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Abstract Ant-Miner is an ant-based algorithm for the discovery of classifi-
cation rules. This paper proposes five extensions to Ant-Miner: 1) we utilize
multiple types of pheromone, one for each permitted rule class, i.e. an ant first
selects the rule class and then deposits the corresponding type of pheromone;
2) we use a quality contrast intensifier to magnify the reward of high-quality
rules and to penalize low-quality rules in terms of pheromone update; 3) we
allow the use of a logical negation operator in the antecedents of constructed
rules; 4) we incorporate stubborn ants, an ACO variation in which an ant is
allowed to take into consideration its own personal past history; 5) we use an
ant colony behavior in which each ant is allowed to have its own values of the
α and β parameters (in a sense, to have its own personality). Empirical results
on 23 datasets show improvements in the algorithm’s performance in terms of
predictive accuracy and simplicity of the generated rule set.

Keywords: Ant Colony Optimization (ACO), Data Mining, Classification,
Multi-pheromone, Stubborn Ants.

1 Introduction

Data mining is an active research area involving the development and analy-
sis of algorithms for extracting interesting knowledge (or patterns) from real-
world datasets. In this paper we focus on the classification task of data mining,
where the goal is to discover, from labeled cases, a model that can be used to
predict the class of unlabeled cases [9]. Ant-Miner is an Ant Colony Optimiza-
tion (ACO) [5,6] algorithm, proposed by Parpinelli et al. [17], which discovers
classification rules of the form:
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IF ⟨Term-1⟩ AND ⟨Term-2⟩ AND. . . ⟨Term-n⟩ THEN ⟨Class⟩

where each term is of the form ⟨attribute = value⟩, and the consequent of a rule
is the predicted class. In this paper, we propose a number of extensions to the
Ant-Miner algorithm, and then empirically evaluate them using 23 widely-used
datasets.

In section 2, we present a brief description of the original Ant-Miner algo-
rithm, followed by a brief review of related work in Section 3. We then present
each of our proposed extensions in Sections 4 through 8. In Section 4 we intro-
duce the multi-pheromone ant system, in which an ant selects the rule class
first and then deposits a different pheromone type for each selected class. Sec-
tion 5 presents our novel quality contrast intensifier. Section 6 describes the
use of a logical negation operator in the construction of rule antecedents. Sec-
tion 7 proposes the use of stubborn ants, an ACO variation in which an ant is
influenced by its own rule construction history. Section 8 describes the use of
ants with personality, an ACO extension in which each ant has its own values
of the α and β parameters. Finally, Sections 9 and 10 discuss our experimental
methodology and results, respectively, and some final remarks are presented
in Section 11.

This paper builds on our earlier work [19] in which four of the five pro-
posed extensions were introduced. More precisely, this paper extends the work
reported in [19] in three ways. First, the quality contrast intensifier is intro-
duced. Secondly, the number of datasets used in the experimental evaluation is
increased from 4 to 23. Thirdly, we report results for variations of the proposed
algorithm, involving 12 different combinations of Ant-Miner extensions.

2 Ant-Miner Algorithm

The proposed modifications presented in this paper are based on the origi-
nal Ant-Miner algorithm introduced in [17]. Algorithm 1 presents a high-level
pseudo-code description of the Ant-Miner Algorithm. For a more detailed dis-
cussion, the reader is referred to [17], and to [5, sect. 5.6.1].

Ant-Miner discovers an ordered list of IF-THEN classification rules (whose
form was described in the Introduction), and is applicable only to datasets
with categorical attributes. Datasets with real-valued attributes need a pre-
processing step to discretize these attributes into categorical intervals before
applying the algorithm. An important characteristic of ACO algorithms is the
construction graph used to represent the trails followed by the artificial ants.
In the case of Ant-Miner, the nodes of the construction graph correspond to
the terms (attribute-value pairs) available in the dataset being mined. Hence,
a trail in Ant-Miner consists of following a sequence of vertices in the con-
struction graph, adding one term at a time to a rule antecedent.

The algorithm consists of two nested loops: the outer loop (while loop),
where a single rule in each iteration is added to the discovered rule list; and
the inner loop (repeat — until loop) where an ant in each iteration constructs
a rule as follows. Each ant first constructs a rule’s antecedent by selecting
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Algorithm 1 Pseudo-code of Ant-Miner.
Begin Ant-Miner
training set← all training cases;
discovered rule set← ϕ;
InitializePheromoneAmounts();
while |training set| > max uncovered cases do

CalculateHeuristicV alues();
Rbest ← ϕ;
i← 0;
repeat

ConstructRuleAntecedent(anti);
ComputeRuleClass(anti);
Rcurrent ← PruneRule(anti);
Qcurrent ← CalculateRuleQuality(Rcurrent);
UpdatePheromone(Rcurrent);
if Qcurrent > Qbest then

Rbest ← Rcurrent;
end if
i← i+ 1;

until i = max trials OR Convergence()
discovered rule set← discovered rule set+Rbest;
training set← training set− Cases(Rbest);

end while
End

terms probabilistically according to the pheromone amount for that term and
a heuristic function involving information gain [18], until all the attributes
have been used (an attribute can be used only once in a rule antecedent),
or until adding any other term to the rule antecedent would make the rule
coverage less than min cases per rule. Then, the rule consequent is chosen
by a deterministic procedure, which chooses the class value with maximum
occurrence in the set of cases matching the rule antecedent.

Next, a rule pruning procedure is carried out on the rule antecedent, in
order to increase the rule’s accuracy and/or improve its simplicity (reduce its
size). Then, the ant updates the pheromone level by depositing pheromone on
the terms contained in the just-constructed rule antecedent in proportion to
the quality of the rule. This is done in order to increase the probability that
the following ants will select the terms involved in the rule.

When the execution of the inner loop finishes, the best rule constructed
in that loop is added to the list of discovered rules, and the training cases
matched by that rule are removed from the training set (since those cases
do not need to be covered by the next rules to be discovered). This set of
steps is considered an iteration of the outer loop and is repeated until the
number of training cases remaining in the training set becomes less than
or equal to the value determined by the max uncovered cases parameter,
or until the same rule is generated for a number of consecutive trials speci-
fied by the no rules converg parameter. The values of min cases per rule,
max uncovered cases, and no rules converg are user-specified thresholds.
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2.1 Pheromone Initialization and Update

At the beginning of each outer loop, the pheromone is initialized for each term
with the same value given by the function:

τij (t = 0) =
1∑a

r=1 br
(1)

where a is the total number of attributes, i is the index of an attribute, j is the
index of a value in the domain of attribute i, and br is the number of values
in the domain of attribute r.

After an ant constructs a rule, the rule quality is evaluated and the pheromone
amount is increased for the terms belonging to the rule according to its quality.
This is calculated as follows:

Q =
TP

TP + FN︸ ︷︷ ︸
sensitivity

× TN

TN + FP︸ ︷︷ ︸
specificity

(2)

where TP (true positives) is the number of cases covered by the rule and
labeled by the class predicted by the rule, FP (false positives) is the number
of cases covered by the rule and labeled by a class different from the class
predicted by the rule, FN (false negatives) is the number of cases that are not
covered by the rule but are labeled by the class predicted by the rule, and TN
(true negatives) is the number of cases that are not covered by the rule and
are not labeled by the class predicted by the rule.

The formula governing the increase in pheromone amount (according to
rule quality) is:

τij(t+ 1) = τij(t) + τij(t) ·Q (3)

where Q is the constructed rule’s quality, computed using Equation (2). The
pheromone values for all terms are normalized to simulate evaporation, so that
the pheromone levels are increased in the nodes selected in the constructed rule
and decreased in the rest of the nodes in the construction graph. Normalization
takes place by re-scaling the entries of τ such that the following condition is
true:

a∑
r=1

br∑
s=1

τrs = 1 (4)

2.2 Term Selection

The term is selected probabilistically according to two components, as shown
in the following formula:

Pij =
[τij(t)]

α · [ηij ]β∑a
r=1

∑br
s=1 [τrs(t)]

α · [ηrs]β
(5)
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The terms α and β in Equation (5) are typically assigned to 1 in Ant-Miner;
therefore, Equation (5) can be written more simply as:

Pij =
τij (t) · ηij∑a

r=1

∑br
s=1 τrs (t) · ηrs

(6)

In this equation, Pij is the probability of selecting the term ⟨attributei =
valuej⟩ (referred to as termij), and ηij is a problem-dependent heuristic func-
tion that involves information gain [18], and is computed as follows:

ηij =
log2(m)− entropy(Tij)∑a

r=1

∑br
s=1 (log2(k)− entropy(Trs))

(7)

where the measure of entropy associated with termij is calculated as follows:

entropy(Tij) = −
m∑

w=1

(
freq(Tw

ij )

|Tij |

)
· log2

(
freq(Tw

ij )

|Tij |

)
(8)

where m is the number of classes, Tij is the subset of cases in which attribute i
is equal to value j, |Tij | is the number of cases in the subset Tij , and freq(T

w
ij )

is the number of cases in subset Tij labeled with class w. The second component
in the term selection formula is τij , which is the amount of pheromone on
termij . The higher the value of ηij is, the better for classification the termij

is, thus leading to a higher probability of being selected. The same applies for
pheromone amount τij .

Table 1 An Example of Eight Cases with Two Attributes and a Class

Case Condition Safety Class

1 Excellent Bad Buy
2 Very Good Very Good Buy
3 Good Good Buy
4 Good Very Good Buy
5 Bad Very Good Wait
6 Bad Very Good Wait
7 Bad Good Don’t Buy
8 Bad Bad Don’t Buy

Example. Suppose we have the set of 8 cases shown in Table 1 taken
from a dataset that has two categorical attributes and a class attribute. The
Condition attribute has four possible values, and Safety has three values.
Thus, the construction graph will contain seven attribute-value nodes: four
nodes for the Condition attribute and three nodes for the Safety attribute.
Specifically, τ would contain seven entries: τ [Condition, Excellent], τ [Condition, Very Good],
τ [Condition, Good], τ [Condition, Bad], τ [Safety, Very Good], τ [Safety, Good],
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and τ [Safety, Bad]. From Equation (1), these seven entries would be initial-
ized to 1/7. Applying Equation (7), we find that the η heuristic values are:

η [Condition, Excellent] = 0.22 η [Safety, Very Good] = 0.08
η [Condition, Very Good] = 0.22 η [Safety, Good] = 0.08
η [Condition, Good] = 0.22 η [Safety, Bad] = 0.08
η [Condition, Bad] = 0.08

Suppose after some number of trials, the τ values are as follows:

τ [Condition, Excellent] = 0.05 τ [Safety, Very Good] = 0.18
τ [Condition, Very Good] = 0.24 τ [Safety, Good] = 0.16
τ [Condition, Good] = 0.06 τ [Safety, Bad] = 0.23
τ [Condition, Bad] = 0.08

An ant constructing a rule in trial t would then make its decisions based
on the following probabilities (Equation 6):

P [Condition, Excellent] = 0.09 P [Safety, Very Good] = 0.11
P [Condition, Very Good] = 0.41 P [Safety, Good] = 0.10
P [Condition, Good] = 0.10 P [Safety, Bad] = 0.14
P [Condition, Bad] = 0.05

Suppose the ant chooses as its first term the highest-probability term,
which is ⟨Condition = Very Good⟩. The ant then chooses its next term from
the three possible values of the Safety attribute. Suppose the ant chooses
⟨Safety = Very Good⟩, which has the second-highest probability of the three
remaining available attribute-value pairs. The ant then selects the most-frequently
occurring class for this combination of attribute-values, which in this simple
dataset is the class Buy. The constructed rule is thus:

IF ⟨Condition = Very Good⟩ AND ⟨Safety = Very Good⟩ THEN ⟨Buy⟩

For this rule: TP = 1, FP = 0, FN = 3, and TN = 4, therefore, sensitivity
and specificity are 1/4 and 4/4, respectively, and the rule quality (Equation
14) is 0.25.

