to KN in the case of the
IB representation, where K << N), and an efficient one-to-one solution repre-
sentation encoding that should have a positive effect on performance.

16

Algorithm 3 Pseudo-code of MB Clustering Solution Construction

Begin
ClustSolution = ϕ;
MedoidList = ϕ;
for k = 1 → K do

Mk = ant.SelectClusterMedoid();
Add Mk to MedoidList;

end for
for i = 1 → N do

ki = GetNearestMedoid(MedoidList, i);
ClustSolution[i] = ki;

end for
return ClustSolution;
End

7. ACO Clustering Then BMN Learning

The first approach we utilize for the clustering-based BMN learning is the
two-phase “cluster-then-learn” approach. This is a sequential two-phase ap-
proach, where in the first phase an ACO algorithm divides the dataset into
clusters, and in the second phase a set of local BN classifiers, one for each clus-
ter, is constructed. The motivations for this approach were mentioned in Section
1.1. In particular, it uses ACO as a global search method that is less likely to
get trapped into local optima in the search space [8, 30] than greedy search
methods. Intuitively, that global search should lead to more robust results by
comparison with the K-means’ search, which has the well-known drawback of
being very sensitive to the values of the initial centroids (or the mode vectors, in
the case of K-modes). This ACO-based “cluster-then-learn” approach has re-
cently been proposed in [23], and a brief review of it is presented here, to make
this paper more self-contained. The outline of the ACO “cluster-then-learn”
approach is shown in Algorithm 4.

Each ant creates a complete candidate clustering solution, specifying the
cluster to which each instance is assigned. At each iteration, the system evalu-
ates the quality of each ant’s clustering solution, according to a cluster-quality
measure that uses the extensions discussed in Section 5, as specified in the
following formula:

Q(ClustSolution) =
K∑

k=1

∑Nk

i=1

∑Nk

j=i Similarity((xki,xkj))

Nk
, (10)

where K is the number of the clusters, and Nk is the number of the instances
in the k-th cluster.

Next, the algorithm selects the best clustering solution at the current iter-
ation to undergo local search, which was designed to improve that solution’s
quality using a relatively fast search procedure. More precisely, the local search

17

Algorithm 4 Pseudo-code of ACO Clustering then BMN Learning

Begin
K = input;
BMN = ϕ;
ClustSolutiongbest = ϕ;
Qgbest = 0;
InitializePheromoneAmounts();
t = 1;
repeat

ClustSolutiontbest = ϕ;
Qtbest = 0;
for i = 1 → colony size do

ClustSolutioni = CreateSolution(anti);
Qi = ComputeQuality(ClustSolutioni);
if Qi > Qtbest then

ClustSolutiontbest = ClustSolutioni;
Qtbest = Qi;

end if
end for
PerformLocalSearch(ClustSolutiontbest);
UpdatePheromone();
if Qtbest > Qgbest then

ClustSolutiongbest = ClustSolutiontbest;
Qgbest = Qtbest;

end if
t = t+ 1;

until t = max iterations or Convergence();
for k = 1 → K do

BNCk = LearnBNClassifier(ClustSolutiongbest(k));
append BNCk to BMN ;

end for
return BMN ;
End

18

consists of running one iteration of the K-Clust algorithm on the best clustering
solution of the current iteration. The K-Clust algorithm essentially performs a
local search that assigns each instance to its nearest cluster based on the previ-
ously discussed class-based similarity measure and procedure for computing the
degree of membership of an instance to a cluster.

Next, the current iteration’s best clustering solution (which has just been
improved by the local search procedure) is used to update the pheromone trail
according to that solution’s quality. The algorithm also keeps track of the best
clustering solution found by the search so far (up to the current iteration).

The aforementioned steps constitute one iteration of the ACO algorithm,
and that process is iteratively repetead until a stopping criterion is satisfied –
more precisely, until a maximum number of iterations is performed (specified by
the user-defined parameter max iterations) or until the algorithm converges
in the sense that the best clustering solution found so far remains the same for
a number of consecutive trials (specified by the user-defined conv iterations

parameter). At the end of the execution of the ACO clustering algorithm, a local
BN classifier is built from each cluster in the best clustering solution output by
the ACO algorithm.

The above ACO-based “cluster-then-learn” approach has been used to im-
plement the Ant-ClustBIB algorithm proposed in [23]. That ACO algorithm
uses an instance-based clustering solution representation, as discussed in Sec-
tion 4. In this work we propose a new ACO algorithm for clustering, which
uses the medoid-based clustering solution representation method, introduced in
Section 6. The only difference between the two algorithms is that, in order
to create a candidate clustering solution, Ant-ClustBIB carries out the proce-
dure described in Algorithm 2; while Ant-ClustBMB carries out the procedure
described in Algorithm 3.

8. ACO Clustering with BMN Learning

The novel ACO Clustering with BMN Learning approach is the second con-
tribution of this work. We propose a clustering-based BMN learning approach
that carries out the data clustering process as well as the local BN classifier
construction process in a synergistic fashion via the ACO meta-heuristics. In
other words, instead of having the clustering phase completely finished before
the BMN learning phase starts, the “cluster-with-learn” approach integrates
the clustering phase and the BMN learning phase in a single phase. In this ap-
proach, each ant in the colony creates a complete cluster-based BMN classifier,
rather than just a clustering solution.

Figure 5 shows a conceptual comparison between the “cluster-then-learn”
and “cluster-with-learn” approaches using ACO. It is worthy mentioning that no
conventional clustering algorithm can fit such an approach, since the clustering
process does not merely groups the similar instances together. Rather, the
clustering process is merged with the classification learning process, so that
the ACO meta-heuristic’s search for good clusters is guided by the predictive

19

accuracy of candidate clustering solutions, as discussed in the next subsections.

Figure 6: (a) represents the two-phase “cluster-then-learn” approach for learning clustering-
based BMN classifiers. (b) represents the one-phase “cluster-with-learn” approach, in which
the clustering and the classification learning process are integrated in a single phase.

8.1. Approach Outline

Algorithm 5 shows the outline of our proposed ACO-based “cluster-with-
learn” approach. In fact, each anti constructs a candidate BMNi classifier
in two united steps. It constructs a clustering solution ClustSolutioni and
then learns a BMNi based on the produced data clusters. It is important to
emphasize that the candidate solution that each ant constructs in the “cluster-
with-learn” approach is a complete cluster-based BMN classifier, rather than

20

a clustering solution as in the “cluster-then-learn” approach. This distinction
is crucial in terms of solution quality evaluation and pheromone update, as
discussed in the next subsection.

Algorithm 5 Pseudo-code of ACO Clustering with BMN Learning

Begin
K = input;
BMNgbest = ϕ;
Qgbest = 0;
InitializePheromoneAmounts();
t = 1;
repeat

BMNtbest = ϕ;
Qtbest = 0;
for i = 1 → colony size do

ClustSolutioni = CreateClusteringSolution(anti);
for k = 1 → K do

BNCk = LearnBNClassifier(ClustSolutioni(k));
append BNCk to BMNi;

end for
Qi = ComputeQuality(BMNi);
if Qi > Qtbest then

BMNtbest = BMNi;
Qtbest = Qi;

end if
end for
PerformLocalSearch(BMNtbest);
UpdatePheromone();
if Qtbest > Qgbest then

BMNgbest = BMNtbest;
Qgbest = Qtbest;

end if
t = t+ 1;

until t = max iterations or Convergence();
return BMNgbest;
End

As the third contribution of this paper, we use this novel cluster-with-learn
approach in two different new algorithms, namely ACO-ClustBIB and ACO-
ClustBMB . The former employs the instance-based clustering solution represen-
tation, discussed in Section 4, while the latter employs the medoid-based cluster-
ing solution representation, introduced in Section 6. The only difference between
the two algorithms is the implementation of the CreateClusteringSolution(ant)
procedure in Algorithm 5.

21

8.2. Solution Quality Evaluation

The advantage of the integrated “cluster-with-learn” approach over the two-
phase “cluster-then-learn” approach is that the product of each ant’s trail is a
complete candidate solution (a BMN classifier), not just a clustering solution.
This has the benefit that the quality of a candidate solution can be directly eval-
uated according to its predictive accuracy, whose maximization is the ultimate
objective of our work. Let us elaborate on this point.

