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An Evolutionary Algorithm for Automated Machine
Learning Focusing on Classifier Ensembles: an

improved algorithm and extended results

João C. Xavier-Júnior1, Alex A. Freitas4, Teresa B. Ludermir3, Antonino
Feitosa-Neto2, Cephas A. S. Barreto2

Abstract

A large number of classification algorithms have been proposed in the machine

learning literature. These algorithms have different pros and cons, and no al-

gorithm is the best for all datasets. Hence, a challenging problem consists of

choosing the best classification algorithm with its best hyper-parameter settings

for a given input dataset. In the last few few years, Automated Machine Learn-

ing (Auto-ML) has emerged as a promising approach for tackling this problem,

by doing a heuristic search in a large space of candidate classification algorithms

and their hyper-parameter settings. In this work we propose an improved version

of our previous Evolutionary Algorithm (EA) – more precisely, an Estimation

of Distribution Algorithm – for the Auto-ML task of automatically selecting

the best classifier ensemble and its best hyper-parameter settings for an input

dataset. The new version of this EA was compared against its previous version,

as well as against a random forest algorithm (a strong ensemble algorithm) and

a version of the well-known Auto-ML method Auto-WEKA adapted to search

in the same space of classifier ensembles as the proposed EA. In general, in ex-
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periments with 21 datasets, the new EA version obtained the best results among

all methods in terms of four popular predictive accuracy measures: error rate,

precision, recall and F-measure.

Keywords: Automated Machine Learning (Auto-ML), Classification,

Evolutionary Algorithms, Estimation of Distribution Algorithms

1. Introduction

Classification is a very popular Machine Learning task where each instance

(object being classified) consists of a set of predictive features and a nominal

(or discrete) class variable. In essence, the goal of a classification algorithm is

to learn a classification model that can be used to predict the class value (label)5

of a new instance, based on the values of the features of that instance. Several

decades of classification research have produced a large number of classification

algorithms [20]. In practice, none of these algorithms is the best for all possible

datasets, since the predictive performance of an algorithm is strongly dependent

on characteristics of the input dataset [10], as well as on the hyper-parameter10

settings of the algorithm. This creates the very difficult problem of how to

choose the best classification algorithm for the dataset at hand.

A promising and relatively recent approach for tackling this problem is the

Automated Machine Learning (Auto-ML) approach [4], [6], [24]. This approach

is promising because it uses a search and optimization method to automati-15

cally perform a search in a very large space of candidate algorithms and hyper-

parameter settings, in order to find the best combination of a classification

algorithm and its hyper-parameter settings for the problem at hand. Hence,

this approach relieves the user from the task of performing ad-hoc, tedious and

very time-consuming experiments with different algorithms and their hyper-20

parameter settings.

This work follows the Auto-ML approach, focusing on a broad type of clas-

sification algorithms called classifier ensembles. An ensemble combines the out-

puts of many base classifiers (e.g. by majority voting), which tends to improves
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predictive accuracy by comparison with the use of a single base classifier [1].25

Ensembles are usually considered one of the state-of-the-art types of classifica-

tion algorithms in terms of predictive accuracy. For instance, a relatively recent

study [9] compared the predictive accuracy of 179 classification algorithms across

121 datasets, and concluded that overall the best algorithms were versions of

random forests, which are ensembles of decision-tree classifiers. Even focusing30

on ensembles, however, there are still many different types of ensembles, and

their predictive accuracies also depend on both the characteristics of the input

dataset and their hyper-parameter settings.

In this context, the main contribution of this work is to propose an improved

version of our previous Evolutionary Algorithm (EA) [28] for the difficult Auto-35

ML problem of automatically selecting the best ensemble method and its best

hyper-parameter settings for an input dataset. EAs have the advantages of

performing a global search in the space of candidate solutions (less likely to get

trapped into a local optimum than a greedy search) and being robust to noise

[12, 13].40

More precisely, the type of EA proposed in this work (as well as its pre-

vious version) is an Estimation of Distribution Algorithm (EDA) [7]. Unlike

most EAs, where new candidate solutions are produced by genetic operators

like crossover and mutation, EDAs evolve a probabilistic model of the best so-

lutions and their components, and at each generation (iteration) they use the45

current probabilistic model to generate new candidate solutions, as discussed

in Section 2.3. Hence, EDAs combine methods and concepts from both EAs

and probability theory, which arguably gives them a sounder mathematical ba-

sis than conventional EAs. In addition, EDAs avoid the need to decide which

genetic operators to use, and so avoid the need for time-consuming experiments50

for optimizing the parameters of genetic operators (like the crossover probability

and mutation probability).

The proposed improved version of our EDA was compared against its pre-

vious version [28] and against two other methods, namely a random forest (a

well-known type of ensemble) method and the well-known Auto-ML method55
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Auto-WEKA [4], which was adapted to search in the same space of classifier

ensembles and their configurations (hyper-parameter settings) as the two EDA

versions.

This current paper extends the experimental results reported in [28] in three

ways. First, the number of datasets used in the experiments was increased from60

15 to 21. Second, whilst in our previous work we reported results for a single

predictive accuracy measure, the classification error rate, in the current work we

report both the error rate and the values of the precision, recall and F-measure.

Third, this current work extends the experiments to include the aforementioned

random forest algorithm.65

The results of these new experiments across 21 datasets showed that, overall,

the proposed new version of the EDA obtained better predictive performance

than its previous version and the other two methods (Auto-WEKA and random

forest) for all the four predictive accuracy measures used in our experiments,

namely error rate, precision, recall and F-measure. In addition, the new pro-70

posed EDA version obtained statistically significantly better results than Auto-

WEKA and random forest in most cases. More precisely, the new EDA was

significantly better than Auto-WEKA for three out of the four measures (viz.,

error rate, recall and F-measure); and the new EDA was also significantly better

than random forest for three measures: precision, recall and F-measure.75

The remainder of this paper is organised as follows. Section 2 discusses

background on classifier ensembles, Automated Machine Learning (Auto-ML)

and EDAs. Section 3 discusses related work on the automated selection of en-

semble methods and on the use of EAs for Auto-ML. Section 4 presents the

proposed new version of our EDA, and describes how it differs from its previ-80

ous version. Section 5 describes the experimental methodology, and Section 6

presents the computational results. Finally, Section 7 presents our conclusions

and a direction for future work.
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2. Background

2.1. Classification and Classifier Ensembles85

In the classification task of machine learning, each instance (object) in the

input dataset is represented by a set of features (characteristics) and a class

attribute. A classification algorithm has access to the class values of instances

in the training set, but not in the test set. Hence, the goal is to learn a model

from the training set that is able to predict the class value of each instance in90

the test set (with instances unseen during training), based on the feature values

for that instance.