The two entries τ [Condition, Very Good] and τ [Safety, Very Good] are
then increased to become 0.30 and 0.23, respectively. τ is then normalized to
simulate evaporation, and the final state of τ at the end of the trial is:

τ [Condition, Excellent] = 0.05 τ [Safety, Very Good] = 0.20
τ [Condition, Very Good] = 0.27 τ [Safety, Good] = 0.14
τ [Condition, Good] = 0.05 τ [Safety, Bad] = 0.21
τ [Condition, Bad] = 0.07 �

As discussed in [17], there are several elements of similarity between the
Ant-Miner algorithm and decision tree algorithms such as C4.5. The entropy-
based heuristic function η used by Ant-Miner is the same kind of heuristic
function used in decision tree algorithms. The main difference is that in the
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case of decision trees, weighted entropy is computed for each attribute on the
data partition resulting from the different attribute values (or the choice of a
threshold for a quantitative attribute), while, in the case of Ant-Miner, entropy
is computed for an attribute-value pair only, since an attribute-value pair is
chosen to expand a rule. In conventional tree algorithms, entropy is typically
the only heuristic used during tree building. In contrast, in Ant-Miner, entropy
is used in conjunction with pheromone information, which makes the rule-
construction process of Ant-Miner more robust, since the feedback provided
by pheromone updating tends to offset the shortsightedness of the entropy
measure.

Note that the entropy measure considers one attribute at a time, and there-
fore is sensitive to potential attribute interaction issues. On the other hand,
pheromone updating tends to deal better with attribute interactions, because
it is directly based on the performance of a rule as a whole and thus directly
takes into account interactions among all attributes occurring in the rule. The
search strategy of Ant-Miner’s rule pruning is also very similar to the pruning
procedure suggested by [18], although the rule quality evaluation functions
used in the two procedures are very different from one another.

3 Related Work

3.1 Related Work on ACO-based Classification Rule Discovery

Chan and Freitas [2] have proposed a new rule pruning procedure for Ant-
Miner that led to the discovery of simpler (shorter) rules and improved the
computational time in datasets with a large number of attributes, although in
some datasets this led to a smaller predictive accuracy. Liu et al. presented
two extensions: AntMiner2 [11] and AntMiner3 [12]. AntMiner2 [11] employs a
density-based heuristic function for calculating the heuristic value for a term,
while AntMiner3 [12] is based on a new state transition approach. A pseudo-
random proportional transition rule was used by Wang in [25].

Smaldon and Freitas [20] introduced the idea of selecting the rule conse-
quent class before rule construction — this idea is the inspiration for our multi-
pheromone ant system modification described in section 4 — and producing an
unordered rule set. Their approach was based on constructing rules for each
class separately: an extra For-Each (class value) loop is added as an outer
loop for the original algorithm. The consequent of the rule is known by the
ant during rule construction and does not change. An ant tries to choose terms
that improve the accuracy for a rule predicting the class value in the current
iteration of the For-Each loop. This approach generates better rules in com-
parison with the original Ant-Miner, where a term is chosen for a rule in order
to decrease entropy in the class distribution of cases matching the rule under
construction. However, the entire execution (with the complete training set)
is repeated separately for each class value until the number of positive cases
(belonging to the current class) remaining in the dataset that have not been
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covered by the discovered rules is less than or equal to max uncovered cases.
For a more detailed description of the algorithm, refer to [20].

Martens et. al [13] have introduced a new ACO-based classification algo-
rithm, named AntMiner+, which employs different pheromone initialization
and update procedures based on the MAX -MIN Ant System (MMAS)
[22]. It makes a distinction between nominal and ordinal attributes. Instead
of creating a pair ⟨attribute = value⟩ for each value of an ordinal attribute,
AntMiner+ creates two types of bounds that represent the intervals of values
to be chosen by the ants. Edges in the construction graph are considered the
decision components, and, in addition, the α and β parameters are included as
nodes in the construction graph, so that their values are selected, and adapted
automatically during the algorithm’s run, not statically set before execution.
Moreover, AntMiner+ includes special handling of discrete attributes having
ordered values (as opposed to nominal attributes having unordered attributes
such as “male” and “female”), allowing for interval rules to be constructed. In
addition, an extra vertex group is added at the start of the construction graph
containing class values to allow the selection of class first. This is similar to
considering the class as another variable. Rules with different classes can be
constructed in the same iteration. Different heuristic values are applied ac-
cording to the selected class in order to choose the terms that are relevant to
the prediction of the selected class. However, pheromone information is shared
by all ants constructing rules with different consequents.

Galea and Chen [8] presented an ACO approach for the induction of fuzzy
rules, named FRANTIC-SRL, which runs several ACO algorithm instances
in parallel, each one generates rules for a particular class. Swaminathan [23]
proposed an extension to Ant-Miner which enables interval conditions in the
rules. For each discrete interval, a node is added to the construction graph
and the pheromone value associated to the node is calculated using a mixed
kernel probability density function (PDF).

Otero et al. [15] introduced a version of Ant-Miner that copes with con-
tinuous attributes named cAnt-Miner, by having the ability to create discrete
intervals for continuous attributes “on-the-fly”. Later, an extended version of
cAnt-Miner was introduced in [16].

The reader is referred to [14] for a recent survey of swarm intelligence
approaches to data mining.

3.2 Other Related Work

The extensions described in Section 7 and 8 of this paper are based on the
ideas of stubborn ants, and ants with personality, respectively, which were
proposed in [1]. These ideas are motivated by the following argument. In most
ACO methods, each ant generates its solution in a given iteration according to
Equation (5). In other words, each ant stochastically generates its solution, in
a given iteration, based on the same pheromone τ and heuristic information η
as every other ant. In a given iteration, the probability that a given candidate
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solution will be generated by a given ant k is identical to the probability that
it will be generated by any other given ant ℓ.

Stubborn ants is an ACO variation, proposed in [1] in the context ofMAX -
MIN Ant System applied to the traveling salesman problem, in which if an

ant k generated a particular candidate solution S(k)
t−1 in iteration t−1, then the

solution components of S(k)
t−1 will have a higher probability of being selected

in the candidate solution S(k)
t generated by ant k in iteration t. The idea is

to increase diversity by making the probability distribution used to generate
candidate solutions different from one ant to another based on each ant’s past
experience.

A further variation called ants with personality proposed in the future work
section of [1] takes the idea of promoting diversity further by allowing each ant
to have its own values of the αk and βk parameters (where αk and βk represent
the values used by ant k in applying Equation (5)). In this way, some ants will
give more importance to pheromone information, while others will give more
importance to heuristic information. The αk and βk parameters for each ant
are randomly generated from a normal distribution centered at some global
αglobal and βglobal.

4 Utilizing Multiple Pheromone Types

In the original Ant-Miner, the consequent of a rule is chosen after its an-
tecedent’s terms are selected by determining the class value with maximum
occurrence in the cases matching the rule antecedent. The main principle of the
multi-pheromone system is that the class is chosen before the rule antecedent’s
construction, so that the antecedent’s terms are selected with respect to the
current selected class. As discussed in Section 3.1, the idea of selecting the rule
consequent prior to rule construction has been introduced in the literature in
different flavors in work by Smaldon and Freitas [20] and in AntMiner+ [13].

A major difference between our work and AntMiner+ is that in AntMiner+,
every ant is influenced by the pheromone deposited by every other ant con-
structing similarly or differently labeled rules, as pheromone is shared by all
ants. This can negatively affect the quality of the constructed rules, as the
terms that lead to constructing a good rule with class Cx as a consequent do
not necessarily lead to constructing a good rule with Cy as a consequent.

Our work is different from that of Smaldon and Freitas [20] in that, in their
approach, the entire execution (with the complete training set) is repeated
separately for each class value until the number of positive cases (belonging
to the current class) remaining in the dataset that have not been covered by
the discovered rules is less than or equal to max uncovered cases.

In contrast, our proposed multi-pheromone Ant-Miner system executes the
course of operations only once during the entire training process. Even though
we use a class-based strategy in term selection and pheromone update, ants can
construct rules with different consequent classes in the same iteration simulta-
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neously. However, an ant is only influenced by the ants that have constructed
rules with the same consequent.

First, an ant probabilistically selects the rule consequent prior to the an-
tecedent based on pheromone and heuristic information as described below.
Then, it tries to choose terms that are relevant to predicting this class. The
rule is then evaluated and the pheromone is updated. But, unlike the version
of Ant-Miner in [13], the ant deposits different kinds of pheromone, as many
as the number of permitted classes. The next ant is only influenced by the
pheromone deposited for the class for which it is trying to construct a rule.
In this case, pheromone information is not shared among ants constructing
rules for different classes. This allows choosing terms that are only relevant
to the selected class. A high level pseudo-code description of multi-pheromone
Ant-Miner is presented in Algorithm 2.

Algorithm 2 Pseudo-code of Multi-pheromone Ant-Miner.
Begin Multi-pheromone Ant-Miner
training set← all training cases;
discovered rule set← ϕ;
while |training set| > max uncovered cases do

InitializePheromoneAmounts();
CalculateHeuristicV alues();
Rbest ← ϕ;
i← 0;
repeat

SelectRuleClass(anti);
ConstructRuleAntecedent(anti);
Rcurrent ← PruneRule(anti);
Qcurrent ← CalculateRuleQuality(Rcurrent);
UpdatePheromone(Rcurrent);
if Qcurrent > Qbest then

Rbest ← Rcurrent;
end if
i← i+ 1;

until i = max trials OR Convergence()
discovered rule set← discovered rule set+Rbest;
training set← training set− Cases(Rbest);

end while
End

The idea of multi-pheromone Ant-Miner is that each class has a different
pheromone type to be deposited on the terms in the construction graph. In
essence, we are replacing the traditional two-dimensional pheromone structure
(attribute, value) by a new three-dimensional pheromone structure (attribute,
value, class). This also applies to the heuristic values structure.

During rule construction, the rule class is already set and an ant is only
influenced by the amount of pheromone in the pheromone array element cor-
responding to its rule class. Similarly in pheromone update, an ant deposits
pheromone in the array element corresponding to the current rule class in each
node belonging to the trail followed by the ant (i.e., for each term in the rule
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antecedent). Here, a term’s pheromone value is a representation of that term’s
relevance for predicting a specific class (the one that is pre-selected for the
rule consequent).

Class values are also represented as nodes in the construction graph, and
pheromone can be deposited on them. The class value is selected probabilisti-
cally according to the pheromone amount and heuristic value associated with
it, using Equation (6). The heuristic value ηk is based on the empirical prior
probability of class k and is calculated as follows:

ηk =
freq(k)

|TrainingSet|
(9)

where freq(k) is the frequency of class k in the current training set. In
pheromone update, the pheromone level increases in the node of the con-
structed rule class according to the quality of the rule, similar to any other
decision components (attribute values) in the construction graph.