On one hand, a solution created by an ant in the “cluster-then-learn” is a
clustering solution, rather than a classifier. So, the solution can only be eval-
uated according to clustering-quality measures, concerning instance similarity
and cluster cohesiveness (see Sections 5). However, the target of our work is
to build a high-quality clustering-based BMN in terms of its classification ac-
curacy. The gap between how an ACO candidate solution is evaluated (cluster
cohesiveness) and the target objective (classification accuracy) is a drawback
of the “cluster-then-learn” approach, since the clustering solution with the best
cohesiveness does not necessarily lead to build the cluster-based BMN with the
best classification accuracy.

On the other hand, in the “cluster-with-learn” approach, the candidate so-
lution constructed by each ant is by itself a classifier (a cluster-based BMN
classifier), which can be evaluated using a classification measure. When ants
update the pheromone according to the classification accuracy of the constructed
solution, the subsequent ants will follow this pheromone to construct the clus-
tering solution that will lead to build accurate BMN classifiers (in the same
ant trail). Therefore, the gap between the clustering solution quality and the
BMN quality is eliminated, since the clustering solution is not evaluated until
the BMN classifier is built upon it, and the whole product is evaluated as a
cluster-based BMN classifier.

Accordingly, ACO clustering with BMN learning evaluates the quality of the
constructed BMN classification solution using accuracy, a popular measure of
predictive performance, to evaluate the constructed model, computed as follows:

Accuracy =
|Correctly Classified Cases|

|V alidation Set|
(11)

The cluster-with-learn approach uses the same pheromone update strategy,
discussed in Section 7, as the cluster-then-learng approach; and it invokes the
same K-Clust local search technique, discussed in Section 7. However, concern-
ing the local search, after the instance-cluster membership changes, a new BMN
classifier is learnt upon the new clusters, and the new solution (optimized by
the local search) is accepted only if it improves the classification quality of the
solution according to Equation 11.

22

9. Experimental Methodology

9.1. Comparative Evaluations

We compare our new ACO algorithms with three types of conventional al-
gorithms widely used for learning BN classifiers: Näıve-Bayes, TAN, and GBN,
where each algorithm builds a single classifier on the whole training set. In ad-
dition, we include in our experiments the well-known Chow-Liu tree Multi-net
algorithm [7], which builds class-based BMN classifiers. This set of the four
aforementioned algorithms act as a baseline for our comparative evaluation.

As for the clustering-based BMN learning, we compare our proposed ACO
algorithms with the use of K-modes (described in Section 3.2) to cluster the
data for building the local BN classifiers, denoted as K-ModesB. We also report
the performance of K-ClustB, which uses our previously introduced extended
clustering algorithm (described in Section 5) in the clustering phase before the
classification phase. Table 1 presents the main properties of the used algorithms.
In that table, “class-BMN” means a local BN is learned for each value of the
class attribute, and “cluster-BMN” means a local BN classifier is learned for
each cluster.

Table 1: Summary of the BN Classifier Learning Algorithms Used in the Experiments

Algorithm Search Strategy Output Optimization

Näıve-Bayes - Näıve-Bayes -

CL-Tree Finding Max. Spanning Tree TAN Cond. Mutual Info.

Algorithm-B Greedy Hill Climbing GBN K2 Scoring Function

CL-Tree MN Finding Max. Spanning Tree Class-BMN Mutual Information

K-ModesB Greedy Hill Climbing Cluster-BMN Sum Squared Error

K-ClustB Greedy Hill Climbing Cluster-BMN Cohesiveness

Ant-ClustBIB ACO “cluster-then-learn” IB Cluster-BMN Cohesiveness

Ant-ClustBMB ACO “cluster-then-learn” MB Cluster-BMN Cohesiveness

ACO-ClustBIB ACO “cluster-with-learn” IB Cluster-BMN Predictive Accuracy

ACO-ClustBMB ACO “cluster-with-learn” MB Cluster-BMN Predictive Accuracy

Predictive accuracy was measured as follows. For each class, we first com-
pute a conventional confusion matrix [3], where that class is the positive class
and the other classes are grouped together to form the negative class. Next,
we compute a conventional measure of accuracy for that class, i.e. the number
of correctly classified (true positive or true negative) instances in the test set
divided by the total number of instances in the test set. Then we report, as the
predictive accuracy, the arithmetic average of those accuracies per class [43].
This procedure was used because it is more robust against the class imbalance
problem (where some classes are much more frequent than others [25]), by com-
parison with the simpler procedure of computing a single confusion matrix and
corresponding accuracy.

23

Note that, in the latter, if the vast majority of the instances (for example,
90%) belong to one class, one could obtain a very high value of accuracy by
always predicting that majority class, trivially achieving a very high accuracy
(90% in the above example), which would be misleading – since the other classes
would never be predicted. The average accuracy per class avoids the above prob-
lem, since it heavily penalizes classifiers predicting a single class and rewards
classifiers that predict well all the classes.

9.2. Experiment Setup

For the clustering-based learning algorithms, we performed 4 experiments
for each dataset, with 4 different numbers of clusters: 2, 4, 6 and 8. For each
number of clusters, we used two different BN classifier learning algorithms to
build the local models, namely Näıve-Bayes and TAN. Hence, the number of
results reported for each clustering-based learning algorithm on a given dataset
is 8 (4 numbers of clusters × 2 local BN learning algorithms). As for the 4
baseline algorithms, each has one result for each dataset. The experiments were
carried out using the well-known stratified 10-fold cross-validation procedure
[3]. Since the ACO algorithms are stochastic, we ran each 10 times – using
a different random seed each time – for each of the 10 iterations of the cross-
validation procedure. Moreover, we did the same for the K-ModesB and K-
ClustB algorithms to start with different initial centroids. The average of the
10 runs is used as the result of one iteration of the procedure.

The parameter configuration used in our experiments is shown in Table
2. The initial pheromone value of each decision component in the construction
graph is set to 1 in all the ACO algorithms used in the experiments. In addition,
only the quality of iteration-best solution is used for pheromone reinforcement.
In order to achieve the effect of pheromone evaporation, we use the approach of
normalizing all pheromone values after pheromone update, as proposed in [8].
More precisely, after increasing the pheromone values of the decision components
chosen by the iteration-best ant, the pheromone value of each decision compo-
nent (regardless of whether or not it was chosen by the iteration-best ant) is
normalized by dividing its value by the total amount of pheromone values for all
decision components in the construction graph. Since the decision components
not chosen by the iteration-best ant have not been previously increased, their
normalized value will be effectively reduced. Note that this approach avoids the
need to specify a pheromone evaporation rate parameter.

Note that the same computational budget, represented by the number of
ants per iteration (colony size) and the maximum number of iterations, has been
assigned for each of the four ACO algorithms, for the sake of fair comparison.
However, the maximum number of iterations may not utilized by if the algorithm
converged earlier. Convergence occurs if the iteration-best ants produced the
same solution quality for 10 consecutive iterations.

Predictive accuracy evaluation was performed using 30 public-domain datasets
from the well-known UCI (University of California at Irvine) dataset repository.
The main characteristics of the datasets can be found in [44]. Datasets hav-
ing continuous attributes were discretized in a pre-processing step, using the

24

Table 2: Parameter settings used in experiments

Parameter Value

max iterations 1000

colony size 10

conv iterations 10

C4.5-Disc algorithm [3], applied to the training set in each iteration of the
cross-validation procedure.

10. Results and Analysis

10.1. Experimental Results

First, we report the results of the 4 baseline algorithms (which do not use
any clustering algorithm) in a separate table. Then, for the clustering-based
BMN learning algorithm, we report the results in 8 different tables, one for
each experimental setup – i.e., each combination of a certain number of clusters
and one of the two types of local BN classifier learning algorithms (NB or
TAN) applied after the clustering (cluster-then-learn approach) or with the
clustering (cluster-with-learn approach). We also included the results of Näıve-
Bayes as a baseline (without clustering) in the result tables of the clustering-
based experiments where Näıve-Bayes is used as a local BN classifier, to facilitate
the comparisons. Likewise, we included the results of TAN as a baseline in the
clustering-based tables where TAN is the local BN classifier. In each result
table, the entry with the best result for each dataset is shown in boldface.