Classifier ensembles learn a classification model consisting of a set of base

classifiers. Such ensembles have a two-layer structure. In the first layer, each of

the base classifiers receives input data and predicts a class for a new instance.95

These predictions are sent to a combination module in the second layer, which

combines all received predictions into a single predicted class for each instance

(e.g. via majority voting). Combining the results of different base classifiers

often outperforms a single base classifier [1], [2], since an ensemble’s predictions

are usually more robust than the predictions performed by a single classifier.100

The two main aspects of the design of classifier ensembles are the selection

of the type(s) of classifiers to be used as base classifiers and the combination

method. Regarding the choice of classifier types, classifier ensembles can be

categorized into homogeneous ensembles, which use multiple base classifiers of

the same type, or heterogeneous ensembles, which use different types of base105

classifiers. Regarding the type of method used to combine the predictions of

the base classifiers, several methods have been proposed [3], such as: simple

majority voting, weighted voting (where the vote for a class is weighted by

its estimated probability), using a full classification algorithm – treating the

classes predicted by the base classifiers as features for predicting the class at110

the meta-level, etc.
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2.2. Automated Machine Learning (Auto-ML)

Many types of classification algorithms have been proposed and are often

used, such as Decision Trees, Neural Networks, Support Vector Machines, among

many others [9]. However, in general different types of classification algorithm115

have different pros and cons, and different biases; therefore no single type of

classification algorithm can be considered the best for all datasets or applica-

tion domains. In practice the predictive accuracy of a classification algorithm

strongly depends on two major factors: (a) the characteristics of the input

dataset [10]; and (b) the algorithm’s hyper-parameter settings. This leads to120

the challenging optimization problem of how to select the best classification

algorithm and its corresponding best hyper-parameter settings for each input

dataset provided by a user. An emergent approach to solve this problem involves

Automated Machine Learning (Auto-ML) methods, which automatically search

for the combination of classification algorithm and hyper-parameter settings125

that maximizes predictive accuracy in an input dataset.

Recent research on Auto-ML has provided some off-the-shelf Auto-ML tools

for machine learning researchers and practitioners; such as Auto-sklearn [6] and

Auto-WEKA [4]. Here we briefly review only Auto-WEKA, which is used as a

strong baseline method in our experiments reported later.130

Auto-WEKA, which can be easily installed within the well-known WEKA

tool [5], is a method for automatically selecting the best combination of a ma-

chine learning algorithm and its hyper-parameter settings, as proposed in [4].

Auto-WEKA uses a Bayesian optimization search method called SMAC (Se-

quential Model-based Algorithm Configuration) to automatically search through135

the joint space of WEKA’s learning algorithms and their respective hyper-

parameter settings, with the goal of maximizing predictive accuracy. Auto-

WEKA has been shown to perform well for a wide variety of data sets [11].

2.3. Estimation of Distribution Algorithms

In this subsection we assume the reader is broadly familiar with Evolutionary140

Algorithms (EAs), and focus on discussing the specific type of EA used as the
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basis of the Auto-ML method for ensembles proposed in this work, namely

Estimation of Distribution Algorithms (EDAs), as well as discussing the main

differences between EDAs and more conventional EAs. For a general discussion

of EAs, the reader is referred to [12, 13].145

EDAs are a type of EA which explore the space of potential solutions by

building and sampling explicit probabilistic models of promising candidate so-

lutions [7]. EDAs have been applied to several types of machine learning tasks,

including classification [17] and feature selection [14], [15], [18].

EDAs iteratively generate and evaluate a population of candidate solutions150

(individuals) to a problem. The initial population is generated at random, using

a uniform distribution over all possible candidate solutions. Then, each gener-

ated individual has its quality evaluated by a fitness function. Next, individuals

are ranked based on their fitness values, and a subset of the best individuals

(usually the 50% best) are selected. Then, a probabilistic model is constructed155

aiming to estimate the probability distribution of the selected individuals (can-

didate solutions). Once the model is constructed, new individuals are generated

by sampling the distribution encoded by this model. The fitness of each new in-

dividual is evaluated, and so on. This process is repeated until some termination

criterion is met, as usual in EAs in general.160

The crucial difference between EDAs and other EAs is how they generate

new individuals at each generation (iteration), as follows. In EDAs the selected

individuals are used to update a probabilistic model, from which new individ-

uals will be probabilistically sampled in the next generation. By contrast, in

other EAs the next generation’s individuals are generated by applying solution-165

alteration operators like crossover and mutation to the selected individuals of

the current generation. EDAs explicitly maintain and evolve a probabilistic

model of the best solutions evaluated so far, unlike other EAs. Hence, an ad-

vantage of EDAs, by comparison with more conventional EAs, is that EDAs

directly use sound concepts of probability theory to guide the evolutionary pro-170

cess. Another advantage of EDAs is that they require fewer parameters than

most EAs. In particular, most EAs require the user to choose which type of
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crossover and mutation operators should be used to create new solutions, as

well as choosing the corresponding crossover and mutation probability rates.

EDAs relieve the user from such concerns, since they do not use any operator to175

generate new solutions, and simply sample new individuals from the currently

available probabilistic model, which is gradually evolved along the search.

The Population-Based Incremental Learning (PBIL) algorithm, proposed in

[8] and recently reviewed in [16], is an EDA that evolves a probability vec-

tor, where each vector component represents the probability of that component180

being selected for inclusion in a candidate solution. The vector components’ val-

ues are usually initialized with a probability of 0.5. Then, at each generation, a

population of individuals (candidate solutions) are sampled from the probability

vector based on its probability values, and each individual is evaluated using

a fitness function, which measures the predictive accuracy of each individual.185

A predefined number of the best individuals (based on fitness) in the current

generation are selected, and the relative frequencies of solution components in

those selected individuals are used to update the probability vector, by increas-

ing the probability values for the solution components that occurred most often

in the selected individuals. The amount of increase is controlled by a learning190

rate parameter. More precisely, the probability of each i-th component of the

probability vector at the current g-th generation (iteration), denoted by p[i], is

updated with the equation p[i] = (1−LR)×p[i]g−1+LR×RF [i]g, where LR is

the learning rate and RF is the relative frequency of the i-th component among

all individuals selected in the current g-th generation.Hence, the probability195

vector gradually evolves towards components with probability values closer to 1

or 0, depending on whether or not, respectively, the component has been used

in the best candidate solutions evaluated along the generations.