We choose a class-based heuristic function that calculates the quality of
an antecedent with respect to a specific class, which focuses on the term’s
relevance for predicting the pre-selected rule consequent. Laplace-corrected
confidence [20] is used in the multi-pheromone system as a heuristic function,
and is given by:

ηij,k =
|termij , k|+ 1

|termij |+ m
(10)

where ηij,k is the heuristic value for termij given that class k has been selected,
|termij , k| is the number of training cases which include termij and the current
selected class k, |termij | is the number of training cases which include termij ,
and m is the number of classes. The probability of selecting termij given that
class k has been chosen is calculated as follows:

Pij,k =
τij,k (t) · ηij,k∑a

r=1

∑br
s=1 (τrs,k (t) · ηrs,k)

(11)

where τij,k is the pheromone amount of type class k associated with termij .
The amount of pheromone τij,k is a representation of the quality of termij in
the prediction of class k.

Pheromone normalization (which is used to simulate evaporation) is ap-
plied separately for the partition of τ corresponding to each class. Specifically,
for a given class k, normalization causes τ entries to be re-scaled such that the
following condition holds:

a∑
r=1

br∑
s=1

τrs,k = 1 (12)

In addition, for the class value elements themselves, normalization re-scales
the entries of τ corresponding to class values such that the following condition
holds:

m∑
h=1

τh = 1 (13)
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where m is equal to the number of classes.
Example. Consider the previously-introduced sample dataset shown in

Table 1. In the multi-pheromone system, τ would contain 21 elements, in-
cluding elements such as τ [Condition, Good, Buy], τ [Safety, Bad, Wait], and
τ [Condition, Bad, Don′t Buy]. In addition, τ would contain three elements cor-
responding to the possible class values: τ [Buy], τ [Wait], and τ [Don′t Buy]. η
would similarly contain 21 elements for the attribute-value-class triples, and
3 elements for the class values. If an ant selects class Buy, then the proba-
bility of selecting (Safety, Good) would depend only on τ [Safety, Good, Buy],
and η [Safety, Good, Buy]. If the constructed rule includes the term ⟨Safety =
Good⟩, then the value of τ [Safety, Good, Buy], as well as the value of τ [Buy],
will each be increased by an amount that depends on the rule’s quality,
while τ [Safety, Good, Wait] and τ [Safety, Good, Don′t Buy] will remain un-
changed. �

Rules are evaluated by a function that balances between the support and
the confidence of the rule, as follows:

Q(Rt) =
TP

|TrainingSet|︸ ︷︷ ︸
Support(Rt)

+
TP

|Matches|︸ ︷︷ ︸
Confidence(Rt)

(14)

where Support(Rt) represents the ratio of the number of cases that match
Rt’s antecedent and are labeled by its class to the total number of cases in
the training set, and Confidence(Rt) represents the ratio of the number of
cases that match rule Rt’s antecedent and are labeled by its class to the total
number of cases that match Rt’s antecedent. Note that, for any rule R, it will
always be true that 0 ≤ Q(R) ≤ 2.

We employ the quality evaluation function in Equation (14), first used in
AntMiner+ [13], instead of Ant-Miner’s original evaluation function (Equa-
tion (2)), since in our multi-pheromone approach the class is pre-selected and
a rule’s antecedent is constructed based on the selected class. Hence, we eval-
uate the quality of the rule constructed with respect to the selected class,
considering two aspects: predictive accuracy represented by the confidence of
the rule antecedent given the selected class, and the rule coverage represented
by the support of the rule. In contrast, in the original Ant-Miner, term selec-
tion is performed to reduce class entropy, regardless of the rule consequent.
Thus the rule is evaluated by its sensitivity and specificity.

As for rule pruning, some alterations were made to take advantage of the
pre-selection of the rule consequent class and the use of multiple types of
pheromone. Rule pruning involves speculatively removing each term in turn
and evaluating the quality of the rule without that term, then considering the
rule with the removed term having the largest increase in rule quality. This
process was repeated until no increase in rule quality was observed during
the term removal process. A new consequent – the class with the highest
occurrence among all cases covered by the rule – was assigned to the rule
after each term was speculatively removed. In multi-pheromone Ant-Miner,
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the consequent remains the same during this process, and so the rule pruning
procedure is simplified. After each term is removed, there is no need to compute
the quality of the new reduced rule for all possible classes of the consequent.
This is because all the terms in the rule antecedent are selected based on the
consequent class, so it is certain that the current class produces the highest
quality with the current terms compared to other classes. Only the quality for
the new reduced rule is computed.

Pheromone levels are increased on the terms included in the antecedent of
the constructed rule Rt, with respect to the selected class k, according to the
rule quality Q(Rt). The pheromone amount is also increased for the selected
class k of the constructed rule Rt. The following are the pheromone deposit
formulas for the rule’s terms and the rule’s class, respectively.

τij,k(t+ 1) = τij,k(t) + τij,k(t).Q(Rt) (15)

τk(t+ 1) = τk(t) + τk(t).Q(Rt) (16)

Pheromone normalization (to simulate evaporation) is then applied to the τ
attribute-value pair entries corresponding to the class of the constructed rule,
as well as to the τ entries corresponding to class values. Equation (12) is
applied for the class k of the constructed rule, and Equation (13) is applied to
the τ entries corresponding to class values.

After the best rule of the current iteration is selected, all cases covered by
this rule are removed from the training set and the pheromone is initialized,
but only in the pheromone array elements corresponding to the class of this
rule. Leaving the pheromone in the array elements of other classes unchanged
tends not to waste the knowledge that has been collected by the ants in the
previous trials for the rest of the classes, leading to faster convergence in the
next iterations.

5 Quality Contrast Intensifier

Along with the multi-pheromone system, we propose a new pheromone update
procedure. The idea is to intensify the contrast between bad solutions, good
solutions, exceptionally-good solutions, and unvisited solutions during rule
construction. Quality contrast intensification takes place as a new strategy
for pheromone update. An ant that constructs a solution with good quality
is rewarded by magnifying the amount of pheromone to be deposited on its
trail. By contrast, an ant that constructs a bad rule is penalized by removing
pheromone from its trail according to the weakness of the constructed solution.
The quality contrast intensifier is applied – after rule quality evaluation – using
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the following conditional formula:

∆τ(t)k =


2Q(Rt) if confidence(Rt) ≥ ϕ1

Q(Rt) if ϕ1 > confidence(Rt) ≥ ϕ2

Q(Rt)− 2 if ϕ2 > confidence(Rt)

(17)

where ∆τk is the amount of pheromone (type k) to be deposited by antt on
each attribute value belonging to Rt’s antecedent as well as class k, Q(Rt) is
the quality of Rt calculated using Equation (14), and ϕ1 and ϕ2 are the upper
and lower thresholds, respectively, for the rule confidence at which the quality
is contrasted.

As we can see in Equation (17), if the confidence of the constructed rule
exceeds ϕ1, the amount of the pheromone value to be added is doubled, as if
there were two ants choosing the path that led to this high confidence solution.
On the other hand, if the confidence of the constructed rule goes below ϕ2, the
pheromone value to be added is negative. This is obtained by subtracting 2
from the value of the rule quality (recall from Equation (2) that the maximum
value of rule quality is 2). In our experiments, we use 0.8 and 0.5 for ϕ1 and
ϕ2, respectively; this means rules with a confidence of 80% or higher receive
twice the reinforcement, while rules with confidence below 50% are penalized.

This contrast intensification strategy comes with several advantages. First,
higher quality rules get significantly more pheromone than other normal and
lower quality rules, which leads to faster convergence. Second, it ensures the
balance in the quality of output between the number of generated rules (which
is affected by the rule support) and the classification accuracy of these rules
(which is affected by the confidence of the rule). For example, some attribute
values have a very high frequency of occurrence among the training set cases.
This increases the support value in the quality evaluation, which increases
the quality of the rule in general according to Equation (14), regardless of
the rule’s confidence. Thus, this quality contrast intensifier works in favor
of rule confidence in order not to generate significantly fewer rules with low
classification quality. Finally, penalizing bad rules by removing pheromone
from their trail gives an opportunity to unvisited nodes to be selected in further
iterations, as their pheromone amount is likely to become higher than that of
already-tried bad nodes. This can be expected to enhance the exploration
aspect of the algorithm.

Note that the quality contrast intensifier described in this section is in-
tended to be used in combination with the multi-pheromone extension. This
is because, as can be seen in Equation (17), the contrast intensifier rewards
or penalizes solutions based on their confidence. Confidence is part of the rule
quality evaluation function when multi-pheromone is used, but is not part of
the evaluation function in the original Ant-Miner, since in the former we apply
a class-based term selection strategy, where the confidence measure applies,
while in the latter, term selection is done only to decrease class distribution
entropy.
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6 Using Logical Negation Operator in Rule Antecedents

In the original and various versions of Ant-Miner, the construction graph con-
sists of nodes representing attribute values of the problem domain. The set of
nodes (N) in the construction graph is:

N =
a∪

i=1

vij , j ∈ {1, 2, . . . , bi}

where i is the ith attribute, a is the number of attributes, bi is the number of
permitted values for attribute i, and vij is the jth permitted value of the ith

attribute. Thus, the constructed rule antecedent will be of the form:

IF ⟨Ai = Vij⟩ AND ⟨Ak = Vkl⟩ AND . . .

To allow using the logical negation operator in the antecedents of constructed
rules, the values and their negation per attribute will be added to the con-
struction graph. The set of nodes (N) in the construction graph will be:

N =

a∪
i=1

vij ∪
a∪

i=1

vij , j ∈ {1, 2, . . . , bi}

Thus, the available decision components in the construction graph allow con-
structing rule antecedents of the form:

IF ⟨Ai = Vij⟩ AND ⟨Ak NOT = Vkl⟩ AND . . .

Negation nodes are added for an attribute if it has more than two values in its
domain. Pheromone is updated normally on these terms and a heuristic value is
calculated for the negation attribute values in the same way as it is calculated
for regular attribute values. An example of a generated rule using the logical
negation operator is: “IF ⟨Price = Low⟩ AND ⟨Condition NOT = Bad⟩
THEN ⟨Buy⟩”. In general, terms that have logical negation match more cases
than the regular terms. This leads to the construction of rules with high cov-
erage.

Example. Consider the previously-introduced sample dataset shown in
Table 1. If the logical negation operator is used for constructing classification
rules for this dataset, only three ordered rules will be needed to correctly
classify the whole dataset. These rules are as follows:

1. IF ⟨Condition NOT = Bad⟩
THEN⟨Buy⟩.

2. ELSE IF ⟨Condition = Bad⟩ AND ⟨Safety = Very Good⟩
THEN ⟨Wait⟩.

3. ELSE ⟨Don’t Buy⟩.

Because the rules generated with the logical negation operator have higher
coverage, the output rule set size becomes smaller than the rule set generated
without using logical negation. The following ordered list of rules is generated
without using logical negation:
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1. IF ⟨Condition = Bad⟩ AND ⟨Safety = Very Good⟩
THEN ⟨Wait⟩.

2. ELSE IF ⟨Condition = Bad⟩ AND ⟨Safety = Good⟩
THEN ⟨Don’t Buy⟩.

3. ELSE IF ⟨Condition = Bad⟩ AND ⟨Safety = Bad⟩
THEN ⟨Don’t Buy⟩.

4. ELSE ⟨Buy⟩.

At least four rules are needed to correctly classify these cases without using
the logical negation operator.