The last row of each result table shows the average rank of each algorithm
in the experimental setup associated with that table. The average rank for a
given algorithm g is obtained by first computing the rank of g on each dataset
individually. The individual ranks are then averaged across all datasets to ob-
tain the overall average rank. Note that the lower the value of the rank, the
better the algorithm.

� Baseline Algorithms – Table 3 shows the predictive accuracy results of
the four baseline algorithms. As shown, the CL-Tree MN algorithm (TAN-MN),
which uses the class-based partitioning approach for building local TAN classi-
fiers, achieved the best overall ranking of 1.3, and obtained the best results in
25 (out of 30) datasets. The conventional TAN came in the second place with
overall ranking of 2.2 and achieved the best results in 10 datasets. Algorithm-B
(GBN) and Näıve-Bayes came in the third and the fourth places, obtaining over-
all rankings of 2.2 and 3.7 respectively. Näıve-Bayes achieved the best results
in only 1 dataset.

� 2-Cluster BMN Learning with Näıve-Bayes – Table 4 shows the pre-
dictive accuracy results for the clustering-based BMN learning algorithms with 2

25

clusters and Näıve-Bayes as local BN classifier, along with the results of the base-
line Näıve-Bayes. As shown, ACO-ClustBMB obtained the best overall ranking
of 2.0, achieving the best results in 20 datasets; followed by ACO-ClustBIB

which obtained an overall ranking of 2.2 and achieved the best results in 17
datasets. TAN-MN, the best performing baseline, came in the third place with
overall ranking of 2.7.

� 2-Cluster BMN Learning with TAN – Table 5 shows the predictive
accuracy results for the clustering-based BMN learning algorithms with 2 clus-
ters and TAN as local BN classifier, along with the results of the baseline TAN.
As shown, ACO-ClustBMB obtained the best ranking of 2.0, achieving the best
results in 18 datasets; followed by ACO-ClustBIB which obtained an overall
ranking of 2.1 and achieved the best results in 16 datasets. Ant-ClustBIB and
Ant-ClustBMB obtained 3.7 and 4.1 rankings and came in the third and the
fourth places respectively. TAN-BMN obtained 5.2 overall ranking.

� 4-Cluster BMN Learning with Näıve-Bayes – Table 6 shows the pre-
dictive accuracy results for the clustering-based BMN learning algorithms with 4
clusters and Näıve-Bayes as local BN classifier, along with the results of the base-
line Näıve-Bayes. As shown, ACO-ClustBMB obtained the best overall ranking
of 1.5, achieving the best results in 24 datasets; followed by ACO-ClustBIB

which obtained 1.8 as an overall ranking and achieved the best results in 13
datasets. Ant-ClustBMB and Ant-ClustBIB obtained 4.0 and 4.8 overall rank-
ing and came in the third and the fourth places respectively. TAN-MN came in
the fifth place after Ant-ClustBMB with overall average ranking of 4.1.

� 4-Cluster BMN Learning with TAN – Table 7 shows the predictive
accuracy results for the clustering-based BMN learning algorithms with 4 clus-
ters and TAN as local BN classifier, along with the results of the baseline TAN.
As shown, ACO-ClustBMB obtained the best ranking of 1.6, achieving the best
results in 26 datasets; followed by ACO-ClustBIB which obtained 2.2 as an
overall ranking and achieved the best results in 13 datasets. Ant-ClustBMB

and Ant-ClustBIB obtained 3.6 and 4.4 rankings and came in the third and the
fourth places respectively. TAN-BMN obtained 5.6 overall ranking.

� 6-Cluster BMN Learning with Näıve-Bayes – Table 8 shows the pre-
dictive accuracy results for the clustering-based BMN learning algorithms with 6
clusters and Näıve-Bayes as local BN classifier, along with the results of the base-
line Näıve-Bayes. As shown, ACO-ClustBMB obtained the best overall ranking
of 1.6, achieving the best results in 25 datasets; followed by ACO-ClustBIB

which obtained 2.2 as an overall ranking and achieved the best results in 11
datasets. Ant-ClustBIB and Ant-ClustBMB obtained 4.1 and 4.2 overall rank-
ings and came in the third and the fourth places respectively, while TAN-MN
came in the fifth place with 4.5 overall ranking.

26

� 6-Cluster BMN Learning with TAN – Table 9 shows the predictive
accuracy results for the clustering-based BMN learning algorithms with 6 clus-
ters and TAN as local BN classifier, along with the results of the baseline TAN.
As shown, ACO-ClustBMB obtained the best ranking of 1.7, achieving the best
results in 24 datasets; followed by ACO-ClustBIB which obtained 2.1 as an
overall ranking and achieved the best results in 18 datasets. Ant-ClustBMB

and Ant-ClustBIB obtained 3.5 and 4.6 rankings and came in the third and the
fourth places respectively. TAN-BMN obtained 5.9 overall ranking.

� 8-Cluster BMN Learning with Näıve-Bayes – Table 10 shows the pre-
dictive accuracy results for the clustering-based BMN learning algorithms with 8
clusters and Näıve-Bayes as local BN classifier, along with the results of the base-
line Näıve-Bayes. As shown, ACO-ClustBMB obtained the best overall ranking
of 1.6, achieving the best results in 23 datasets; followed by ACO-ClustBIB

which obtained 2.0 as an overall ranking and achieved the best results in 11
datasets. Ant-ClustBMB and Ant-ClustBIB obtained 4.0 and 4.3 overall rank-
ings and came in the third and the fourth places respectively, while TAN-MN
came in the fifth place with 4.7 overall ranking.

� 8-Cluster BMN Learning with TAN – Table 11 shows the predictive
accuracy results for the clustering-based BMN learning algorithms with 8 clus-
ters and TAN as local BN classifier, along with the results of the baseline TAN.
As shown, ACO-ClustBMB obtained the best ranking of 1.5, achieving the best
results in 28 datasets; followed by ACO-ClustBIB which obtained 2.2 as an
overall ranking and achieved the best results in 10 datasets. Ant-ClustBMB

and Ant-ClustBIB obtained 4.0 and 4.5 rankings and came in the third and the
fourth places respectively. TAN-BMN obtained 6.0 overall ranking.

10.2. Statistical Significance Results

We used the non-parametric Friedman test with the Holm’s post-hoc test [45,
46], with respect to the average rank. The statistical test is carried out on each of
the 8 experimental setups, each including the results of 8 algorithms: the results
of the 6 clustering-based BMN algorithms, the results of the corresponding
baseline algorithm without clustering (i.e. Näıve-Bayes or TAN, depending
on each experimental setup), and the results of TAN-MN as best performing
algorithm in the baseline set. We performed the Friedman test using the freely
available Java program suggested by Garcia et al. in [46], which applies the tests
with two different statistical significance levels: 5% and 10%. Table 12 shows
the significance level at which the difference of predictive accuracy between two
algorithms was considered statistically significant, according to the results of the
Friedman and Holm’s tests, when comparing each of the four proposed ACO
algorithms and the extended K-clust algorithm (on columns) against the other
algorithms (on the rows), for each experimental setup - i.e., each pair of a type
of local BN classifier (Näıve-Bayes or TAN) and a given number of clusters K
(2, 4, 6 or 8). In that table, an entry with the symbol ”-” denotes that the