The PBIL algorithm has only 3 parameters, namely: (a) the population

size, i.e., the number of individuals sampled from the probability vector at each200

generation; (b) the Learning Rate, which specifies how large the steps towards

good solutions are; (c) the number of best individuals selected for updating the

probability vector at each generation.
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3. Related Work

This section reviews related work on the automated selection of classifier205

ensembles (Subsection 3.1) and Evolutionary Algorithms (EAs) used for Auto-

ML purposes (Subsection 3.2). Note that both these subsections focus on Auto-

ML methods. That is, we do not review here conventional methods for learning

classifier ensembles without using Auto-ML concepts and methods, since such

conventional ensemble learning methods are already extensively discussed in the210

literature – see e.g. some relevant reviews in [29], [30], [31].

3.1. Automated Selection of Ensembles Methods

Current Auto-ML methods typically use a search space with many types

of classification algorithms, without focusing on ensembles as in this work.

However, some studies have proposed different approaches for automating the215

creation of classifier ensembles (base classifiers and their hyper-parameter set-

tings) [21], [22], [23]. In particular, Wistuba et al. [21] proposed an automatic

approach to generate ensembles with several layers, called Automatic Franken-

steining, where a Bayesian Optimization method is used to select base classifiers

and their settings using a bagging strategy.220

In fact, most Auto-ML methods are based on Bayesian optimization. For

instance, Lacoste et al. [23] proposes an extension of SMBO (Sequential Model-

Based Optimization) to optimize the selection of ensemble members based on

their performance on randomly selected subsets of the validation data produced

by a bootstrap method. In addition, Levesque et al [22] propose an approach to225

build fixed-size ensembles, optimizing the configuration of one base classifier of

the ensemble at each iteration of the hyper-parameter optimization algorithm,

considering the interaction with other models when evaluating performance. In

this way, the Bayesian optimization method estimates which prediction model

is the best candidate to be added to the ensemble.230

It is important to emphasize that all three aforementioned methods for au-

tomating the selection and configuration of classifier ensembles use the Bayesian
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optimization method, whereas our proposed method is based on an Estimation

of Distribution Algorithm (EDA) – a type of Evolutionary Algorithm (EA). Un-

like the sequential nature of the search performed by the Bayesian optimization235

method, EAs evolve a population of candidate classifier ensembles, performing

a more global, broader search (conceptually a parallel search) in the space of

candidate solutions.

3.2. The Use of Evolutionary Algorithms for Auto-ML

Several Evolutionary Algorithms (EAs) have been proposed for Auto-ML,240

such as [24], [26], [25], [19]. For example, in [25] the authors proposed the use

of a genetic algorithm for searching a very large search space of many different

multi-label classification algorithms and their hyper-parameters; whilst in [24]

and [26] the authors proposed a genetic programming method for automating

the selection and configuration of both classification algorithms and data pre-245

processing methods (classification pipelines).

On the other hand, in a very recent work [19], the authors proposed the

use of a genetic programming (GP) method to search the space of possible

architectures of hierarchical ensembles and to optimize their hyper-parameters.

Broadly speaking, the GP method proposed in [19] addresses the same type of250

problem addressed in our work (the automatic creation of ensembles), but using

GP, a type of EA that is very different from the EDA proposed in this work –

for a brief review of the differences between EDAs and other types of EAs, see

Section 2.3. In addition, the work in [19] focuses more on transfer learning and

meta-learning, which is not the focus of this current work.255

Hence, to the best of our knowledge, our recent work in [28] was the first

work to propose an EDA for the Auto-ML task of optimizing the selection and

configuration of classifier ensembles. As mentioned in the Introduction, this

current work extends our previous work by proposing a new version of that

EDA (described in detail in the next section), as well as performing extended260

computational experiments with more datasets and more classification methods.
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4. The Proposed PBIL-Auto-Ens Method for Auto-ML Focusing on

Ensembles

As mentioned earlier, the main contribution of this work is to propose an

improved version of our previous Estimation of Distribution Algorithm (EDA)265

for the Auto-ML problem of automatically selecting the best ensemble method

and its best configuration (hyper-parameter settings) for an input dataset. Both

the proposed new version and the previous version of our EDA are based on the

general PBIL algorithm described in Section 2.3.

The first version of our PBIL for the aforementioned Auto-ML problem was270

proposed in [28], where it was called PBIL-Auto-Ens (PBIL for Auto-ML focus-

ing on Ensembles). That version is hereafter referred to as PBIL-Auto-Ens-v1

(Version 1), since in this current paper we propose the second, improved version

of this method, hereafter referred to as PBIL-Auto-Ens-v2 (Version 2). Next,

we first focus on describing in detail PBIL-Auto-Ens-v2, and briefly discuss later275

the main differences between PBIL-Auto-Ens-v2 and PBIL-Auto-Ens-v1.

The proposed PBIL-Auto-Ens-v2 extends the original PBIL algorithm [8]

and its more recent variants [16] in two major ways. First, while a standard

PBIL typically has a single probability vector, PBIL-Auto-Ens-v2 has many

probability vectors (PVs for short), which are organized into a hierarchical struc-280

ture. Second, the creation of individuals by sampling solution components from

the probability vectors is adapted to follow the hierarchical structure of the set

of probability vectors, as described later.

As an overview of the proposed PBIL-Auto-Ens-v2, it consists of the fol-

lowing main steps. First, we initialize a number of probability vectors, whose285

components contain the probabilities of different components of a candidate

solution. In this work, these are essentially the probabilities of selecting each

type of ensemble method, the probabilities of selecting each parameter setting

for each ensemble method, the probabilities of selecting each base classification

algorithm within each ensemble method, and the probabilities of selecting each290

parameter setting for each base classification algorithm. Second, PBIL-Auto-
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Ens-v2 creates a population of individuals (candidate solutions) by sampling

solution components from those probability vectors, so that each individual

consists of a complete specification of an ensemble method, i.e., with all its

parameter settings, its base classification algorithm, and the latter’s parameter295

settings. Third, each individual is evaluated according to a fitness function,

which measures the predictive accuracy of the ensemble represented by that in-

dividual. Fourth, the best (highest fitness) individuals of the current generation

are selected, and their solution components are used to update the probability

vector. The basic idea is that, if a solution component has been used very of-300

ten in the selected individuals, the probability of that solution component will

be increased in the corresponding probability vector; therefore, that solution

component will be more likely to be sampled for creating new individuals in

future generations, leading to an improvement of the candidate solutions over

time. This iterative process is repeated until a stopping criterion (like a runtime305

limit) is satisfied. The PBIL-Auto-Ens-v2 method is described in detail in the

following sections.