Note that our use of the logical negation operator does not differentiate be-
tween nominal and ordinal attributes. For example, given a nominal attribute
“Color” with 3 values in its domain {red, green, blue}, terms that can be gen-
erated from this attribute are ⟨Color NOT = red⟩, ⟨Color NOT = green⟩
and ⟨Color NOT = blue⟩. Similarly, given an ordinal attribute “Blood
Pressure” with 3 values in its domain {high, moderate, low}, terms that
can be generated using logical negation are ⟨BloodPressure NOT = high⟩,
⟨BloodPressure NOT = moderate⟩ and ⟨BloodPressure NOT = low⟩. �

In AntMiner+ [13], intervals are produced from ordinal attributes, gener-
ating terms of the form ⟨Blood Pressure ≥ moderate⟩. However, this strat-
egy does not allow generating terms that cover cases having the upper and
the lower values of the ordinal attribute (e.g. the case in which the Blood

Pressure is high or low) and sharing the same class. This can be covered using
the logical negation operator by generating the term ⟨BloodPressure NOT =
moderate⟩.

Of course, in some applications, domain experts do not prefer terms such
as NOT moderate. In such domains, the use of NOT can be limited to the
highest and lowest values of an attribute.

Although using negated attributes doubles the size of the construction
graph, it enables the construction of rules that have greater coverage of the
training cases. Consequently, a lower number of rules is produced, which im-
proves the simplicity of the output.

While our logical negation operator allows the construction of terms such
as ⟨Condition NOT = good⟩ and ⟨color NOT = green⟩, which can only be
generated in AntMiner+ by mining multiple rules, the interval approach used
in AntMiner+ can also generate terms such as ⟨ConditionBETWEEN Good :
Very Good⟩, that can only be generated with the logical negation operator by
mining multiple rules. Luckily, the two approaches (logical negation, and gen-
erated intervals) are not mutually exclusive. It is possible to include both
approaches in a single implementation, and we would like to consider this in
future work. Depending on the preference of the domain expert, or the nature
of the problem domain, the user would designate which attributes will use
generated intervals, and which will use logical negation.
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7 Incorporating Stubborn Ants

As discussed in Section 3.2, stubborn ants [1] are an ACO variation in which
each ant has its own bias, based on its personal search history. Here, we adapt
the stubborn ants idea and use it in the context of Ant-Miner. In [1], each ant
was biased towards the solution it had constructed in the previous iteration. In
the approach we use here, each ant retains a memory of the best-ever solution
it has personally constructed in the past, and is biased towards this personal
historical-best solution.

The original Ant-Miner algorithm can be thought of as employing a large
number of ants (specified by the max trials parameter), each making a single
trial. In order to use stubborn ants, we will consider that we have some number
of ants (specified by a new parameter number of stubborn ants), each mak-
ing a number of trials equal to the result of dividing the parameter max trials

by the parameter number of stubborn ants. Thus, the total number of trials
remains the same and equal to the max trials parameter. Algorithm 3 shows
high-level pseudo-code for Ant-Miner with stubborn ants.

Algorithm 3 Pseudo-code of Ant-Miner with the Stubborn Ants Extension.
Begin Ant-Miner with Stubborn Ants
training set← all training cases;
discovered rule set← ϕ;
InitializePheromoneAmounts();
while |training set| > max uncovered cases do

CalculateHeuristicV alues();
Rbest ← ϕ;
i← 0;
repeat

for t = 0 to number of stubborn ants do
ConstructRuleAntecedent(antt);
ComputeRuleClass(antt);
Rcurrent ← PruneRule(antt);
Qcurrent ← CalculateRuleQuality(Rcurrent);
UpdatePheromone(Rcurrent);
if Qcurrent > Qbest then

Rbest ← Rcurrent;
end if
if Qcurrent > Q+

best then

R+
t ← Rcurrent;

end if
i← i+ 1;

end for
until i = max trials OR Convergence()
discovered rule set← discovered rule set+Rbest;
training set← training set− Covered Cases(Rbest);

end while
End

Basically, each ant carries out several trials in the execution of the al-
gorithm. Each antt memorizes the best solution R+

t that it has constructed
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during its own trials. During rule construction, if termij belongs to the an-
tecedent of rule R+

t , then termij will have an amplified probability of being
selected by antt, with the degree of amplification depending on the quality of
the solution R+

t . The probability that a term will be added to the current rule
is given by the following formula:

Pij(t) =
Vij∑a

r=1

∑br
s=1 (Vrs)

(18)

where

Vij =

 ηij · τij (t) + ηij · τij (t) ·Q(R+
t ) if termij belongs to R+

t

ηij · τij (t) otherwise
(19)

where Q(R+
t ) represents the quality of antt’s historical-best memorized rule

R+
t (recall that Q always returns non-negative values).
Note that the parameter number of stubborn ants affects the behavior

of the algorithm; as the number of stubborn ants decreases, the stubborn-
ness effect is more applied, given that the max trials parameter remains
unchanged. For example, suppose that the maximum trials allowed is 3,000;
if the number of stubborn ants is 3,000, then each ant will carry out only
one trial, which is the case in the original Ant-Miner algorithm. On the other
hand, if the number of stubborn ants is 30, then each ant can carry out up
to 100 trials. If the number of stubborn ants is 10, then the number of trials
that can be performed by a single ant is 300, in which case the stubbornness
effect is more pronounced.

In our experimental results, the number of stubborn ants is 5, and the
max trials parameter is equal to 1,500—which means that each ant will carry
out 300 trials (unless convergence occurs sooner). Setting number of stubborn ants

to 5 means that up to 5 different previously-generated solutions could be mem-
orized and used to influence future solution construction.

8 Giving Ants Personality

As discussed in Section 3.2, in most ACO systems, each ant probabilistically
generates its solution in a given iteration according to Equation (5). The expo-
nents α and β in this equation are used to adjust the relative emphases of the
pheromone (τ) and heuristic information (η), respectively. In this section, we
adapt the “ants with personality” approach proposed as future work in [1] to
the Ant-Miner framework. Each ant k is allowed to have its own personality by
allowing it to have its own values of the αk and βk parameters. In other words,
some ants will give more importance to pheromone information, while others
will give more importance to heuristic information. The αk and βk parameters
are each independently drawn from a Gaussian distribution centered at 2 with
a standard deviation of 1.
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The idea of setting different values of α and β for each ant was explored as
early as 2007 in AntMiner+ [13]. As mentioned in Section 3.1, in AntMiner+,
the α and β values are considered as decision components, in the construction
graph, that are selected probabilistically by each ant before rule construction
using pheromone information. However, the values of these parameters are
limited to integer values between 1 and 3. Moreover, since α and β values are
selected according to pheromone information, ants could potentially converge
on specific values at some point, which can limit further exploration in the
rest of the algorithm’s execution.

9 Experimental Evaluation Methodology

9.1 Datasets

The performance of Ant-Miner with the proposed extensions was evaluated
using 23 public-domain datasets from the UCI (University of California at
Irvine) dataset repository [24]. The main characteristics of the datasets are
shown in Table 2.

Since Ant-Miner does not handle continuous attributes directly, the datasets
containing continuous attributes were discretized in a preprocessing step, using
the C4.5-Disc [10] discretization algorithm. Briefly, the C4.5-Disc algorithm
works as follows. For each continuous attribute, a two-attribute dataset is
constructed. The first attribute of the constructed dataset contains the values
(extracted from the training set) of the numeric attribute to be discretized,
and the second is the class attribute. The C4.5 decision tree generation algo-
rithm is then applied to this reduced dataset. Thus, C4.5 constructs a decision
tree in which all internal nodes refer to the attribute being discretized. Each
path from the root to a leaf node in the constructed decision tree corresponds
to the definition of a categorical interval produced by C4.5.

For each cross-validation fold, we separately discretized (using C4.5-Disc)
the training set and then used the created discrete intervals to discretize the
test set. This separation is necessary because if we had discretized the entire
dataset before creating the cross-validation folds, the discretisation method
would have had access to the test data—which would have compromised the
reliability of the experiments. Moreover, we also removed any duplicated ex-
amples (examples with the same values for all attributes) from the resulting
discrete dataset to avoid the possibility that a test set contains an example
that is the same as a training example.

The ten datasets that contained continuous attributes and required pre-
processing are: breast cancer (wisconsin), contraceptive method choice, statlog
credit (australian), statlog credit (german), dermatology, glass, heart (cleve-
land), ionosphere, iris, and wine.
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Table 2 Description of Datasets Used in Experimental Results

Dataset Size Attributes Classes

audiology 266 69 24

balance scale 625 4 3

breast cancer (wisconsin) 286 9 2

car evaluation 1,728 6 4

contraceptive method choice 1,473 9 3

statlog credit (australian) 690 14 2

statlog credit (german) 1,000 20 2

dermatology 366 33 6

glass 214 10 7

hayes-roth 160 4 3

heart (cleveland) 303 12 3

ionosphere 350 34 2

iris 150 4 3

monks 432 6 2

mushrooms 8,124 22 2

post operative patient 90 8 3

soybean 307 35 19

SPECT heart 267 22 2

teaching assistant evaluation 151 5 3

tic-tac-to 958 9 2

voting records 435 16 2

wine 178 13 3

zoo 101 17 7

9.2 Algorithms Evaluated

A list of the classification algorithms used in our experiments is presented in
Table 3. In this paper, we have presented five extensions to the Ant-Miner
algorithm. It would not be practical to experimentally evaluate every possible
combination of these extensions because this would lead to 25 = 32 varia-
tions in theory (although several are not very meaningful, as discussed below).
Therefore, in our experiments, we restrict ourselves to 12 combinations of these
variations, as shown in Table 3. These 12 combinations were chosen based on
the following rationale.

We divide the five extensions presented in this paper into three groups:

(a) The multi-pheromone extension and the quality contrast intensifier exten-
sion, denoted collectively as µAnt-Miner. The multi-pheromone extension
without the quality contrast intensifier is denoted µ−Ant-Miner. As dis-
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Table 3 Summary of the Classification Algorithms Used in the Experiments

Algorithm Abbr. Description

Ant-Miner AM Original Ant-Miner algorithm

Ant-Miner¬ AM¬ Ant-Miner using logical negation operator

ψAnt-Miner ψAM Ant-Miner with stubborn ants with personality

ψAnt-Miner¬ ψAM¬ ψAnt-Miner using logical negation operator

ψ−Ant-Miner ψ−AM Ant-Miner with stubborn ants only

ψ∗Ant-Miner ψ∗AM Ant-Miner with personality only

µAnt-Miner µAM Ant-Miner with multiple pheromones types and quality contrast intensifier

µ−Ant-Miner µ−AM µAnt-Miner without quality contrast intensifier

µAnt-Miner¬ µAM¬ µAnt-Miner with logical negation operator

µ−Ant-Miner¬ µ−AM¬ µAnt-Miner¬ without quality contrast intensifier

µψAnt-Miner µψAM µAnt-Miner using stubborn ants with personality

µψAnt-Miner¬ µψAM¬ Ant-Miner with all of the five proposed extensions

Ripper JRip Weka [26] implementation of the RIPPER algorithm [3]

PART PART Weka implementation of the PART algorithm [7]

C4.5-Rules C4.5r Quinlan’s [18] implementation of the C4.5-Rules algorithm (Release 8)

Ripper (PD) JRippd JRip with prior discretization of the dataset

PART (PD) PARTpd PART with prior discretization of the dataset

C4.5-Rules (PD) C4.5rpd C4.5r with prior discretization of the dataset

cussed earlier, the quality contrast intensifier is not intended to be used
without the multi-pheromone extension.