27

Table 3: Predictive Accuracy (%) Results for the Baseline Algorithms

Dataset Näıve-Bayes TAN GBN TAN-MN

abalone 56.1 67.4 68.3 71.2
balance 76.1 76.4 75.5 77.8
breast-w 92.5 95.7 93.8 95.7
car 85.3 93.6 87.1 92.8
chess 86.5 91.5 88.8 91.5
contraceptive 50.8 58.2 54.6 58.2
credit-a 79.3 81.1 81.7 82.8
credit-g 75.4 82.3 77.1 85.2
dermatology 96.2 97.8 97.2 97.2
ecoli 59.1 66.2 55.6 66.4
glass 61.6 71.1 68.4 73.3
hayes-roth 84.0 84.0 85.1 87.6
heart-c 54.6 63.3 66.1 68.8
heart-s 81.8 80.3 82.5 85.4
ionosphere 88.6 90.7 90.7 92.1
iris 92.2 90.2 92.9 94.2
lung-c 82.5 68.4 73.2 76.6
monk 60.5 66.1 61.6 62.7
mushrooms 95.8 98.8 96.1 98.8
nursery 90.1 94.2 92.7 94.2
parkinsons 84.5 91.7 84.5 88.4
page block 87.2 92.3 91.6 92.9
post-operative 69.5 71.1 76.6 79.8
segmentation 93.8 93.4 93.1 94.5
soybean 47.6 53.5 53.2 55.2
SPECT 72.3 76.2 75.0 77.5
tic-tac-to 68.7 76.6 74.3 78.4
vote 87.5 92.1 90.3 94.1
wine 95.6 97.3 97.0 97.3
yeast 59.7 61.2 60.2 62.1

Avg. Rank 3.7 2.2 2.8 1.3

28

Table 4: Predictive Accuracy (%) Results for 2-Cluster BMN Learning with Näıve-Bayes

Cluster-Then-Learn Cluster-With-Learn

Dataset Näıve K-Modes K-Clust AntIB AntMB ACOIB ACOMB

abalone 56.1 61.3 64.3 63.8 64.1 65.8 66.8
balancee 76.1 76.5 76.5 76.8 76.9 77.5 77.5
breast-w 92.5 91.4 92.8 93.1 93.4 94.8 95.7
car 85.3 86.9 87.3 88.8 88.8 92.3 92.5
chess 86.5 87.6 88.6 86.8 82.4 91.5 92.1
contraceptive 50.8 51.7 53.4 53.9 53.4 55.8 54.3
credit-a 79.3 80.8 81.5 81.7 81.8 83.1 83.1
credit-g 75.4 76.8 77.0 77.0 77.6 78.7 78.2
dermatology 96.2 97.2 97.6 97.8 98.1 98.1 99.0
ecoli 59.1 61.4 62.6 63.9 62.6 64.1 64.1
glass 61.6 64.2 65.7 65.7 65.8 67.9 66.5
hayes-roth 84.0 84.1 84.7 84.7 84.7 85.0 85.2
heart-c 54.6 61.5 64.1 65.9 65.9 68.4 68.1
heart-s 81.8 82.7 82.7 83.8 84.4 86.1 86.9
ionosphere 88.6 92.8 93.8 93.8 94.5 94.1 94.1
iris 92.2 92.2 92.4 92.4 92.4 93.5 93.5
lung-c 82.5 91.6 91.6 91.6 93.7 95.7 95.7
monk 60.5 58.6 58.6 59.5 59.8 62.4 62.8
mushrooms 95.8 96.7 97.2 97.2 97.6 98.0 98.2
nursery 90.1 91.3 92.1 92.6 94.6 95.8 95.0
parkinsons 84.5 94.2 95.0 95.0 97.2 97.8 97.8
page block 87.2 88.5 88.5 88.7 87.8 89.3 89.4
post-operative 69.5 68.0 68.2 71.9 72.1 73.0 74.7
segmentation 93.8 94.2 94.5 94.6 93.6 95.1 94.7
soybean 47.6 42.7 43.6 43.8 44.7 53.3 56.7
SPECT 72.3 73.9 75.1 76.5 76.9 78.7 78.1
tic-tac-to 68.7 71.3 75.2 76.3 75.3 78.7 77.5
vote 87.5 91.6 94.3 94.3 94.9 96.2 96.2
wine 95.6 94.0 95.6 95.8 97.3 97.9 97.9
yeast 59.7 60.1 60.5 60.1 61.8 64.7 62.6

Avg. Rank 7.5 6.8 5.6 4.9 4.3 2.2 2.0

29

Table 5: Predictive Accuracy (%) Results for 2-Cluster BMN Learning with TAN

Cluster-Then-Learn Cluster-With-Learn

Dataset TAN K-Modes K-Clust AntIB AntMB ACOIB ACOMB

abalone 67.4 65.8 67.9 67.9 67.4 70.3 70.0
balancee 76.4 77.4 77.4 77.8 78.9 78.9 77.8
breast-w 95.7 95.9 96.7 97.5 96.5 97.8 97.8
car 93.6 94.2 95.1 96.6 96.6 97.4 97.8
chess 91.5 94.0 94.7 95.3 95.7 96.7 96.4
contraceptive 58.2 60.0 60.2 61.9 61.5 64.7 64.7
credit-a 81.1 83.6 84.4 84.5 84.7 86.6 86.4
credit-g 82.3 84.2 85.1 85.9 85.9 87.6 88.1
dermatology 97.8 98.0 98.9 98.9 98.9 98.9 98.9
ecoli 66.2 66.7 66.7 64.9 65.5 66.7 66.7
glass 71.1 71.6 71.6 72.4 72.4 73.6 73.9
hayes-roth 84.0 84.5 85.2 85.4 83.6 85.2 85.6
heart-c 63.3 65.9 68.9 69.8 69.8 72.2 74.3
heart-s 80.3 82.5 84.7 86.8 86.8 88.7 89.1
ionosphere 90.7 94.2 95.7 97.4 95.8 96.6 96.6
iris 90.2 90.2 90.6 90.6 90.8 92.4 90.6
lung-c 68.4 72.8 75.7 74.2 77.1 82.6 80.7
monk 66.1 68.1 69.8 71.9 70.5 72.0 72.9
mushrooms 98.8 98.8 98.8 98.8 98.8 98.8 98.8
nursery 94.2 94.1 94.2 94.2 94.2 95.1 96.0
parkinsons 91.7 92.3 94.1 96.0 96.2 98.1 98.0
page block 92.3 93.2 93.4 93.6 93.2 94.7 94.1
post-operative 71.1 75.4 75.4 82.3 82.3 82.0 85.2
segmentation 93.4 93.9 93.9 94.5 94.7 95.2 94.7
soybean 53.5 55.9 56.3 61.6 61.6 66.2 66.6
SPECT 76.2 82.6 82.8 79.1 73.9 85.5 85.6
tic-tac-to 76.6 82.2 82.2 87.6 81.8 87.6 87.6
vote 92.1 93.2 93.5 94.9 95.8 96.1 96.5
wine 97.3 98.9 98.9 98.9 98.9 98.9 98.9
yeast 61.2 62.4 62.4 64.4 67.2 67.2 67.0

Avg. Rank 7.3 6 4.9 3.7 4.1 2.1 2

30

Table 6: Predictive Accuracy (%) Results for 4-Cluster BMN Learning with Näıve-Bayes

Cluster-Then-Learn Cluster-With-Learn

Dataset Näıve K-Modes K-Clust AntIB AntMB ACOIB ACOMB

abalone 56.1 62.7 65.9 66.2 67.7 68.2 74.7
balancee 76.1 76.8 76.9 77.4 77.8 77.9 77.8
breast-w 92.5 93.1 98.1 97.7 98.3 98.6 98.5
car 85.3 88.7 92.7 92.9 92.9 96.2 96.9
chess 86.5 89.4 90.1 91.9 90.5 94.3 94.5
contraceptive 50.8 53.6 55.7 56.1 56.8 59.0 60.0
credit-a 79.3 81.7 82.7 82.7 82.3 84.1 85.8
credit-g 75.4 78.1 79.1 74.6 79.5 82.6 83.5
dermatology 96.2 97.6 98.0 98.4 98.4 99.1 98.9
ecoli 59.1 62.6 65.2 60.8 61.5 66.7 66.7
glass 61.6 64.8 66.1 66.3 66.5 71.3 71.5
hayes-roth 84.0 85.0 84.1 84.4 85.6 87.5 87.8
heart-c 54.6 66.4 69.8 71.0 72.8 74.1 74.7
heart-s 81.8 83.2 84.6 85.8 85.9 98.8 90.6
ionosphere 88.6 91.8 93.8 91.8 93.8 94.8 95.4
iris 92.2 92.2 92.2 92.2 92.2 94.5 94.5
lung-c 82.5 92.5 95.0 94.8 94.8 95.7 95.7
monk 60.5 60.6 60.9 61.7 62.9 66.2 71.2
mushrooms 95.8 96.9 97.2 97.8 98.0 98.8 98.0
nursery 90.1 92.0 92.6 92.8 94.0 96.4 96.4
parkinsons 84.5 95.1 96.1 96.5 97.2 98.0 98.0
page block 87.2 88.5 89.8 89.6 89.8 92.9 92.5
post-operative 69.5 72.1 72.1 75.2 75.8 80.7 81.5
segmentation 93.8 94.3 95.6 95.9 95.9 96.9 97.2
soybean 47.6 50.6 52.5 52.6 52.8 63.6 69.6
SPECT 72.3 80.8 82.1 83.6 84.1 87.5 87.6
tic-tac-to 68.7 74.2 79.1 79.9 79.9 82.1 86.4
vote 87.5 91.9 94.9 95.7 95.7 96.8 96.9
wine 95.6 96.2 96.2 95.8 96.2 98.9 98.9
yeast 59.7 60.5 62.6 62.9 61.1 67.9 67.9