4.1. The Hierarchical Structure of the Set of Probability Vectors

Let us first describe in detail the hierarchical structure of the set of proba-

bility vectors used by PBIL-Auto-Ens-v2, shown in Figure 1. At the first level,310

there is a PV for selecting the type of ensemble used. This PV has 7 compo-

nents, representing the probabilities of selecting each of the following ensemble

types: Random Committee (RC), AdaBoost (AD), Bagging (BA), Random For-

est (RF), Stacking (ST), Vote (VT), and No Ensemble (NE). The latter gives

PBIL-Auto-Ens-v2 the option of producing a candidate solution (individual)315

using only a single base classifier, without any ensemble method.

The second level is the ensembles’ hyper-parameter optimization level. At

this level, there is in general one PV for each hyperparameter of each of the

ensemble methods at level 1. The exceptions are the nodes at level 2 indicating

the selection of a base classifier among the corresponding child nodes, where that320

selection is implemented by PVs at level 3, as discussed below. For instance,
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Figure 1: The general structure of PBIL-Auto-Ens-v2’s search space

for the No Ensemble option at level 1, its child node at level 2 is a node called

Base Classifier, which is not associated with any PV by itself at level 2, and is

placed in the hierarchy only as a bridge between the No Ensemble node at level

1 and the list of classifiers candidate for selection at level 3. Analogously, the325

node W at level 2 (a child of the RC node) indicates a selection between base

classifiers in level 3, and this selection is implemented by a PV at level 3.

Note that in Figure 1 the “...” between the J48 and MLP nodes is a short-

hand notation to simplify the figure, referring to all other base classifiers. I.e.,

the set of base classifiers available for RC (as well as for all other ensemble330

types) is the same set of 9 base classifiers shown at the right-hand side of level

3 in that figure. Note also that, in order to further simplify Figure 1, this figure

shows only the hyper-parameters for the RC ensemble method, but this level 2

also includes hyper-parameters for all other ensemble methods at level 1.

Table 1 shows the full set of PVs at level 2. The number of PVs for each335

ensemble type (shown in the second column) is also the number of hyper-

parameters for that ensemble type – not counting the hyper-parameter W speci-

fying the base classifier, which is associated with a PV at the level 3, as explained

13



earlier. In the next three columns, the row for each ensemble type is divided

into several sub-rows – one row for each PV, i.e., one row for each of the hyper-340

parameters being optimized. The third column shows the PV name, a string

of the form L2-XX-Y, where L2 indicates that the current PV is at level 2, XX

is a two-character variable whose value denotes the type of ensemble method

(e.g. RC for Random Committee) and Y is a single character variable whose

value identifies the hyper-parameter being optimized (e.g. I for number of it-345

erations). The fourth column shows the number of components of each PV,

which is the number of candidate discrete values for the corresponding hyper-

parameter. The last column shows the corresponding candidate discrete values

for that hyper-parameter.

At the third level, there is a PV for selecting the type of base classifier350

used. This leads to 6 PVs at this level, as shown in Table 2, where each row

describes the characteristics of a PV. In the second column, the PV name is

a string of the form L3-XX-BC-sel, where L3 indicates that the current PV is

at level 3 in Figure 1, XX is a two-character variable whose value denotes the

type of ensemble method (e.g. RC for Random Committee, and NE for No355

Ensemble) and BC-sel denotes base classifier selection. Note that all PVs in

this table have the substrings L3 and BC-sel in their name, since all refer to the

selection of a base classifier at level 3 of Figure 1. The number of components

in the PV (in the third column) is the number of candidate base classifiers for

the corresponding type of ensemble. The list of such classifiers is show in the360

last column. Note that all 6 ensemble types in this table use the same set of

9 candidate base classifiers. Note also that there is no PV for selecting base

classifiers when the RF ensemble method is used, since RFs always use DTs as

the base classifier.

The fourth level is the base classifiers’ hyper-parameter optimization level.365

At this level, there is again one PV for each hyperparameter of each of the base

classifiers at the third level. Table 3 shows the full set of PVs at level 4. This

table has a structure analogous to the one of Table 1. Note that at level 4 of

Figure 1 each PV is used to optimize the hyper-parameters of a base classifier

14



Table 1: Probability Vectors (PVs) for ensemble methods’ hyper-parameter optimization at

level 2 of Figure 1. The columns of the table refer to the type of the ensemble at level 1, the

number of PVs for the ensemble, the name of the PV, the number of components in the PV,

and the values of the hyper-parameters, respectively.

Ens. # PVs PV # Comp. Hyper-parameter

type L1 Ens. name in PV values

RC 2 L2-RC-I 63 from 2 to 64

L2-RC-S 255 from 1 to 255

AD 4 L2-AD-Q 2 true / false

L2-AD-P 51 from 50 to 100

L2-AD-I 127 from 2 to 128

L2-AD-S 255 from 1 to 255

BA 4 L2-BA-P 91 from 10 to 100

L2-BA-I 127 from 2 to 128

L2-BA-S 255 from 1 to 255

L2-BA-O 2 true / false

RF 3 L2-RF-I 255 from 2 to 256

L2-RF-K 32 from 1 to 32

L2-RF-W 20 from 1 to 20

ST 4 L2-ST-X 10 from 1 to 10

L2-ST-S 255 from 1 to 255

L2-ST-B 9 from 1 to 9

L2-ST-NBC 10 from 1 to 10

VT 4 L2-VT-S 255 from 1 to 255

L2-VT-R 6 AVG, PROD, MAJ, MIN, MAX, MED

L2-VT-B 9 from 1 to 9

L2-VT-NBC 10 from 1 to 10
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Table 2: Probability Vectors (PVs) for base classifier selection at level 3 of Figure 1. The

columns of the table refer to the type of the ensemble at level 1, the number of PVs for the

ensemble, the name of the PV, the number of components in the PV, and the candidate base

classifiers (one PV component for each of them), respectively.