(b) The logical negation operator extension, denoted Ant-Miner¬. This exten-
sion has been considered as a separate group by itself because, out of all
the 5 extensions, it is the only one that modifies the construction graph
(i.e. the search space) of Ant-Miner. (The other 4 extensions modify the
way the search is performed, rather than modifying the search space.)

(c) The stubborn ants and the ants with personality extensions, denoted col-
lectively as ψAnt-Miner. Stubborn ants, without personality, is denoted
ψ−Ant-Miner, and personality without stubbornness is denoted ψ∗Ant-
Miner.

We experimentally evaluate all possible combinations of these three group-
ings, eight variations in total: Ant-Miner, µAnt-Miner, Ant-Miner¬, ψAnt-
Miner, µAnt-Miner¬, µψAnt-Miner, ψAnt-Miner¬, and µψAnt-Miner¬.

Additionally, in order to isolate the effect of the quality contrast intensifier,
we evaluate the combinations: µ−Ant-Miner, and µ−Ant-Miner¬. This will
allow us to compare µ−Ant-Miner to µAnt-Miner, and to compare µ−Ant-
Miner¬ to µAnt-Miner¬. Further, to isolate the effect of each of the extensions
combined into the ψ grouping, we also evaluate: ψ−Ant-Miner and ψ∗Ant-
Miner.
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We compare each of the 12 Ant-Miner variations to the original Ant-Miner
algorithm, as well as to three state-of-the-art conventional rule induction al-
gorithms, Ripper [3], PART [7], and C4.5-Rules [18].

These three conventional rule induction algorithms are able to process con-
tinuous attributes and do not require prior discretization of the dataset. There-
fore, for the sake of fairness, we applied the following methodology for the ten
datasets with continuous attributes: each of three rule induction algorithms
was run twice, once on the original dataset, and a second time with prior
discretization of the dataset (using the C4.5-Disc algorithm, fold by fold, as
described in Section 9.1). As indicated in Table 3, we use JRippd, PARTpd, and
C4.5rpd, to refer to each of the three rule induction algorithms, respectively,
run with prior discretization of the dataset.

9.3 Experimental Setup

The experiments were conducted using a ten-fold cross-validation procedure
for each dataset. A ten-fold cross-validation procedure consists of dividing
the dataset into ten partitions of cases, wherein each partition has a similar
number of cases and class distribution. For each partition, the classification
algorithm is run using the remaining nine partitions as the training set and
its performance is evaluated using the unseen (hold-out) partition.

For stochastic classification algorithms – i.e. Ant-Miner and its variations
using the proposed extensions – the algorithm is run fifteen times using a
different random seed to initialize the search for each partition of the cross-
validation. In the case of the deterministic algorithms – i.e. Ripper, PART
and C4.5-Rules – each of them is run just once for each partition of the cross-
validation.

The number of rules generated (which represents the simplicity of the out-
put) and the predictive accuracy of the generated rules were recorded to eval-
uate the performance of the algorithm.

Although dynamic parameter adaptation schemes have been investigated
for ACO algorithms [21], we use static parameter settings in this paper in order
to isolate the effects of the proposed extensions. Table 4 shows the parameter
settings used in our experiments. The general parameters follow the parameter
settings used in [17]. The extension-specific parameters were determined based
on initial ad hoc experimentation.

The source code for our extended version of Ant-Miner, including all exten-
sions presented in this paper, is available at the following address:
http://www.aucegypt.edu/faculty/abdelbar/ant-miner-extended.zip
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Table 4 Algorithm Parameters Used in Experiments

Parameter Value

General Ant-Miner Parameters max trials 1,500

max uncovered cases 10

min cases per rule 5

no rules converg 10

Quality Contrast Intensifier ϕ1 0.8

ϕ2 0.5

Stubborn Ants number of stubborn ants 5

Personality mean value of α and β 2

standard deviation of α and β 1

10 Experimental Results

10.1 Results for Ant-Miner Extensions

Tables 5 and 6 show predictive accuracy results while Tables 7 and 8 show
model size results for the Ant-Miner extensions. Results of predictive accuracy
and model size for the first 12 datasets are shown in Tables 5 and 7 respectively,
while the results for the remaining 11 datasets are shown in Tables 6 and 8.

For each dataset, each table shows the mean and standard deviation (mean
± stdv.)

of the measure related to the table, for each of the used algorithms. In addi-
tion, an entry is underlined if, for the corresponding dataset, the value obtained
by the corresponding algorithm is the best (highest in accuracy or lowest in
model size) among all values achieved by all 12 evaluated extensions. Further,
a value is shown in boldface if the difference between it and the best value is
less than the average of the two standard deviations (i.e. the average of the
entry’s standard deviation and the best entry’s standard deviation). For ex-
ample, in Table 5, for the aud dataset, the best value is 82.92 (corresponding
to µψAnt-Miner)—therefore, this value is underlined—and its corresponding
standard deviation is 2.2. The value, for example, corresponding to µAnt-
Miner is shown in bold because its value (81.95) differs from the best value
(82.92) by less than the average of the two standard deviations (2.2 and 0.8).

Table 9 shows the average rank of each extension for predictive accuracy
and model size, with the best performances shown in bold. The average rank
for a given algorithm g is obtained by first computing the rank of g on each
dataset individually. The individual ranks are then averaged across all datasets
to obtain the overall average rank. Note that the lower the value of the rank,
the better the algorithm.

It should be noted that the summary of results in Table 9, and the cor-
responding discussion in the remainder of the paper, is based on the average
ranking of the algorithms for each performance criteria (accuracy and model
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Table 5 Predictive Accuracy Results (%) for the First Group of Datasets

aud bal bcw car cmc c-a c-g drm gls hay hrt ion

AM 61.48 66.52 92.53 77.80 44.18 83.39 69.84 89.06 53.27 46.06 55.89 83.07
± 1.4 ± 2.1 ± 1.1 ± 1.8 ± 3.5 ± 3.2 ± 0.9 ± 2.5 ± 3.6 ± 4.4 ± 3.4 ± 2.7

AM¬ 67.95 70.68 92.83 84.76 46.81 84.32 71.03 90.28 61.17 50.76 57.92 86.49
± 1.1 ± 1.8 ± 1.8 ± 1.8 ± 1.9 ± 2.7 ± 0.8 ± 2.9 ± 3.6 ± 4.7 ± 3.7 ± 2.9

ψAM 76.58 65.70 93.89 76.00 46.62 83.61 70.30 94.15 63.06 48.66 57.14 84.24
± 1.8 ± 2.2 ± 1.5 ± 1.7 ± 1.6 ± 2.4 ± 0.8 ± 2.5 ± 3.1 ± 4.2 ± 3.4 ± 2.3

ψAM¬ 74.81 70.01 93.02 80.10 46.02 84.68 71.64 93.83 63.38 52.65 57.63 85.41
± 1.7 ± 2.0 ± 1.4 ± 1.8 ± 1.9 ± 2.8 ± 0.8 ± 2.6 ± 3.4 ± 4.0 ± 3.6 ± 2.8

ψ−AM 76.22 67.50 93.57 79.40 45.01 83.26 70.82 93.11 63.21 48.41 56.08 86.20
± 1.8 ± 2.1 ± 1.6 ± 1.5 ± 1.7 ± 2.4 ± 0.6 ± 2.2 ± 3.4 ± 4.1 ± 3.1 ± 2.0

ψ∗AM 63.61 65.74 93.00 75.93 44.37 83.07 69.30 91.86 60.44 49.38 57.29 83.07
± 1.8 ± 2.4 ± 2.1 ± 1.2 ± 1.8 ± 2.6 ± 0.7 ± 2.7 ± 3.0 ± 4.3 ± 3.8 ± 2.1

µAM 81.95 78.41 94.05 94.79 47.61 82.88 70.70 96.00 65.94 66.46 58.28 85.95
± 0.8 ± 1.3 ± 1.8 ± 1.9 ± 1.5 ± 3.5 ± 0.1 ± 1.3 ± 3.7 ± 4.5 ± 3.5 ± 2.6

µ−AM 80.00 76.58 93.39 92.06 43.89 83.42 70.08 95.37 62.54 64.02 57.92 82.06
± 1.0 ± 1.5 ± 1.7 ± 2.3 ± 1.7 ± 3.6 ± 0.6 ± 1.6 ± 4.6 ± 5.1 ± 3.9 ± 3.0

µAM¬ 78.30 70.59 92.66 88.77 46.51 84.78 70.95 90.82 60.71 58.52 59.62 80.49
± 0.9 ± 2.2 ± 1.5 ± 1.6 ± 1.6 ± 3.2 ± 0.2 ± 3.3 ± 3.5 ± 4.4 ± 3.5 ± 3.1

µ−AM¬ 75.33 68.28 91.23 73.76 43.19 83.29 70.01 84.69 56.44 54.52 54.91 80.33
± 0.6 ± 2.5 ± 2.5 ± 0.0 ± 0.5 ± 3.3 ± 0.0 ± 3.1 ± 3.7 ± 4.9 ± 3.0 ± 3.4

µψAM 82.92 79.73 94.51 94.83 47.76 82.57 70.38 97.40 66.61 68.46 57.82 86.95
± 2.2 ± 4.5 ± 1.8 ± 1.3 ± 2.8 ± 2.5 ± 0.2 ± 2.5 ± 3.8 ± 6.1 ± 3.0 ± 2.6

µψAM¬ 80.30 68.41 92.60 89.33 46.72 84.82 70.11 87.78 62.85 58.37 60.07 81.52
± 1.6 ± 2.6 ± 1.6 ± 1.4 ± 1.1 ± 3.1 ± 0.3 ± 3.4 ± 3.3 ± 5.2 ± 3.3 ± 3.1

size), rather than the direct average values of those two criteria. The rationale
for this is as follows. Statistically speaking, the average accuracy and model
size across all datasets has no clear meaning, because an average should be
computed across different values of the same random variable, but the value
of the accuracy and model size in each dataset is a different random variable,
since each dataset has a unique probability distribution of attribute values and
classes. To see the problem in practice, one should note that the same given
value of accuracy, say 70%, can be considered a very low accuracy in some
datasets (e.g. in the bcw dataset, where all algorithms have accuracy higher
than 90% in Table 5) but a very high accuracy in other datasets (e.g. in cmc,
where all algorithms have accuracy around or smaller than 45% in Table 5).
Hence, analyzing the results based on average accuracy and model size across
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Table 6 Predictive Accuracy Results (%) for the Second Group of Datasets.

irs mon msh pop soy spt tae ttt vot win zoo

AM 92.93 60.99 97.09 71.74 55.89 78.59 44.65 69.73 92.69 88.13 95.48
± 3.0 ± 1.8 ± 0.3 ± 3.5 ± 3.3 ± 1.5 ± 7.7 ± 3.1 ± 1.4 ± 3.2 ± 1.5

AM¬ 93.60 62.38 98.13 71.86 69.73 77.74 45.41 71.87 94.34 92.56 96.63
± 3.4 ± 1.4 ± 0.4 ± 2.9 ± 4.9 ± 0.7 ± 10.0 ± 2.0 ± 1.7 ± 2.4 ± 2.2

ψAM 93.74 60.62 97.91 70.83 59.87 78.92 44.05 70.38 94.54 91.52 95.33
± 3.2 ± 1.4 ± 0.5 ± 2.6 ± 2.4 ± 1.4 ± 7.1 ± 2.4 ± 1.5 ± 3.0 ± 1.6

ψAM¬ 93.51 62.85 98.02 70.31 68.33 76.15 44.77 71.96 95.16 91.72 95.89
± 3.4 ± 1.6 ± 0.3 ± 2.1 ± 4.6 ± 1.4 ± 7.6 ± 2.2 ± 1.5 ± 2.5 ± 1.5