Avg. Rank 7.9 6.6 5.2 4.8 4.0 1.8 1.5

31

Table 7: Predictive Accuracy (%) Results for 4-Cluster BMN Learning with TAN

Cluster-Then-Learn Cluster-With-Learn

Dataset TAN K-Modes K-Clust AntIB AntMB ACOIB ACOMB

abalone 67.4 67.4 67.5 67.6 67.9 72.2 76.7
balancee 76.4 76.6 77.4 77.4 73.7 77.8 77.8
breast-w 95.7 96.5 98.9 98.5 98.6 98.7 98.9
car 93.6 95.2 96.5 96.8 96.8 97.2 97.4
chess 91.5 94.0 94.8 94.8 94.2 97.7 97.8
contraceptive 58.2 60.5 62.2 63.9 64.0 64.9 64.9
credit-a 81.1 82.8 84.4 85.3 85.0 88.1 86.4
credit-g 82.3 84.2 85.9 87.0 87.3 89.9 90.2
dermatology 97.8 98.8 98.8 98.8 98.9 98.9 98.9
ecoli 66.2 66.2 66.7 65.4 66.8 66.7 66.7
glass 71.1 71.0 71.9 68.6 71.8 71.8 73.3
hayes-roth 84.0 84.3 85.0 84.4 85.6 87.5 87.8
heart-c 63.3 73.8 73.8 74.2 74.0 78.6 76.3
heart-s 80.3 82.9 84.1 90.8 93.7 94.2 95.1
ionosphere 90.7 92.1 92.9 93.4 94.5 95.5 95.5
iris 90.2 94.2 94.2 94.2 94.2 94.2 94.2
lung-c 68.4 92.5 95.0 94.8 94.8 95.7 95.7
monk 66.1 65.7 66.8 72.1 73.7 78.8 78.8
mushrooms 98.8 98.8 98.8 98.8 98.8 98.8 98.8
nursery 94.2 96.0 96.0 96.3 96.4 96.6 96.8
parkinsons 91.7 95.7 96.1 96.5 97.6 98.1 98.4
page block 92.3 93.6 94.1 94.8 94.8 95.6 94.8
post-operative 71.1 75.4 77.4 79.3 79.8 82.4 83.6
segmentation 93.4 94.3 95.6 95.9 95.9 96.9 97.2
soybean 53.5 60.1 63.8 65.4 66.7 67.9 69.9
SPECT 76.2 85.2 88.9 82.0 87.1 90.5 90.5
tic-tac-to 76.6 90.4 92.6 92.7 94.2 97.2 97.6
vote 92.1 95.8 95.8 95.9 95.9 98.1 98.5
wine 97.3 96.2 95.8 96.2 98.9 98.9 98.9
yeast 61.2 64.0 64.4 65.5 64.5 68.1 68.4

Avg. Rank 7.4 6.1 4.7 4.4 3.6 2.2 1.6

32

Table 8: Predictive Accuracy (%) Results for 6-Cluster BMN Learning with Näıve-Bayes

Cluster-Then-Learn Cluster-With-Learn

Dataset Näıve K-Modes K-Clust AntIB AntMB ACOIB ACOMB

abl 56.1 63.8 66.1 66.9 65.3 69.6 74.8
bal 76.1 76.9 77.2 77.2 75.4 77.4 77.4
bcw 92.5 95.3 98.4 98.6 98.4 98.7 98.7
car 85.3 92.7 92.9 93.3 94.5 96.7 96.5
chess 86.5 91.2 92.4 93.2 93.8 94.2 96.2
cmc 50.8 53.8 57.8 57.6 57.9 61.4 61.7
crd-a 79.3 82.8 83.2 83.8 84.0 86.5 86.3
crd-g 75.4 80.0 80.4 81.5 81.5 86.1 85.8
drm 96.2 96.5 97.9 97.9 97.3 98.1 98.1
ecoli 59.1 64.2 66.1 66.3 66.1 66.1 66.1
glass 61.6 65.2 66.8 67.8 68.2 69.9 71.3
hay 84.0 84.7 85.0 84.8 84.8 85.0 85.0
hrt-c 54.6 69.8 71.9 73.6 73.8 74.9 75.4
hrt-s 81.8 85.2 86.1 87.2 87.5 91.2 92.4
iono 88.6 90.8 90.4 92.9 93.0 93.0 95.7
iris 92.2 92.2 92.2 92.2 92.2 94.8 95.4
lng-c 82.5 90.6 90.7 91.8 91.5 91.8 92.7
monk 60.5 61.7 61.7 63.2 64.7 67.6 69.1
mush 95.8 96.1 96.1 96.2 98.0 98.0 98.8
nurs 90.1 93.0 93.0 94.1 94.2 95.2 96.6
park 84.5 95.4 96.7 97.0 97.2 97.2 97.2
pbd 87.2 88.0 89.0 89.2 89.5 92.6 92.9
pop 69.5 73.1 70.8 79.9 81.1 82.3 82.5
seg 93.8 94.6 95.8 95.9 94.4 97.2 97.2
soy 47.6 52.8 61.1 59.6 61.9 70.7 68.4
SPECT 72.3 82.7 86.9 86.9 86.9 90.5 90.5
ttt 68.7 79.8 87.8 88.9 87.8 92.7 94.1
vot 87.5 92.8 95.8 96.5 91.1 97.5 97.8
wine 95.6 96.2 96.2 97.3 97.0 97.0 97.3
yst 59.7 42.6 64.1 64.9 66.9 68.1 68.4