Ensem. type PV # Comp. Candidate

at Level 1 name in the PV base classifiers

Rand. Comm. L3-RC-BC-sel 9 NET, NB, MLP, SMO, IBK, KST,

J48, DT, RT

AdaBoost L3-AD-BC-sel 9 NET, NB, MLP, SMO, IBK, KST,

J48, DT, RT

Bagging L3-BA-BC-sel 9 NET, NB, MLP, SMO, IBK, KST,

J48, DT, RT

Stacking L3-ST-BC-sel 9 NET, NB, MLP, SMO, IBK, KST,

J48, DT, RT

Vote L3-VT-BC-sel 9 NET, NB, MLP, SMO, IBK, KST,

J48, DT, RT

No ensemble L3-NE-BC-sel 9 NET, NB, MLP, SMO, IBK, KST,

J48, DT, RT

regardless of which type of ensemble (at level 2) is using that base classifier.370

This approach has the disadvantage of being a relatively coarse-grained ap-

proach for hyper-parameter optimization, limiting PBIL’s ability to find fine-

grained hyper-parameters settings of a base classifier that would be particularly

tailored for a specific type of ensemble method (with its specific hyper-parameter

settings). For example, intuitively, the optimal hyperparameter settings for J48375

would depend on whether it is being used as a base classifier for AdaBoost or

for Stacking (as well as on their hyper-parameter settings).

This coarse-grained hyper-parameter optimization tends to occur more strongly

in the early generations of PBIL, when a given base classifier would tend to be

used as part of several different ensemble types in different individuals (since380

initially all ensemble types have the same probability of being selected to be

used in an individual). As generations pass by, the problem should be to some

extent mitigated (although not completely eliminated) as the PV for selecting

the ensemble type at level 1 is expected to gradually converge to the best en-
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Table 3: Probability Vectors (PVs) for the base classifiers’ hyper-parameter optimization at

level 4 of Figure 1. The columns of the table refer to the type of the base classifier at level 3,

the number of PVs for that base classifier, the name of the PV, the number of components in

the PV, and the values of the hyper-parameters, respectively.

BC # PVs PV # Comp. Hyper-parameter

L2 BCs. name in PV values

DT 4 LV4-DT-E 4 acc, rmse, mae, auc

LV4-DT-I 2 true / false

LV4-DT-S 2 BestFirst, GreedyStepWise

LV4-DT-X 1 from 1 to 4

IBK 5 LV4-IBK-E 2 true / false

LV4-IBK-K 64 from 1 to 64

LV4-IBK-X 2 true / false

LV4-IBK-F 2 true / false

LV4-IBK-I 2 true / false

J48 8 LV4-J48-O 2 true / false

LV4-J48-U 2 true / false

LV4-J48-B 2 true / false

LV4-J48-J 2 true / false

LV4-J48-A 2 true / false

LV4-J48-S 2 true / false

LV4-J48-M 64 from 1 to 64

LV4-J48-C 95 from 0,05 to 5,0

KST 3 LV4-KST-B 100 from 1 to 100

LV4-KST-E 2 true / false

LV4-KST-X 4 a, d, m n

MLP 8 LV4-MLP-L 10 from 0,1 to 1,0

LV4-MLP-M 10 from 0,1 to 1,0

LV4-MLP-B 2 true / false

LV4-MLP-H 4 a, i, o, t

LV4-MLP-C 2 true / false

LV4-MLP-R 2 true / false

LV4-MLP-D 2 true / false

LV4-MLP-S 255 from 1 to 255

NB 2 LV4-NB-D 2 true / false

LV4-NB-K 2 true / false

NET 2 LV4-NET-Q 6 K2, HC, LHC, SA, TS, TAN

LV4-NET-D 2 true / false

RT 5 LV4-RT-M 64 from 1 to 64

LV4-RT-K 33 from 0 to 32

LV4-RT-depth 21 from 0 to 20

LV4-RT-N 6 from 0 to 5

LV4-RT-U 2 true / false

SMO 1 LV4-SMO-SEL 4 Def., N.P.Kernel, P.Kernel, Puk, RBFKernel
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Table 4: Probability Vectors (PVs) for the SVM base classifier’s hyper-parameter optimiza-

tion.

SMOs PVs PV Comp. Hyper-parameter

L4, L5 SMOs. name in PV values

def. 4 LV5-default-C 11 from 0.5 to 1.5

LV5-default-N 3 from 0 to 2

LV5-default-M 2 true / false

LV5-default-K 4 N.P.Kernel, P.Kernel, Puk, RBFKernel

N.P.Kernel 6 LV5-NPKernel-C 11 from 0.5 to 1.5

LV5-NPKernel-N 3 from 0 to 2

LV5-NPKernel-M 2 true / false

LV5-NPKernel-K 4 N.P.Kernel, P.Kernel, Puk, RBFKernel

LV5-NPKernel-E 49 from 0.2 to 5.0

LV5-NPKernel-L 2 true / false

PolyKernel 6 LV5-PKernel-C 11 from 0.5 to 1.5

LV5-PKernel-N 3 from 0 to 2

LV5-PKernel-M 2 true / false

LV5-PKernel-K 4 N.P.Kernel, P.Kernel, Puk, RBFKernel

LV5-PKernel-E 49 from 0.2 to 5.0

LV5-PKernel-L 2 true / false

Puk 6 LV5-Puk-C 11 from 0.5 to 1.5

LV5-Puk-N 3 from 0 to 2

LV5-Puk-M 2 true / false

LV5-Puk-K 4 N.P.Kernel, P.Kernel, Puk, RBFKernel

LV5-Puk-S 100 from 0.1 to 10.0

LV5-Puk-O 10 from 0.1 to 1.0

RBFKernel 5 LV5-RBFKernel-C 11 from 0.5 to 1.5

LV5-RBFKernel-N 3 from 0 to 2

LV5-RBFKernel-M 2 true / false

LV5-RBFKernel-K 4 N.P.Kernel, P.Kernel, Puk, RBFKernel

LV5-RBFKernel-G 1000 from 0.001 to 1.0
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Figure 2: An example of how an individual is generated

semble type. Hence, in late generations a given base classifier should be used385

in different individuals mainly as part of the same best ensemble type, giving

more opportunities for the algorithm to focus on a finer-grained optimization

of hyper-parameter settings of that base classifier, i.e. finding hyper-parameter

settings that are more tailored to that particular best ensemble type.