ψ−AM 93.98 59.71 97.82 69.33 60.37 78.87 43.14 69.88 94.50 90.09 95.00
± 3.0 ± 1.6 ± 0.4 ± 2.4 ± 3.1 ± 1.4 ± 8.2 ± 2.0 ± 1.1 ± 3.1 ± 1.0

ψ∗AM 93.19 60.07 97.41 70.17 51.36 78.75 45.10 69.98 92.29 89.34 95.75
± 3.3 ± 1.8 ± 0.4 ± 3.2 ± 2.4 ± 1.8 ± 8.5 ± 2.7 ± 1.3 ± 3.2 ± 1.4

µAM 94.66 63.78 98.20 73.95 86.86 79.12 44.15 94.50 92.76 93.17 99.08
± 1.9 ± 0.6 ± 0.4 ± 3.0 ± 8.1 ± 0.6 ± 8.7 ± 2.9 ± 1.0 ± 2.2 ± 0.6

µ−AM 92.90 63.25 98.53 72.50 86.05 79.93 40.29 90.38 94.41 90.58 98.26
± 2.1 ± 0.6 ± 0.4 ± 3.1 ± 3.0 ± 0.8 ± 7.4 ± 3.4 ± 1.9 ± 2.4 ± 0.8

µAM¬ 90.12 55.32 95.08 74.00 85.67 79.25 39.75 79.26 92.87 89.15 95.42
± 3.5 ± 2.0 ± 1.5 ± 3.2 ± 3.5 ± 0.7 ± 9.2 ± 3.1 ± 0.6 ± 2.6 ± 2.2

µ−AM¬ 84.41 58.50 91.21 72.92 86.38 79.24 42.06 65.26 90.69 87.30 96.01
± 4.3 ± 2.2 ± 1.7 ± 3.6 ± 4.1 ± 0.4 ± 5.3 ± 0.0 ± 3.0 ± 2.3 ± 2.3

µψAM 94.61 63.37 98.52 72.50 87.44 79.77 45.18 98.76 93.25 95.22 99.75
± 3.7 ± 0.9 ± 0.4 ± 3.8 ± 4.7 ± 1.3 ± 10.0 ± 2.7 ± 2.5 ± 2.5 ± 0.5

µψAM¬ 88.20 56.24 97.00 74.25 83.51 79.25 42.38 75.94 92.30 87.46 92.75
± 2.6 ± 2.4 ± 1.3 ± 2.8 ± 3.8 ± 1.3 ± 8.0 ± 3.3 ± 1.6 ± 3.3 ± 2.9

all datasets is statistically meaningless and can lead to potentially mislead-
ing results. In contrast, an analysis based on average rankings mitigates the
above problem, since a given rank obtained by an algorithm in a given dataset
can be interpreted in the same way regardless of the relative difficulty of the
dataset, so that the average ranking is a clearly interpretable and statistically
meaningful measure.

10.2 Analysis of Results for Ant-Miner Extensions

The multi-pheromone extension, combined with the quality contrast inten-
sifier, generally tends to improve the average predictive accuracy rank. For
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Table 7 Model Size Results (Number of Rules) for the First Group of Datasets

aud bal bcw car cmc c-a c-g drm gls hay hrt ion

AM 9.46 12.00 6.08 12.07 8.38 7.36 8.53 7.98 5.89 4.95 7.04 5.22
± 0.1 ± 0.0 ± 0.3 ± 0.2 ± 0.3 ± 0.4 ± 0.2 ± 0.1 ± 0.2 ± 0.1 ± 0.4 ± 0.2

AM¬ 8.07 10.18 5.21 10.31 7.67 6.76 7.80 7.04 7.56 5.55 6.88 4.07
± 0.2 ± 0.2 ± 0.5 ± 0.4 ± 0.2 ± 0.1 ± 0.7 ± 0.1 ± 0.2 ± 0.2 ± 0.2 ± 2.9

ψAM 9.85 10.13 5.94 11.26 7.61 5.85 8.79 7.63 6.77 5.03 7.64 5.43
± 0.4 ± 0.2 ± 0.3 ± 0.4 ± 0.3 ± 0.2 ± 0.2 ± 0.1 ± 0.3 ± 0.2 ± 0.4 ± 0.2

ψAM¬ 8.83 10.00 5.02 10.26 6.95 5.16 7.78 7.31 7.72 5.84 6.18 4.28
± 0.3 ± 0.2 ± 0.6 ± 0.4 ± 0.4 ± 0.3 ± 0.3 ± 0.2 ± 0.3 ± 0.3 ± 0.4 ± 0.2

ψ−AM 12.17 10.00 6.03 11.23 7.40 6.27 8.66 7.41 7.22 4.93 8.09 5.35
± 0.5 ± 0.3 ± 0.2 ± 0.3 ± 0.6 ± 0.5 ± 0.6 ± 0.2 ± 0.2 ± 0.4 ± 0.2 ± 0.3

ψ∗AM 8.71 11.30 6.19 10.60 6.85 6.16 8.73 7.34 5.98 4.93 7.17 4.94
± 0.6 ± 0.4 ± 0.3 ± 1.8 ± 0.5 ± 0.6 ± 0.5 ± 0.3 ± 0.2 ± 0.3 ± 0.5 ± 0.2

µAM 13.85 29.42 6.70 24.61 20.00 9.56 14.89 7.19 9.89 8.69 14.33 5.70
± 0.2 ± 1.4 ± 0.4 ± 1.5 ± 2.3 ± 0.2 ± 1.2 ± 0.1 ± 0.8 ± 0.6 ± 0.7 ± 0.5

µ−AM 13.15 25.53 4.57 20.12 10.31 4.20 2.00 7.11 9.91 9.18 11.77 4.26
± 0.2 ± 1.2 ± 0.6 ± 1.2 ± 1.3 ± 0.4 ± 0.0 ± 0.1 ± 0.7 ± 0.7 ± 0.8 ± 0.4

µAM¬ 12.45 22.75 6.93 18.63 15.96 6.04 11.73 9.21 8.02 5.49 11.73 5.07
± 0.3 ± 0.4 ± 0.4 ± 1.9 ± 0.4 ± 0.9 ± 1.0 ± 0.6 ± 0.7 ± 0.4 ± 0.8 ± 0.3

µ−AM¬ 11.72 6.01 4.17 2.00 3.50 3.00 2.00 8.14 7.36 3.63 8.00 3.31
± 0.2 ± 0.6 ± 0.5 ± 0.0 ± 0.4 ± 0.0 ± 0.0 ± 0.7 ± 0.3 ± 0.4 ± 0.8 ± 0.1

µψAM 14.01 29.59 4.85 21.50 11.60 5.52 11.20 7.29 9.05 6.56 11.02 4.95
± 0.6 ± 1.5 ± 1.7 ± 1.1 ± 1.6 ± 0.4 ± 1.2 ± 0.6 ± 0.9 ± 0.4 ± 1.1 ± 0.4

µψAM¬ 10.78 17.58 6.03 18.28 17.63 6.02 13.03 9.45 7.13 4.77 12.86 4.66
± 0.5 ± 1.6 ± 0.7 ± 1.5 ± 1.9 ± 0.2 ± 0.8 ± 1.2 ± 0.5 ± 0.3 ± 0.6 ± 0.8

example, µAnt-Miner has a much better accuracy rank than Ant-Miner, and
µψAnt-Miner has a much better accuracy rank than ψAnt-Miner. An excep-
tion is that µψAnt-Miner¬ has a worse accuracy rank than ψAnt-Miner¬.
However, in general, there is an accompanying relative decline in the model
size rank. For example, µAnt-Miner has a worse model size rank compared
to Ant-Miner; µψAnt-Miner has a slightly worse model size rank than ψAnt-
Miner; and, µψAnt-Miner¬ has a worse size rank than ψAnt-Miner¬.

The use of the quality contrast intensifier in conjunction with the multi-
pheromone system (µAnt-Miner) generally improves predictive accuracy com-
pared to the multi-pheromone system without the contrast intensifier (µ−Ant-
Miner), however, this often comes at the expense of increasing model size—this
is not unexpected since the quality contrast intensifier favors confidence over
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Table 8 Model Size Results (Number of Rules) for the Second Group of Datasets

irs mon msh pop soy spt tae ttt vot win zoo

AM 4.90 7.36 6.53 4.08 7.65 10.93 5.40 7.30 4.33 5.02 5.95
± 0.2 ± 0.3 ± 0.4 ± 0.2 ± 0.5 ± 0.3 ± 0.8 ± 0.1 ± 0.1 ± 0.2 ± 0.2

AM¬ 4.06 7.91 5.02 3.68 10.74 8.87 5.00 6.27 3.99 4.83 5.04
± 0.2 ± 0.4 ± 0.1 ± 0.6 ± 1.0 ± 0.1 ± 0.8 ± 0.6 ± 0.3 ± 0.1 ± 0.3

ψAM 4.41 7.43 5.75 4.68 9.90 9.40 5.90 7.41 4.67 5.81 5.91
± 0.3 ± 0.4 ± 0.5 ± 0.4 ± 0.7 ± 1.0 ± 0.8 ± 0.2 ± 0.2 ± 0.2 ± 0.2

ψAM¬ 4.60 7.53 5.25 3.80 10.65 8.22 4.04 6.58 4.11 4.60 5.50
± 0.2 ± 0.4 ± 0.4 ± 0.6 ± 0.9 ± 0.2 ± 0.6 ± 0.4 ± 0.2 ± 0.1 ± 0.2

ψ−AM 4.55 7.33 6.20 4.49 11.72 9.33 5.00 7.26 4.40 5.01 5.98
± 0.3 ± 0.3 ± 0.2 ± 0.6 ± 0.8 ± 0.8 ± 0.7 ± 0.5 ± 0.4 ± 0.2 ± 0.2

ψ∗AM 4.83 7.46 6.70 4.51 9.13 8.56 5.06 7.47 4.03 4.68 5.56
± 0.2 ± 0.3 ± 0.3 ± 0.6 ± 0.8 ± 0.6 ± 0.8 ± 0.4 ± 0.3 ± 0.2 ± 0.3

µAM 4.05 10.07 5.31 5.17 21.25 21.50 5.34 10.88 3.64 5.10 6.00
± 0.3 ± 0.7 ± 0.1 ± 0.1 ± 0.3 ± 0.2 ± 0.5 ± 0.5 ± 0.2 ± 0.1 ± 0.0

µ−AM 4.00 4.44 5.01 2.30 20.85 21.07 4.15 10.51 3.00 4.04 6.00
± 0.3 ± 0.8 ± 0.2 ± 0.0 ± 0.3 ± 0.2 ± 0.4 ± 0.6 ± 0.1 ± 0.0 ± 0.0

µAM¬ 4.25 3.53 5.87 2.52 20.79 12.77 4.07 8.37 5.95 5.65 5.74
± 0.3 ± 0.5 ± 0.1 ± 0.0 ± 0.5 ± 0.4 ± 0.4 ± 0.3 ± 0.3 ± 0.1 ± 0.1

µ−AM¬ 4.00 2.00 3.84 2.00 17.52 2.00 3.06 2.00 5.52 4.00 5.00
± 0.0 ± 0.0 ± 0.3 ± 0.0 ± 0.5 ± 0.0 ± 0.1 ± 0.0 ± 0.5 ± 0.1 ± 0.0

µψAM 4.05 4.51 5.40 2.50 22.01 20.35 4.55 8.86 3.00 4.51 6.00
± 0.5 ± 0.5 ± 0.5 ± 0.2 ± 0.7 ± 0.7 ± 0.5 ± 0.7 ± 0.0 ± 0.2 ± 0.0

µψAM¬ 4.22 3.93 6.87 2.79 19.18 12.29 4.17 6.69 5.65 5.55 5.45
± 0.2 ± 0.7 ± 0.6 ± 0.5 ± 0.6 ± 1.2 ± 0.3 ± 0.3 ± 0.5 ± 0.2 ± 0.2

support. Comparing µAnt-Miner to µ−Ant-Miner, we find that the accuracy
rank improves, but the size rank declines. Similarly, comparing µAnt-Miner¬
to µ−Ant-Miner¬, we find that the accuracy rank improves and the size rank
declines.