Avg. Rank 7.8 6.6 5.2 4.1 4.2 2.2 1.6

33

Table 9: Predictive Accuracy (%) Results for 6-Cluster BMN Learning with TAN

Cluster-Then-Learn Cluster-With-Learn

Dataset TAN K-Modes K-Clust AntIB AntMB ACOIB ACOMB

abl 67.4 67.5 67.8 67.4 67.9 72.8 75.9
bal 76.4 77.2 77.4 77.4 76.5 77.8 77.8
bcw 95.7 98.4 98.7 98.5 98.7 98.7 98.7
car 93.6 94.5 96.3 97.6 96.8 98.3 98.0
chess 91.5 93.2 93.2 94.1 94.6 96.2 97.0
cmc 58.2 62.5 64.7 63.4 64.1 68.4 68.4
crd-a 81.1 84.4 87.5 86.8 87.5 90.1 88.8
crd-g 82.3 91.8 93.6 92.7 93.6 95.5 94.2
drm 97.8 96.5 97.2 97.2 97.9 98.1 98.1
ecoli 66.2 64.2 66.1 66.3 66.1 66.1 66.1
glass 71.1 69.8 71.2 69.8 71.2 71.3 71.3
hay 84.0 84.0 84.2 84.5 85.0 87.6 87.8
hrt-c 63.3 77.6 80.1 80.2 81.8 86.5 86.2
hrt-s 80.3 91.9 94.2 94.2 95.9 97.2 97.2
iono 90.7 92.1 92.1 92.7 94.3 94.3 96.6
iris 90.2 94.2 95.4 96.4 96.4 95.2 96.8
lng-c 68.4 91.0 91.0 91.7 91.9 95.6 95.6
monk 66.1 72.8 74.1 75.4 76.7 79.6 79.6
mush 95.8 96.1 96.1 96.2 98.0 98.0 98.8
nurs 94.2 95.0 95.6 96.8 96.8 97.2 97.4
park 91.7 94.3 95.7 96.2 96.3 98.0 98.0
pbd 92.3 93.9 94.4 94.2 94.4 95.6 94.8
pop 71.1 80.1 82.5 83.5 84.8 86.3 86.9
seg 93.4 96.0 96.1 95.7 96.4 97.9 97.9
soy 53.5 62.5 63.6 64.6 64.9 74.7 74.7
SPECT 76.2 88.2 90.5 89.9 89.5 90.5 90.5
ttt 76.6 90.4 92.8 95.9 95.9 96.2 96.6
vot 92.1 95.8 95.8 96.5 97.9 98.1 98.5
wine 97.3 94.2 95.8 94.2 97.8 97.5 97.8
yst 61.2 64.9 66.0 66.0 67.3 68.9 68.9

Avg. Rank 7.3 6.3 4.8 4.6 3.5 2.1 1.7

34

Table 10: Predictive Accuracy (%) Results for 8-Cluster BMN Learning with Näıve-Bayes

Cluster-Then-Learn Cluster-With-Learn

Dataset Näıve K-Modes K-Clust AntIB AntMB ACOIB ACOMB

abalone 56.1 66.2 66.8 66.8 66.8 68.8 72.9
balancee 76.1 76.6 77.2 77.8 77.8 77.8 77.8
breast-w 92.5 96.8 98.0 98.2 98.0 98.5 98.7
car 85.3 90.5 93.2 94.1 94.1 95.7 96.4
chess 86.5 90.1 91.4 93.3 93.6 95.4 96.3
contraceptive 50.8 56.5 57.7 57.7 57.9 59.9 60.7
credit-a 79.3 84.1 84.1 85.2 84.1 86.1 85.3
credit-g 75.4 79.8 81.5 81.6 81.5 86.5 85.9
dermatology 96.2 98.0 98.0 96.5 96.7 98.7 98.8
ecoli 59.1 62.8 65.5 65.5 66.0 66.1 66.1
glass 61.6 67.2 68.8 69.9 68.8 71.3 71.6
hayes-roth 84.0 84.0 85.0 85.6 85.6 85.8 85.6
heart-c 54.6 70.2 72.4 72.6 73.3 75.6 77.2
heart-s 81.8 86.2 86.2 88.4 88.7 90.7 91.2
ionosphere 88.6 91.8 93.8 91.8 93.8 94.8 95.4
iris 92.2 92.2 92.2 92.2 92.2 94.5 94.5
lung-c 82.5 90.0 90.2 92.8 92.2 94.0 94.5
monk 60.5 61.0 62.8 63.9 63.9 66.8 68.0
mushrooms 95.8 96.9 97.2 97.8 98.0 98.8 98.0
nursery 90.1 92.0 92.6 92.8 94.2 96.0 96.0
parkinsons 84.5 92.8 94.2 94.5 95.9 96.0 96.8
page block 87.2 90.2 90.2 90.2 92.9 93.3 92.9
post-operative 69.5 70.6 74.7 72.1 77.3 79.5 79.8
segmentation 93.8 96.2 96.4 96.4 96.6 96.6 97.1
soybean 47.6 55.4 56.1 62.6 60.6 69.1 69.6
SPECT 72.3 84.7 84.7 88.8 88.8 89.5 89.7
tic-tac-to 68.7 82.5 82.9 90.4 89.4 92.2 92.8
vote 87.5 95.8 95.7 95.8 95.8 96.9 96.5
wine 95.6 96.2 96.2 97.3 97.0 97.0 97.3
yeast 59.7 65.1 65.1 64.7 63.7 68.7 68.4

Avg. Rank 7.8 6.2 5.2 4.3 4 2 1.6

35

Table 11: Predictive Accuracy (%) Results for 8-Cluster BMN Learning with TAN

Cluster-Then-Learn Cluster-With-Learn

Dataset TAN K-Modes K-Clust AntIB AntMB ACOIB ACOMB

abalone 67.4 67.4 67.5 67.5 67.6 71.4 73.6
balancee 76.4 76.6 77.4 77.4 73.7 77.8 77.8
breast-w 95.7 96.5 97.2 98.0 98.6 98.0 98.8
car 93.6 96.2 96.0 96.8 96.8 97.2 97.4
chess 91.5 94.1 95.2 96.2 96.2 97.1 97.8
contraceptive 58.2 64.6 64.6 66.2 68.5 70.2 70.2
credit-a 81.1 84.5 85.8 87.3 85.8 88.1 88.3
credit-g 82.3 85.1 88.7 92.1 90.9 93.5 93.1
dermatology 97.8 97.4 97.4 98.0 97.4 98.0 98.2
ecoli 66.2 66.2 66.7 65.4 66.8 66.7 66.7
glass 71.1 72.0 72.0 72.8 70.5 73.1 73.8
hayes-roth 84.0 84.3 85.2 84.0 85.5 87.6 87.8
heart-c 63.3 73.4 76.9 75.8 78.3 82.1 82.5
heart-s 80.3 85.6 85.6 90.4 91.9 96.2 97.5
ionosphere 90.7 93.6 95.1 94.2 95.5 97.0 97.0
iris 90.2 94.2 96.4 96.4 96.4 96.4 96.4
lung-c 68.4 93.2 94.4 94.2 94.2 95.0 95.6
monk 66.1 69.3 71.9 73.9 75.7 80.8 81.2
mushrooms 98.8 98.8 98.8 98.8 98.8 98.8 98.8
nursery 94.2 95.1 96.0 95.6 96.0 97.2 97.5
parkinsons 91.7 92.9 94.6 94.8 94.8 96.0 96.2
page block 92.3 94.5 94.5 94.5 92.9 95.8 95.8
post-operative 71.1 77.4 79.2 77.9 78.7 84.7 85.2
segmentation 93.4 96.4 96.1 95.9 96.4 96.9 97.2
soybean 53.5 64.6 67.8 68.6 68.6 70.8 72.1
SPECT 76.2 88.2 90.5 89.9 89.5 90.5 90.5
tic-tac-to 76.6 94.5 94.5 94.8 94.5 97.5 97.5
vote 92.1 94.7 95.2 95.2 94.3 98.1 98.5
wine 97.3 94.2 95.8 94.2 97.8 97.5 97.8
yeast 61.2 67.4 69.1 67.1 69.9 69.9 69.9

Avg. Rank 7.3 5.9 4.6 4.5 4 2.1 1.5

36

difference of predictive accuracy between the two algorithms being compared is
not statistically significant at the 10% level.

10.3. Summary of Results

We summarize the average ranking results for the clustering-based BMN
learning algorithm across the 8 experimental setups in Table 13. The last row of
the table is the average of average rankings obtained for each algorithm across
the 8 experimental setups – i.e. considering all combinations of 4 different
numbers of clusters and 2 different local BN classifiers (Näıve-Bayes and TAN).

According to this summary, as well as the previous result tables, we can
conclude the following:

– K-Clust vs. K-Modes – The extended K-Clust algorithm outperforms
the conventionalK-Modes clustering algorithm in finding good clusters for
building BMN classifiers. This is shown in the average rankings obtained
by K-ClustB (with overall average value of 5) compared to K-ModesB
(with overall average value of 6.3).

– ACO vs. Conventional Algorithms – The 4 ACO meta-heuristic
algorithms used for building clustering-based BMN classifiers outperform
the 2 conventional clustering algorithms. This is shown in the average
rankings obtained by the ACO-based algorithm compared to both K-
ModesB and K-ClustB.