To compensate for the above disadvantage, however, this approach of hav-390

ing a single PV for each base classifier’s hyper-parameter at level 4 has the

important advantage that it drastically reduces the number of PVs that need

to be optimized by the PBIL, which should drastically reduce the time for the

algorithm to converge to a near-optimal solution. In addition, the much smaller
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Figure 3: An example of probability vector updates after selecting the individual shown in

Figure 2
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number of PVs associated with this approach can also help to reduce the chances395

of overfitting, particularly on datasets that are not very large.

Finally, there is also a set of PVs referring to hyper-parameters that are

specific to the base classifier SMO, a type of Support Vector Machine. These

PVs are specified in Table 4, and they are PVs at the fifth level of the PV

hierarchy. This fifth level was not shown in Figure 1 in order to keep the figure400

relatively simple.

At the start of the evolution (generation 0), all solution components in each

of the PVs are initialized with a uniform probability distribution, so that each

component is equally likely to be sampled from each PV. During the evolution-

ary search, at each generation (iteration) individuals are generated by sampling405

solution components from the PVs; then the generated individuals are evalu-

ated by the fitness function, and the best 50% of the individuals in the current

generation are selected for updating the probabilities of individual solution com-

ponents in the PVs. These processes are described in the next subsections.

4.2. The Procedure for Generating Individuals by Sampling from the Probability410

Vectors

We now describe how PBIL-Auto-Ens-v2 generates individuals at each gen-

eration, by sampling solution components from the hierarchy of Probability

Vectors (PVs) shown in Figure 1.

An individual represents a full candidate solution, specifying the choice of415

an ensemble method and its hyper-parameter settings (or No Ensemble if this

option was chosen), as well as the choice of a base classifier and its hyper-

parameter settings.

To generate an individual, PBIL-Auto-Ens-v2 first samples a value from the

PV determining the choice of an ensemble method, at level 1 of Figure 1. The420

chosen ensemble method is then used to determine which probability vector will

be sampled at level 2, and so on, so that the generation of an individual can

be conceptualized as following a path in the graph representing the hierarchical

structure of the set of PVs, sampling from one PV at each level, until a full
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candidate solution is specified.425

An example of how an individual is generated is shown in Figure 2. In this

example, the individual is generated by the following sequence of PV samplings

and solution component choices:

• At level 1: sampling from the PV for ensemble method, choosing AdaBoost

(AD) ensemble (represented by value 2);430

• At level 2: sampling from the PVs for hyper-parameters Q, P, I and S of

AD, choosing values True, 51, 127 and 3, respectively;

• At level 3: sampling from the PV for hyper-parameter BC-Sel (Base Clas-

sifier Selection) of AD, choosing base classifier IBK (represented by value

5);435

• At level 4: sampling from the PVs for hyper-parameters E, K, X, F, I of

IBK, choosing values False, 63, False, True, True, respectively.

Hence, an individual contains a variable-length list of pairs of the form (i-th

PV, i-th Index), where in each pair, the first element denotes the id (name) of a

PV used to generate the individual, and the second element denotes the index440

of the component of that PV that was sampled; i.e., the index of the method or

of the hyper-parameter setting, among the components of the PV.

For instance, the individual generated by the above sequence of PV sam-

plings would be represented by the following list of pairs (we show next only

the first two pairs and the last pair of this list, to simplify):445

(L1-EnsType, 2), (L2-AD-Q, 1), . . ., (L4-IBK-I, 1).

where, in the first pair, L1-EnsType is the PV at level 1 for selecting the

ensemble method and the value 2 is the index of the component AdaBoost of

that PV; in the second pair, L2-AD-Q is the PV at level 2 for selecting the value

of hyper-parameter Q of the AD method and 1 is the index of the value True,450

which was chosen (sampled) for this hyper-parameter, etc.
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4.3. Fitness Computation

At each generation, the fitness (quality measure) of each just-created in-

dividual is evaluated by applying the classifier ensemble represented by that

individual to the training set, using an internal 10-fold cross-validation proce-455

dure (a well-known evaluation procedure in machine learning) to estimate the

error rate of that ensemble. That is, the fitness of an individual is the mean

of the error rates over the 10 folds of the internal cross-validation procedure.

We emphasize that fitness is computed using only the training set, without any

access to the test set, which is reserved for the final evaluation of the predictive460

accuracy of the best ensemble returned by the algorithm.

4.4. Selection of the Best Individuals and Updating of the Probability Vectors

At the end of each generation, the 50% best individuals in terms of fitness

of that generation (i.e. the 50% individuals with the smallest estimated error

rates on the training set) are selected and their solution components are used465

to update the corresponding component probabilities in all the PVs that were

used to create the selected individuals. This updating consists of increasing the

probability for each solution component in proportion to the relative frequency

of use of that component among the selected individuals (the 50% best ones),

and also in proportion to the learning rate parameter. More precisely, for each470

i-th solution component, its probability at the end of generation g, denoted by

p[i]g, is updated using the formula:

p[i]g = (1 – LR) * p[i]g−1 + LR * RelFreq[i]g,

where LR is the learning rate andRelFreq[i]g is the relative frequency of the i-th

solution component among the individuals selected at generation g. Hence, by475

iteratively selecting the best candidate solutions and increasing the probabilities

of each of their components in the probability vector, gradually the probability

vector evolves to contain higher probability values for the best solution com-

ponents, leading to the creation of better and better classifier ensembles. This

evolutionary process terminates when a predefined runtime limit is reached.480
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Figure 3 shows, in diagrammatic form, an example of how the probability

vectors are updated after selecting the individual shown in Figure 2. In Figure

3, the small yellow circles with the symbol “+p” identify the probability vec-

tors’ components whose probability values are increased, due to the fact that

those components were included in the candidate solution represented by the485

individual shown in Figure 2.

PBIL-Auto-Ens-v2 differs from its predecessor (PBIL-Auto-Ens-v1) [28] in

two major ways. First, PBIL-Auto-Ens-v2 uses a more elaborated hierarchical

structure for the set of PVs. In particular, in PBIL-Auto-Ens-v1, at the first

level of the hierarchy there is a mixture of classifier ensemble methods and single490

base classifiers (which directly compete with each other for selection at the first

level), whilst in PBIL-Auto-Ens-v2 classifier ensembles and base classifiers are

kept in separate hierarchical levels. Hence, there are more modular competi-

tions between the classifier ensembles and their base classifiers, with separate

competitions for selection within each of these two groups of classifiers. Sec-495

ond, in PBIL-Auto-Ens-v1 each individual is represented by a variable-length

binary vector, with a sub-optimal procedure for decoding those bits into choices

of ensembles, base classifiers, and hyper-parameter settings for both types of

methods. By contrast, BIL-Auto-Ens-v2 uses a simpler and more natural in-

dividual representation, using PV names and index values to directly encode500

choices of ensembles, base classifiers, and hyper-parameter settings.