Using the logical negation operator generally tends to produce simpler
(smaller) classification models. Comparing Ant-Miner¬ to Ant-Miner, ψAnt-
Miner¬ to ψAnt-Miner, µAnt-Miner¬ to µAnt-Miner, µ−Ant-Miner¬ to µ−Ant-
Miner, and µψAnt-Miner¬ to µψAnt-Miner, we find that the model size rank
improves.

The effect of negation on predictive accuracy is less consistent, and appears
to depend on whether it is used in combination with the multi-pheromone
extension. In the absence of multi-pheromone, negation tends to improve ac-
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Table 9 Average Rankings of the Algorithms

Algorithm Predictive Accuracy Model Size

AM 9.3 7.0

AM¬ 5.5 4.7

ψAM 6.8 7.0

ψAM¬ 5.7 4.5

ψ−AM 7.4 6.7

ψ∗AM 8.9 6.0

µAM 3.3 10.0

µ−AM 5.1 6.1

µAM¬ 6.7 8.3

µ−AM¬ 9.6 2.7

µψAM 2.5 7.3

µψAM¬ 6.9 7.2

curacy. Comparing Ant-Miner¬ to Ant-Miner, and ψAnt-Miner¬ to ψAnt-
Miner, we find that the accuracy rank improves in both cases. When used
in conjunction with multi-pheromone, we find that negation reduces accuracy.
Comparing µAnt-Miner¬ to µAnt-Miner, µ−Ant-Miner¬ to µ−Ant-Miner, and
µψAnt-Miner¬ to µψAnt-Miner, we find that the improvement in model size
comes at the expense of a decline in accuracy.

The most likely explanation for why the effect of logical negation on pre-
dictive accuracy depends on whether it is used in combination with multi-
pheromone is the following. Without multi-pheromone, the rule quality evalua-
tion function is Ant-Miner’s original evaluation function: sensitivity×specificity
(Equation 2). With multi-pheromone, the evaluation function is: support +
confidence (Equation 14). Terms with negation tend to have high support
and may overshadow the confidence component in Equation (14): e.g. a term
such as ⟨Condition NOT = Good⟩ is likely to match more cases than any
specific value of Condition (this effect is even more magnified as the number
of possible values for an attribute increases).

The effect of the ψ combination on performance seems to depend on whether
it is combined with the use of negation. Without logical negation, the accuracy
rank consistently improves, while the model size rank does not decline—we ob-
serve this comparing ψAnt-Miner to Ant-Miner, and µψAnt-Miner to µAnt-
Miner. When the ψ combination is used in conjunction with logical negation,
its effect on performance depends on whether multi-pheromone is also em-
ployed. Comparing ψAnt-Miner¬ to Ant-Miner¬, we find that both accuracy
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Fig. 1 Plot showing the average accuracy rank (x-axis) versus the average size rank (y-
axis). The Pareto-frontier is shown as a connected line, and consists of five algorithms:
µψAnt-Miner, µ−Ant-Miner, Ant-Miner¬, ψAnt-Miner¬, and µ−Ant-Miner¬.

and model size improve slightly; however, comparing µψAnt-Miner¬ to µAnt-
Miner¬, we find that the accuracy rank declines slightly but the size rank
improves.

To isolate the effect of stubborn ants alone without the personality exten-
sion, we compare the performance of ψ−Ant-Miner to Ant-Miner, and ψAnt-
Miner to ψ∗Ant-Miner. Comparing ψ−Ant-Miner to Ant-Miner, we find that
the accuracy and size ranks both improve. Comparing ψAnt-Miner to ψ∗Ant-
Miner, we find that accuracy improves while the size rank declines.

Similarly, to isolate the effect of the personality extension, we compare
ψ∗Ant-Miner to Ant-Miner, and ψAnt-Miner to ψ−Ant-Miner. Comparing
ψ∗Ant-Miner to Ant-Miner, we find that the accuracy and size ranks both
improve. Comparing ψAnt-Miner to ψ−Ant-Miner, we find that accuracy im-
proves while the model size rank declines.

Using the vocabulary of multi-objective optimization, we say an algorithm
h is dominated by another algorithm g if g is not worse than h in any of the
two performance criteria (predictive accuracy and model size) and g is better
than h in at least one of those criteria. An algorithm g is said to be Pareto-
optimal if it is not dominated by any other competing algorithm—this means g
cannot be improved upon in any one performance measure without sacrificing
in another performance measure. The set of Pareto-optimal algorithms are
said to form a Pareto-frontier.

Figure 1 presents a visual representation of the average accuracy rank and
the average model size rank. In the figure, the Pareto-frontier is shown as a
connected line, and consists of five algorithms: µψAnt-Miner, µ−Ant-Miner,
Ant-Miner¬, ψAnt-Miner¬, and µ−Ant-Miner¬.
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Table 10 Rules Generated by Ant-Miner for Monk’s Dataset

Supp. Conf.

1 IF (Attribute-1 = 1) THEN (0) 0.25 0.71
2 Else IF (Attribute-1 = 2) THEN (0) 0.30 0.59
3 Else IF (Attribute-4 = 2) THEN (0) 0.19 0.61
4 Else IF (Attribute-4 = 3) THEN (0) 0.25 0.53
5 Else IF (Attribute-5 = 4) THEN (1) 0.13 0.57
6 Else IF (Attribute-5 = 3) THEN (0) 0.17 0.57
7 Else IF (Attribute-5 = 2) THEN (0) 0.22 0.58
8 Else (1) - -

Cov. Acc.
95.00 62.0

Table 11 Rules Generated by Ant-Miner¬ for Monk’s Dataset

Supp. Conf.

1 IF (Attribute-1 = 1) THEN (0) 0.25 0.71
2 Else IF (Attribute-2 = 1) THEN (0) 0.23 0.65
3 Else IF (Attribute-3 = 1) THEN (1) 0.28 0.55
4 Else IF (Attribute-4 = 2) THEN (0) 0.25 0.79
5 Else IF (Attribute-2 = 2) THEN (0) 0.31 0.77
6 Else IF (Attribute-1 NOT= 3) THEN (0) 0.68 0.68
7 Else (1) - -

Cov. Acc.
100.0 67.85

Table 12 Rules Generated by µAnt-Miner for Monk’s Dataset

Supp. Conf.
1 IF (Attribute-1 = 1) AND

(Attribute-2 = 3) AND
(Attribute-3 = 1) AND
(Attribute-6 = 1) THEN (0) 0.04 1.00

2 ELSE IF (Attribute-2 = 1) AND
(Attribute-3 = 1) AND
(Attribute-5 = 4) AND
(Attribute-6 = 1) THEN (0) 0.02 1.00

3 ELSE IF (Attribute-1 = 3) AND
(Attribute-3 = 2) AND
(Attribute-4 = 2) AND
(Attribute-6 = 2) THEN (0) 0.03 0.92

4 ELSE IF (Attribute-1 = 1) AND
(Attribute-3 = 1) AND
(Attribute-6 = 1) THEN (0) 0.05 0.88

5 ELSE IF (Attribute-6 = 2) THEN (0) 0.32 0.58
6 ELSE IF (Attribute-6 = 1) THEN (0) 0.53 0.53
7 Else (1) - -

Cov. Acc.
100.0 75.00

10.3 Sample Outputs for Ant-Miner Extensions

To better understand how the proposed extensions affect the output model of
Ant-Miner, Tables 10, 11, 12 and 13 show representative examples of the rule
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Table 13 Rules Generated by µ−Ant-Miner¬ for Monk’s Dataset

Supp. Conf.

1 IF (Attribute-4 NOT= 1) THEN (0) 0.62 0.62
2 Else (1) - -

Cov. Acc.
100.0 64.28

sets generated by Ant-Miner, Ant-Miner¬, µAnt-Miner and µ−Ant-Miner¬,
respectively, for the Monk’s Problem dataset. These outputs were generated
by applying each algorithm on the same training set/test set pair. Each table
shows the generated rules, the support of each rule, the confidence of each
rule, and the total coverage of the rule set over the training set, as well as its
predictive accuracy.

10.4 Results for Conventional Rule Induction Algorithms

For each of the three conventional rule induction algorithms (JRip, PART, and
C4.5r), Tables 14-15 show the predictive accuracy and the number of generated
rules, respectively. As discussed in Section 9.2, for each of the datasets with
continuous attributes, for the sake of fairness, each of the three algorithms
was run twice: once on the original dataset, and a second time with prior
discretization of the dataset (using the C4.5-Disc algorithm, fold by fold, as
described in Section 9.1). As indicated in Table 3, we use JRippd, PARTpd,
and C4.5rpd, to refer to each of the three algorithms, respectively, coupled
with prior discretization of the dataset. Of course, the three variant algorithms
JRippd, PARTpd, and C4.5pd are only applicable to the datasets which contain
continuous attributes.

The format of Tables 14-15 is similar to that Tables 5-8. For each dataset,
each table shows the mean and standard deviation (mean

± stdv.) of the measure
related to the table, for each of the used algorithms. In addition, an entry is
underlined if, for the corresponding dataset, the value obtained by the corre-
sponding algorithm is the best (highest in accuracy or lowest in model size).
Further, a value is shown in boldface if it differs from the underlined value by
less than the average of the two standard deviations.