– Cluster-then-learn vs. Cluster-with-learn – The integrated approach
of ACO clustering with BMN learning outperforms the sequential ap-
proach of ACO clustering then BMN learning. This is observed with
both clustering solution representations, since the cluster-with-learn ACO-
ClustBIB (with overall average ranking 2.1) outperforms the cluster-then-
learn Ant-ClustBIB (with overall average ranking 4.4); and ACO-ClustBMB

(with overall average ranking 1.7) outperforms Ant-ClustBMB (with over-
all average ranking 4).

– Medoid-based vs. Instance-based Solution Representations – The
ACO medoid-based (MB) clustering solution representation outperforms
the instance-based (IB) representation, which can be observed in both
ACO learning approaches. Ant-ClustBMB (with overall average ranking
of 4.0) outperforms Ant-ClustBIB (with overall average ranking of 4.4),
and ACO-ClustBMB (with overall average ranking of 1.7) outperforms
ACO-ClustBIB (with overall average ranking of 2.1).

As for the execution time, in general, the Medoid-based (MB) method in
the ACO clustering solution representation takes longer execution time than
the Instance-based (IB) IB method, since the latter converges faster than the
former and does not utilize the maximum number of iterations. Besides, there
is no obvious difference in the execution time between ACO “cluster-then-lear”
and the “cluster-with-learn” ACO approaches.

37

Table 12: Results (Statistical Significance levels) of the non-parametric Friedman test

Cluster-Then-Learn Cluster-With-Learn

Local BN K Algorithm K-Clust AntIB AntMB ACOIB ACOMB

Näıve 2 Näıve 0.05 0.05 0.05 0.05 0.05
K-Modes 0.05 0.05 0.05 0.05 0.05
K-Clust – – 0.05 0.05 0.05
TAN-MN – – – –
AntIB – – – 0.1 0.1
AntMB – – – – –

Näıve 4 Näıve 0.05 0.05 0.05 0.05 0.05
K-Modes – 0.05 0.05 0.05 0.05
K-Clust – 0.1 0.05 0.05 0.05
TAN-MN – – 0.1 0.1 0.1
AntIB – – 0.1 0.1
AntMB – – – 0.1 0.1

Näıve 6 Näıve 0.05 0.05 0.05 0.05 0.05
K-Modes – 0.05 0.05 0.05 0.05
K-Clust – 0.05 – 0.05 0.05
TAN-MN – 0.1 – 0.05 0.05
AntIB – – – 0.5 0.05
AntMB – – – 0.1 0.05

Näıve 8 Näıve 0.05 0.05 0.05 0.05 0.05
K-Modes 0.1 0.05 0.05 0.05 0.05
K-Clust – 0.1 0.1 0.1 0.05
TAN-MN – – 0.1 0.05 0.05
AntIB – – – 0.05 0.05
AntMB – – – 0.05 0.05

TAN 2 TAN 0.05 0.05 0.05 0.05 0.05
K-Modes – 0.05 0.05 0.05 0.05
K-Clust – 0.05 0.1 0.05 0.05
TAN-MN – – – 0.05 0.05
AntIB – – – 0.1 0.05
AntMB – – – – 0.1

TAN 4 TAN 0.05 0.05 0.05 0.05 0.05
K-Modes – 0.05 0.05 0.05 0.05
K-Clust – 0.05 0.05 0.05 0.05
TAN-MN – 0.1 0.1 0.05 0.05
AntIB – – – 0.1 0.1
AntMB – – – – –

TAN 6 TAN 0.05 0.05 0.05 0.05 0.05
K-Modes 0.1 0.1 0.1 0.5 0.05
K-Clust – 0.1 – 0.1 0.05
TAN-MN – 0.1 0.1 0.05 0.05
AntIB – – – 0.1 0.05
AntMB – – – 0.05 0.05

TAN 8 TAN 0.05 0.05 0.05 0.05 0.05
K-Modes – 0.1 0.1 0.05 0.05
K-Clust – – 0.1 0.1 0.05
TAN-MN – 0.1 0.1 0.1 0.1
AntIB – – 0.1 0.05 0.05
AntMB – – – 0.05 0.05

38

Table 13: Average Rankings Summary for the Clustering-based BMN Learning Algorithms

Cluster-Then-Learn Cluster-With-Learn

Local BN K K-Modes K-Clust AntIB AntMB ACOIB ACOMB

Näıve 2 6.8 5.6 4.9 4.3 2.2 2.0
4 6.6 5.2 4.8 4.0 1.8 1.5
6 6.6 5.2 4.1 4.2 2.2 1.6
8 6.2 5.2 4.3 4.0 2.0 1.6

TAN 2 6.0 4.9 3.7 4.1 2.1 2.0
4 6.1 4.7 4.4 3.6 2.2 1.6
6 6.3 4.8 4.6 3.5 2.1 1.7
8 5.9 4.6 4.5 4.0 2.1 1.5

Average Rank 6.3 5 4.4 4 2.1 1.7

11. Concluding Remarks

In this paper, we have proposed several contributions to the area of clustering-
based BMN learning, which can be summarized as follows. We introduced a new
medoid-based clustering solution representation for ACO clustering in the Ant-
ClustBMB algorithm, in order to learn more effective clusters to be used to
build BMNs. We proposed a novel “cluster-with-learn” approach, in which the
ACO meta-heuristic performs the clustering and the BMN learning in a syner-
gistic fashion, and produced two new ACO algorithms based on that approach:
ACO-ClustBIB , using the instance-based representation, and ACO-ClustBMB ,
using the medoid-based representation.

Empirical results were obtained from experiments on 30 UCI datasets, us-
ing four different numbers of clusters and two types of local BN classifiers.
The experiments’ results showed that: 1) our extensions enhance the perfor-
mance of the clustering algorithm in the sense of producing clusters that lead to
BMN classifiers with higher predictive accuracies; 2) the new integrated ACO
“cluster-with-learn” approach outperforms the sequential ACO “cluster-then-
learn” approach; and 3) the proposed medoid-based representation is more ef-
fective than the instance-based representation as a clustering solution represen-
tation for ACO algorithms.

As a future work, we would like to try utilizing different types of optimization
meta-heuristics, such as genetic algorithms (GAs) and paritcle swarm optimiza-
tion (PSO), for learning the cluster-based BMN classifiers, and compare them
to the use of ACO in our algorithms. Besides, it will be interesting to calculate
the time complexity of the introduced algorithms. In addition, we would like
to try some techniques to remove outliers from the clusters, as in the CBBN
algorithm [24], and build a generic model besides the local models that would
host all the outliers.

39

References

[1] G. F. Cooper, E. Herskovits, A Bayesian Method for the Induction of Prob-
abilistic Networks from Data, Machine Learning 9 (4) (1992) 309–347.

[2] D. Heckerman, D. Geiger, D. M. Chickering, Learning Bayesian Networks:
The Combination of Knowledge and Statistical Data, Machine Learning
20 (3) (1995) 197–243.

[3] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, 3rd Edition, Morgan Kaufmann, San Francisco, CA, USA,
2010.

[4] J. Han, M. Kamber, Data Mining: Concepts and Techniques, 2nd Edition,
Morgan Kaufmann, San Francisco, CA, USA, 2000.

[5] J. Cheng, R. Greiner, Comparing Bayesian Network Classifiers, in: 15th
Annual Conference on Uncertainty in Artificial Intelligence, Morgan Kauf-
mann, San Francisco, CA, USA, 1999, pp. 101–108.

[6] N. Friedman, D. Geiger, M. Goldszmidt, G. Provan, P. Langley, P. Smyth,
Bayesian Network Classifiers, Machine Learning 29 (1997) 131–163.

[7] J. Cheng, R. Greiner, Learning Bayesian Belief Network Classifiers: Algo-
rithms and System, in: 14th Biennial Conference of the Canadian Society
on Computational Studies of Intelligence: Advances in Artificial Intelli-
gence, Springer, London, UK, 2001, pp. 141–151.

[8] M. Dorigo, T. Stützle, Ant Colony Optimization, MIT Press, Cambridge,
MA, USA, 2004.

[9] D. Martens, M. D. Backer, R. Haesen, J. Vanthienen, M. Snoeck, B. Bae-
sens, Classification with ant colony optimization., IEEE Transactions on
Evolutionary Computation 11 (2007) 651–665.