4.5. The Space Complexity of PBIL-Auto-Ens-v2

PBIL-Auto-Ens-v2’s space complexity can be calculated by considering the

space taken by the set of probability vectors and the space taken by the current

population of individuals, as follows. First, the algorithm stores in memory a505

set of probability vectors, whose total size, denoted PVSize is given by the total

number of components in all probability vectors. Second, the space taken by

the current population of individuals (candidate solutions) equals the population

size (PopSize) times the (average) size of each individual (IndSize). Hence, the

space complexity is O(PV Size + PopSize × IndSize). To make this formula510
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more concrete, PVSize is given by the summation of all values in the columns

“#Comp. in PV” in Tables 1, 2, 3, 4 plus 9 components for selecting the type

of ensemble method at level 1, which is in total 4,261. PopSize is fixed at 50,

but IndSize varies across individuals. In practice, IndSize is substantially less

than 50 for any given individual (since each individual needs to store only the515

chosen parameter settings of chosen algorithms, a small subset of the entire set

of PVs), so this space complexity is dominated by PVSize.

5. Experimental Methodology

5.1. Datasets Used in the Experiments

The proposed PBIL-Auto-Ens method was evaluated on 21 classification520

datasets, available for download from the well known UCI machine learning

repository. Most of these datasets have also been used in recent Auto-ML studies

[4], [6], [21]. Table 5 shows the number of instances, attributes (separately for

discrete and continuous attributes) and classes in each of the datasets.

5.2. Methods Compared in the Experiments525

The two versions of PBIL-Auto-Ens were compared against two strong base-

line methods: random forests (a well-known ensemble method) and an Auto-ML

method, namely Auto-WEKA [4]. All experiments were done using a well-known

5-fold cross-validation (CV) procedure. For the Auto-ML methods, i.e. the two

PBIL-Auto-Ens versions and Auto-WEKA, we used a nested version of the CV530

procedure. More precisely, these Auto-ML methods have been run with an ex-

ternal 5-fold CV, and an internal 10-fold CV. Hence, at the external CV level,

the input dataset is randomly divided into 5 folds (each with about 20% of the

instances), and then the two versions of PBIL-Auto-Ens and Auto-WEKA are

run 5 times, each using a different fold as the test set and the other 4 folds as the535

training set. In each of those 5 runs, the training set (80% of the full dataset)

is randomly divided into 10 folds, each with about 10% of the training set (i.e.,

about 8% of the full dataset). Then, whenever a candidate solution (ensem-

ble method or base classifier) is generated by PBIL-Auto-Ens or Auto-WEKA,
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Table 5: Main characteristics of the datasets used in the experiments.

Id Dataset # # Disc. # Cont. #

Instances Attr. Attr. Classes

d1 Abalone 4,177 1 7 28

d2 Adult 32,561 8 6 2

d3 Arrhythmia 452 0 260 13

d4 Automobile 205 11 15 7

d5 Car 1,728 0 6 4

d6 Dermatology 366 1 33 6

d7 Ecoli 336 0 7 8

d8 Flags 194 20 10 8

d9 GermanCredit 1,000 13 7 2

d10 Glass Identificaton 214 0 10 7

d11 Image Segmentation 2,310 0 19 7

d12 KR-vs-KP 3,196 36 2 0

d13 Madelon 2,600 0 500 2

d14 Nursery 12,960 8 0 5

d15 Secom 1,567 0 590 2

d16 Semeion 1,593 0 256 10

d17 SolarFlare1 323 13 0 8

d18 Sonar 208 0 60 2

d19 Waveform 5,000 0 40 3

d20 Wine 4,898 0 11 11

d21 Yeast 1,484 0 8 10
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that solution is evaluated by running its configuration using the internal 10-fold540

CV, so that each of the 10 runs of that candidate solution uses 9 internal folds

(72% of the full dataset) as a learning set (to learn the classification model)

and one internal fold (8% of the full dataset) as a validation set to evaluate the

predictive accuracy of the learned model. The quality measure of that candi-

date solution is given by the mean error rate of the learned model over the 10545

internal validation sets. Hence, the evaluation of each candidate solution uses

only the training set, not the external test set, which is reserved for measur-

ing the predictive accuracy of the best solution returned by the two versions of

PBIL-Auto-Ens and Auto-WEKA.

Note that both PBIL-Auto-Ens and Auto-WEKA are non-deterministic search550

methods, i.e. their results depend on a seed number used to randomly initialize

the candidate solutions. For each method, we report its mean result over exper-

iments with 5 random seeds (the same seeds are used by all methods), running

an external 5-fold CV for each seed as explained above – i.e., each reported

result is the mean over 25 results (with 25 different test sets). Random forest is555

also non-deterministic, and it was also run with the same 5 random seeds and

5-fold cross-validation – i.e. its results are also the mean over 25 test sets.

We used all default parameter settings of Auto-WEKA, including the clas-

sification error rate (the proportion of incorrectly classified instances) as the

evaluation function to be optimized during training. To make the comparison560

between both PBIL-Auto-Ens versions and Auto-WEKA fair, we also used error

rate as the fitness function of them. The three Auto-ML methods used the same

runtime limit, 60 minutes for each run, where one run means one execution of

one iteration of the external 5-fold CV (applying the method to the training set

of that iteration) for a single value of the random seed, for each dataset. Hence,565

in total each Auto-ML method was run for 525 hours, considering 5 external

CV iterations times 5 seeds times 21 datasets.

Both PBIL-Auto-Ens versions were run with the following parameter settings

(as summarized in Table 6): population size of 50, learning rate of 0.5, and

50% of the best individuals of the current generation selected for updating the570
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Table 6: Configurations for both PBIL-Auto-Ens versions

Population size Learning rate % of best individuals selected

50 0.5 50%

probability model. The latter two parameter settings are relatively standard

in the PBIL literature, whilst the population size was set based on preliminary

experiments. Note that, unlike most PBIL (and EA) implementations, the two

PBIL-Auto-Ens versions do not have a parameter for the number of generations,

because their stopping criterion is a runtime limit (like in Auto-WEKA). The575

random forest algorithm was run with its default parameter settings in WEKA.