For each of the three rule induction algorithms, we would like to determine
whether to carry out the rest of the analysis in this paper using the stan-
dard version of the algorithm, or using the algorithm coupled with prior dis-
cretization. To make this determination, we consider the performance of each
algorithm on the ten datasets with continuous attributes. For each algorithm
separately, we compute the average accuracy rank over these ten datasets of
the standard version and the version with prior discretization. For example,
we can see from Table 14 that JRippd has better accuracy for for the bcw

dataset than JRip. Therefore, for this dataset, JRippd is given a rank of 1
and JRip is given a rank of 2. Thus, the average rank will always be between
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Table 14 Predictive Accuracy Results (%) for the Conventional Rule Induction Algorithms

aud bal bcw car cmc c-a c-g drm gls hay hrt ion

JRip 71.45 75.37 93.22 87.60 50.90 83.41 70.48 93.14 65.70 72.62 54.41 86.30
± 3.9 ± 2.4 ± 2.4 ± 2.2 ± 4.8 ± 3.5 ± 1.5 ± 2.9 ± 4.9 ± 5.2 ± 3.9 ± 3.1

JRippd 94.12 48.87 82.40 72.62 92.72 65.51 55.82 88.20
± 2.6 ± 4.1 ± 4.2 ± 2.2 ± 3.4 ± 8.3 ± 5.6 ± 3.7

PART 78.20 78.49 93.23 94.56 50.89 83.52 70.07 94.31 67.42 63.61 54.91 88.25
± 3.7 ± 2.9 ± 1.4 ± 1.3 ± 3.8 ± 3.6 ± 1.6 ± 2.9 ± 3.0 ± 6.0 ± 3.1 ± 2.5

PARTpd 94.40 49.82 82.52 72.70 92.40 68.31 54.91 86.43
± 2.2 ± 4.1 ± 4.7 ± 2.8 ± 3.4 ± 7.3 ± 5.2 ± 4.2

C4.5r 83.34 81.84 92.34 94.21 53.64 82.96 70.80 95.69 65.56 75.36 56.06 86.77
± 7.9 ± 6.0 ± 3.0 ± 2.7 ± 4.1 ± 5.3 ± 2.8 ± 3.4 ± 6.8 ± 10.8 ± 9.1 ± 5.6

C4.5rpd 95.17 49.73 84.13 72.30 94.85 66.11 56.77 90.60
± 2.2 ± 4.8 ± 4.6 ± 3.9 ± 3.3 ± 11.3 ± 8.8 ± 4.8

irs mon msh pop soy spt tae ttt vot win zoo

JRip 93.93 59.80 100.00 69.33 84.05 79.26 40.78 97.54 93.66 92.59 88.70
± 2.2 ± 2.3 ± 0.0 ± 3.9 ± 0.1 ± 2.7 ± 8.1 ± 1.7 ± 1.4 ± 2.2 ± 3.7

JRippd 93.85 92.50
± 4.5 ± 3.1

PART 94.20 60.95 100.00 62.66 85.98 78.06 44.80 93.60 94.51 92.07 93.40
± 3.1 ± 3.2 ± 0.0 ± 6.9 ± 4.4 ± 2.4 ± 9.7 ± 2.1 ± 1.2 ± 3.4 ± 3.4

PARTpd 94.66 90.72
± 5.5 ± 4.3

C4.5r 94.66 55.27 100.00 61.25 85.54 81.87 45.01 98.31 95.47 93.76 100.00
± 5.3 ± 4.3 ± 0.0 ± 19.9 ± 6.3 ± 3.6 ± 10.7 ± 1.9 ± 2.8 ± 7.2 ± 0.0

C4.5rpd 94.67 91.90
± 7.6 ± 4.2

1 and 2, since the ranking is carried out separately for the two variations of
each algorithm. These average ranks are shown in Table 16.

We can see from Table 16 that for JRip and PART, prior discretization does
not improve accuracy, while for C4.5r, prior discretization improves accuracy
slightly over these ten datasets.

Table 17 shows the average accuracy ranking of the three rule induction
algorithms, selected based on the results shown in Table 16, across the 23
datasets. To compute this average ranking, we first compute the rank of each
of the three algorithms shown in Table 17 for each dataset, then compute the
average across all datasets (thus, the average rank will range between 1 and
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Table 15 Model Size Results for the Conventional Rule Induction Algorithms

aud bal bcw car cmc c-a c-g drm gls hay hrt ion

JRip 15.08 12.18 5.30 37.89 5.90 30.10 4.20 8.70 7.60 6.91 3.40 6.50
± 1.0 ± 1.3 ± 0.8 ± 2.4 ± 1.5 ± 0.6 ± 0.4 ± 0.8 ± 0.9 ± 0.6 ± 1.3 ± 1.6

JRippd 8.40 4.80 28.60 6.20 8.80 8.20 4.20 8.30
± 1.8 ± 1.6 ± 1.5 ± 2.2 ± 0.7 ± 1.4 ± 0.6 ± 1.4

PART 19.67 33.14 7.90 56.52 163.60 29.70 69.20 8.90 15.20 11.32 40.50 8.50
± 1.8 ± 1.9 ± 0.6 ± 3.4 ± 3.0 ± 1.6 ± 2.0 ± 0.5 ± 0.4 ± 1.5 ± 2.7 ± 1.3

PARTpd 10.10 94.50 25.30 82.60 7.50 13.50 52.60 12.20
± 0.8 ± 8.9 ± 2.9 ± 6.4 ± 0.5 ± 1.2 ± 2.6 ± 1.7

C4.5r 23.20 39.70 8.90 79.00 37.40 15.00 22.50 9.10 15.30 11.00 15.50 9.30
± 1.1 ± 2.6 ± 1.0 ± 2.6 ± 6.8 ± 2.0 ± 5.0 ± 0.7 ± 1.9 ± 0.7 ± 2.1 ± 1.3

C4.5rpd 11.00 25.30 11.30 35.90 9.00 13.90 15.70 15.30
± 1.7 ± 3.1 ± 2.0 ± 4.4 ± 0.8 ± 1.4 ± 2.5 ± 1.6

irs mon msh pop soy spt tae ttt vot win zoo

JRip 3.60 3.12 8.70 2.33 23.20 8.73 6.29 10.33 3.70 4.10 7.43
± 0.3 ± 0.9 ± 0.6 ± 0.5 ± 1.3 ± 1.3 ± 1.3 ± 1.4 ± 0.3 ± 0.2 ± 0.8

JRippd 3.60 6.10
± 0.3 ± 0.4

PART 4.50 37.75 11.57 8.40 29.39 34.53 16.74 38.85 6.60 4.40 7.65
± 0.8 ± 3.5 ± 1.8 ± 1.4 ± 1.4 ± 5.2 ± 2.3 ± 4.7 ± 0.4 ± 0.2 ± 0.5

PARTpd 5.00 4.40
± 0.0 ± 1.3

C4.5r 5.00 14.30 18.00 4.90 14.46 32.10 13.60 24.70 7.30 5.40 9.70
± 0.0 ± 2.6 ± 0.0 ± 1.3 ± 6.3 ± 1.8 ± 1.1 ± 4.7 ± 0.7 ± 0.5 ± 0.5

C4.5rpd 4.60 9.80
± 0.5 ± 1.0

Table 16 Comparison of average accuracy rank for the rule induction algorithms for the
ten datasets with continuous attributes. For each algorithm, the table shows the average
accuracy rank for the standard version of the algorithm, and for the algorithm coupled with
prior discretization (PD).

Algorithm Std PD

JRip 1.4 1.6

PART 1.4 1.5

C4.5r 1.7 1.3
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Table 17 Accuracy ranking of the rule induction algorithms.

Algorithm Predictive Accuracy

JRip 2.4

PART 2.0

C4.5rpd 1.5

3). We can see that C4.5rpd has the best accuracy ranking, followed by PART,
then JRip.

10.5 Comparison

We next would like to determine if there is a statistically significant difference
in accuracy between the best Ant-Miner extension, identified in Table 9 to be
µψAnt-Miner, and the best rule induction algorithm, identified in Table 17 to
be C4.5rpd. The results for the two algorithms, µψAnt-Miner and C4.5pd were
obtained using 10-fold cross-validation using the same fold partitioning. Con-
sequently, for a given dataset, the results for each fold, for the two algorithms,
can be considered a matched pair.

Therefore, for each individual dataset, we apply a two-tailed Wilcoxon
matched-pairs statistical test to the results of the 10 folds for the two algo-
rithms under consideration (µψAnt-Miner and C4.5rpd) to determine if there
is a statistically significant difference for that dataset.

The results of these Wilcoxon tests for each of the 23 datasets are shown in
Table 18. We use the common convention that a p-value less than 0.05 indicates
a statistically significant difference, and such p-values are shown in the table in
boldface. Table 18 indicates that there is no statistically significant difference
for 18 (out of 23) datasets, C4.5rpd is significantly better in 2 dataset, and
µψAnt-Miner is significantly better in 3 datasets. These results indicate that
there is no overall statistically significant difference in accuracy between the
two methods.

11 Concluding Remarks

This paper has proposed five extensions to the Ant-Miner classification rule
discovery algorithm and reported the results of experiments with 12 variations
of Ant-Miner, involving different combinations of those five extensions, across
23 public datasets often used as a benchmark in classification research.

Concerning the effectiveness of those extensions, in summary, the use of the
multi-pheromone and quality contrast intensifier extensions combined together
led to higher predictive accuracies in general, by comparison with several Ant-
Miner variations that do not use such extensions. The use of the stubborn ants
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Table 18 Results of applying a two-tailed Wilcoxon matched-pairs test (with a threshold
of 0.05) to the fold-by-fold accuracy results for each dataset.

Datasets C4.5rpd µψAM p Remark

aud 83.34 82.92 0.878 no diff.

bal 81.84 79.73 0.221 no diff.

bcw 92.34 94.51 0.010 µψAM better

c-a 82.96 82.57 1.000 no diff.

car 94.21 94.83 0.386 no diff.

c-g 70.80 70.38 0.625 no diff.

cmc 53.64 47.76 0.004 C4.5r better

drm 95.69 97.40 0.008 µψAM better

gls 65.56 66.61 0.846 no diff.

hay 75.36 68.46 0.114 no diff.

hrt 56.06 58.66 0.193 no diff.

ion 86.77 86.95 0.492 no diff.

irs 94.66 94.61 0.695 no diff.

mon 55.27 63.37 0.005 µψAM better

msh 100.00 98.52 0.005 C4.5r better

pop 61.25 72.50 0.108 no diff.

soy 85.54 87.44 0.574 no diff.

spt 81.87 79.77 0.240 no diff.

tae 45.01 45.18 0.944 no diff.

ttt 98.31 98.76 0.799 no diff.

vot 95.47 95.22 0.878 no diff.

win 93.76 93.25 0.432 no diff.

zoo 100.00 99.75 0.157 no diff.

and ants with personality extensions combined together also led, in general,
to predictive accuracies higher than or similar to the accuracies obtained by
Ant-Miner variations that do not use these extensions. On the other hand,
the logical negation extension improves the simplicity (reduces the size) of the
discovered rule set, but sometimes at the expense of some loss in predictive
accuracy.

Broadly speaking, out of the 12 Ant-Miner variations evaluated in our
experiments, the most successful one was the variation µψAnt-Miner using
four of the proposed extensions, namely multi-pheromone, quality contrast in-
tensifier, stubborn ants and ants with personality, but not using the logical
negation extension. This Ant-Miner variation achieved the best predictive ac-
curacy overall, with an average ranking of 2.5 (out of 12 Ant-Miner variations)
across all datasets, and it still had an average performance in terms of the sim-
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plicity of the discovered rule set, with an average ranking of 7.3 (out of 12)
across all datasets.

We also evaluated the performance of three conventional ule induction
algorithms: Ripper, PART, and C4.5-Rules, and found C4.5-Rules to be the
most successful of the three in terms of predictive accuracy. We found that
the µψAnt-Miner variation had similar accuracy to C4.5-Rules, with no overall
significant difference in accuracy performance between the two methods.

In future work, we would like to explore combining some of our exten-
sions, particularly the multi-pheromone and logical negation extensions, with
the MMAS-based AntMiner+. We would also like to extend the cAnt-Miner
algorithm (the version of Ant-Miner that copes with continuous attributes)
with the multi-pheromone system.

In addition, we would like to explore controlling the balance between a
rule’s coverage and its predictive accuracy in rule quality evaluation—especially
when the logical negation operator is combined with the use of multi-pheromone.
This can be achieved by employing different coefficients for the support and
confidence components in Equation (14), so that we would be able to decrease
the emphasis on the rule coverage if the algorithm generates a small num-
ber of rules with reduced predictive accuracy, or enhance the simplicity of
the discovered rule set if a sufficient accuracy level is reached. This should
allow the practitioner to have more control over the predictive accuracy and
comprehensibility levels of the output classification model.
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