[10] R. S. Parpinelli, H. S. Lopes, A. A. Freitas, Data mining with an ant colony
optimization algorithm, IEEE Transactions on Evolutionary Computation
6 (4) (2002) 321–332.

[11] K. M. Salama, A. M. Abdelbar, A. A. Freitas, Multiple Pheromone Types
and Other Extensions to the Ant-Miner Classification Rule Discovery Al-
gorithm., Swarm Intelligence 5 (3-4) (2011) 149–182.

[12] K. M. Salama, A. M. Abdelbar, Exploring Different Rule Quality Evalua-
tion Functions in ACO-based Classification Algorithms, in: IEEE Swarm
Intelligence Symposium, IEEE Press, Piscataway, NJ, USA, 2011, pp. 1–8.

[13] M. Jafar, R.Sivakumar, Ant-based Clustering Algorithms: A Brief Survey,
International Journal of Computer Theory and Engineering 2 (2010) 787–
796.

40

[14] P. S. Shelokar, V. K. Jayaraman, B. D. Kulkarni, An ant colony approach
for clustering, Analytica Chimica Acta 509 (2) (2004) 187–195.

[15] X. yong Liu, H. Fu, An Effective Clustering Algorithm With Ant Colony,
Journal of Computers 5 (2010) 598–605.

[16] Y. Wu, J. McCall, D. Corne, Two Novel Ant Colony Optimization Ap-
proaches for Bayesian Network Structure Learning, in: IEEE Congress on
Evolutionary Computation (CEC), IEEE Press, New York, NY, USA, 2010,
pp. 1–7.

[17] L. M. de Campos, J. M. Fernandez-Luna, J. A. Gamez, J. M. Puerta,
Ant Colony Optimization for Learning Bayesian Networks, International
Journal of Approximate Reasoning 31 (3) (2002) 291–311.

[18] R. Daly, Q. Shen, Learning Bayesian Network Equivalence Classes with Ant
Colony Optimization, Journal of Artificial Intelligence Research (JAIR) 35
(2009) 391–447.

[19] P. C. Pinto, A. Nägele, M. Dejori, T. A. Runkler, Ao, Using a Local Discov-
ery Ant Algorithm for Bayesian Network Structure Learning, IEEE Trans-
actions on Evolutionary Computation 13 (4) (2009) 767–779.

[20] K. M. Salama, A. A. Freitas, ABC-Miner: an Ant-based Bayesian Classifi-
cation Algorithm, in: 8th International Conference on Swarm Intelligence
(ANTS’12), LNCS 7461, Springer, Berlin, 2012, pp. 13–24.

[21] K. M. Salama, A. A. Freitas, Learning Bayesian Network Classifiers Using
Ant Colony Optimization, Swarm Intelligence 7 (2-3) (2013) 229–254.

[22] K. M. Salama, A. A. Freitas, Extending the ABC-Miner Bayesian Clas-
sification Algorithm, in: 6th International Workshop on Nature Inspired
Cooperative Strategies for Optimization (NICSO’13), Vol. 512 of Studies
in Computational Intelligence, Springer, Berlin, 2013, pp. 1–12.

[23] K. M. Salama, A. A. Freitas, Clustering-based Bayesian Multi-net Clas-
sifier Construction with Ant Colony Optimization, in: IEEE Congress on
Evolutionary Computation (IEEE CEC) (2013), IEEE Press, New York,
NY, USA, 2013, pp. 3079–3086.

[24] E. S. Jr., A. Hussein, Case-Based Bayesian Network Classifiers, in: 17th
International FLAIRS Conference, AAAI, Vol. 5, AAAI Press, Stanford,
USA, 2004, pp. 598–605.

[25] P.-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, 2nd
Edition, Addison Wesley, 2005.

[26] R. Daly, Q. Shen, S. Aitken, Review: Learning Bayesian Networks: Ap-
proaches and Issues, Knowledge Engineering Reviews 26 (2) (2011) 99–157.

41

[27] D. Heckerman, Studies in Computational Intelligence: Innovations in
Bayesian Networks., Vol. 156, Springer, Berlin, 2008, Ch. 3: A Tutorial
on Learning with Bayesian Networks., pp. 33–82.

[28] L. Jiang, D. Wang, Z. Cai, X. Yan, Survey of Improving Naive Bayes for
Classification, in: 3rd International Conference on Advanced Data Mining
and Applications (ADMA’07), no. 4632 in LNCS, Springer, Berlin, 2007,
pp. 134–145.

[29] D. Geiger, D. Heckerman, Knowledge Representation and Inference in Simi-
larity Networks and Bayesian Multinets, Artificial Intelligence 82 (2) (1996)
45–74.

[30] M. Dorigo, T. Stützle, The Ant Colony Optimization Metaheuristic: Al-
gorithms, Applications, and Advances, Vol. 57, Springer, New York, NY,
USA, 2003.

[31] D. Martens, B. Baesens, T. Fawcett, Editorial survey: swarm intelligence
for data mining, Machine Learning 82 (1) (2011) 1–42.

[32] F. Otero, A. Freitas, C. Johnson, Inducing Decision Trees with an Ant
Colony Optimization Algorithm, Applied Soft Computing 12 (11) (2012)
3615–3626.

[33] U. Boryczka, J. Kozak, Ant Colony Decision Trees, in: 4th International
Conference on Computational Collective Intelligence: Technologies and Ap-
plications (ICCCI’11), Springer, Berlin, 2010, pp. 4373–382.

[34] W. Buntine, Theory Refinement on Bayesian Networks, in: 17th Conference
on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco,
CA, USA, 1991, pp. 52–60.

[35] K. Huang, I. King, M. Lyu, Discriminative Training of Bayesian Chow-
Liu Multinet Classifiers, in: International Joint Conference on Networks,
Vol. 1, IEEE Press, New York, NY, USA, 2003, pp. 484–488.

[36] Y. Gurwicz, B. Lerner, Bayesian Class-Matched Multinet Classifier, in:
International Conference on Structural, Syntactic, and Statistical Pattern
Recognition (IAPR’6), Springer, Berlin, 2006, pp. 145–153.

[37] P. Langley, Induction of Recursive Bayesian Classifiers, in: European Con-
ference on Machine Learning (ECML), Springer, Berlin, 1993, pp. 153–164.

[38] R. Kohavi, Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-
Tree Hybrid, in: 2nd International Conference on Knwoledge Discovery and
Data Mining, AAAI Press, Stanford, USA, 1996, pp. 202–207.

[39] J. M. Peña, J. A. Lozano, P. Larrañaga, Learning recursive bayesian multi-
nets for data clustering by means of constructive induction, Machine Learn-
ing 47 (1) (2002) 63–89.

42

[40] A. Cano, J. G. Castellano, A. R. Masegosa, S. Moral, Methods to determine
the branching attribute in bayesian multinets classifiers, in: 8th European
conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, Springer-Verlag, 2005, pp. 932–943.

[41] E. Santos, A. Hussein, Comparing case-based bayesian network and recur-
sive bayesian multi-net classifiers, in: International Conference on Artificial
Intelligence (ICAI), 2004, pp. 627–633.

[42] C. Stanfill, D. Waltz, Toward memory-based reasoning, Communications
of the ACM 29 (1986) 1213–1228.

[43] K. M. Salama, A. A. Freitas, Investigating the Impact of Various Classi-
fication Quality Measures in the Predictive Accuracy of ABC-Miner, in:
IEEE Congress on Evolutionary Computation (IEEE CEC) (2013), IEEE
Press, New York, NY, USA, 2013, pp. 2677–2694.

[44] A. Asuncion, D. Newman, UCI Machine Learning Repository.
URL:http://www.ics.uci.edu/ mlearn/MLRepository.html.

[45] J. Demsar, Statistical Comparisons of Classifiers over Multiple Data Sets,
Journal of Machine Learning Research 1 (7) (2006) 1–30.

[46] S. Garca, F. Herrera, An Extension on ”Statistical Comparisons of Clas-
sifiers over Multiple Data Sets” for all Pairwise Comparisons, Journal of
Machine Learning Research 9 (2008) 2321–2328.

43