Both PBIL-Auto-Ens versions have been implemented in Java using the

WEKA API. We run the experiments on a desktop PC with Ubuntu 16.04 64 bit

operating system driven by an Intel(R) Xeon(R) CPU E5-4610 v4 @ 1.80GHz,

6 core, and RAM with 6 Gb. The program code of PBIL-Auto-Ens-v2 is freely580

available at: https://github.com/ml-imd/PBIL-AutoEns-v2.

5.3. Predictive accuracy measures

All methods were evaluated based on 4 predictive accuracy measures, which

can be divided into two groups: (a) the classification error rate; and (b) the

precision, recall and F-measure. The error rate is simply the ratio of the number585

of misclassified instances over the total number of instances. The error rate

does not distinguish between different types of misclassifications, so it tends to

give more importance to the correct classification of instances belonging to the

most frequent class in the dataset than to the correct classification of instances

belonging to the other class(es).590

By contrast, the other 3 measures, used as a whole, tend to evaluate the

predictive accuracy in a more balanced way across all classes. Precision is

the ratio of the number of correctly classified positive instances over the total

number of instances classified as positive (regardless of they belonging to the

positive or negative class). Recall is the ratio of the number of correctly classified595

positive instances over the total number of positive instances (regardless of they
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being correctly or wrongly classified). The F-measure is the harmonic average

between precision (prec) and recall (rec), defined as:

F −measure =
(2 ∗ precision ∗ recall)
(precision+ recall)

(1)

Note that the definitions of precision, recall and F-measure consider one

class as the positive class and the other class(es) as the negative class. Hence,600

to compute average values of these measures across classes, we need to consider

one class at a time as the positive class. More precisely, the average values for

these measures are computed as follows. For each run of a classification method,

the average precision and recall were computed by first measuring the precision

and recall per class by considering each class in turn as the positive class, then605

computing the arithmetic mean of those precision and recall values over all

classes, and finally averaging over all runs of the method for that dataset. The

average F-measure was computed by applying the above F-measure formula to

the average values of precision and recall.

6. Experimental Results610

This section presents experimental results comparing the predictive perfor-

mance of the proposed PBIL-Auto-Ens-v2 against three other methods, namely:

(a) its previous version (PBIL-Auto-Ens-v1); (b) the Auto-WEKA version adapted

to focus on ensembles, using the same search space as both versions of PBIL-

Auto-Ens; and (c) a random forest algorithm with default hyper-parameter615

settings, as a strong baseline ensemble method. The results are discussed in

terms of two types of predictive performance measures: the error rate; and the

precision, recall and F-measure.

6.1. Results for the Mean Error Rate

Table 7 presents the mean error rates for Auto-WEKA, PBIL-Auto-Ens-v1620

and PBIL-Auto-Ens-v2. In this table, the best result for each dataset is shown

in boldface. In addition, for each method, its number of wins (i.e., the number
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of datasets where it obtained the best result) and its average rank are shown at

the bottom of the table. The lower the average rank of a method, the better its

predictive performance.625

As shown at the bottom of Table 7, PBIL-Auto-Ens-v2 obtained the best

(smallest) average rank (1.95), with PBIL-Auto-Ens-v1 in the second place

(rank 2.19). In addition, PBIL-Auto-Ens-v2 and PBIL-Auto-Ens-v1 achieved

the smallest error among all methods in 8 and 7 of the 21 datasets, respectively,

whilst Auto-WEKA and random forest were the winner in only 3 datasets each.630

In order to conduct a statistical analysis of the results, the Friedman test

and Nemenyi post-hoc test were used (as recommended in [27]) to determine

whether or not there is a statistically significant difference between the predictive

accuracies of the methods across the 21 datasets. Both tests are applied at the

conventional significance level of 5%. The Friedman test was chosen because635

it is non-parametric (avoiding the assumption of normality), being based on

the average rank of the four methods across all datasets. Its null hypothesis is

that there is no difference in the average ranks of the four methods. If this null

hypothesis is rejected, we apply the post-hoc Nemenyi test to evaluate if there is

a significant difference between each pair of methods. This is necessary because640

the Friedman test compares the four methods as a whole, without indicating

which pairs of methods have significantly difference performance.

The Friedman test produced the p-value = 0.0208, therefore the difference

between the error rates of the four methods is statistically significant. The

pairwise comparisons using the Nemenyi post-hoc test produced only one sta-645

tistically significant result: PBIL-Auto-Ens-v2 obtained a significantly better

average rank of error rates than Auto-WEKA (p-value = 0.0420). That is, there

is no significant difference between the error rates of other pairs of methods.

6.2. Results for the Average Precision, Recall and F-measure

Tables 8, 9 and 10 present the average values of precision, recall, and F-650

measure, respectively, for all methods being compared. As shown at the bottom

of Table 8, PBIL-Auto-Ens-v2 obtained the best (smallest) average rank (1.95),
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Table 7: Error Rate on the test set (mean over 25 runs for each dataset).

Id Dataset Auto- Random PBIL- PBIL-

WEKA Forest Auto-Ens-v1 Auto-Ens-v2

d1 Abalone 0.7316 0.7616 0.7312 0.7459

d2 Adult 0.1452 0.1504 0.1427 0.1426

d3 Arrhythmia 0.2769 0.3221 0.2743 0.2751

d4 Automobile 0.1912 0.1824 0.1834 0.1842

d5 Car 0.0028 0.0576 0.0102 0.0082

d6 Dermatology 0.0294 0.0339 0.0268 0.0284

d7 Ecoli 0.1387 0.1542 0.1420 0.1363

d8 Flags 0.3352 0.3155 0.3455 0.3537

d9 German-Credit 0.2716 0.2612 0.2700 0.2602

d10 Glass Identification 0.2383 0.2142 0.2392 0.2195

d11 Image Segmentation 0.0199 0.0203 0.0239 0.0231

d12 KR-vs-KP 0.0527 0.0091 0.0154 0.0057

d13 Madelon 0.3009 0.3541 0.2869 0.2991

d14 Nursery 0.0228 0.0121 0.0098 0.0085

d15 Secom 0.0779 0.0664 0.0691 0.0658

d16 Semeion 0.0989 0.0637 0.0588 0.0694

d17 SolarFlare1 0.1182 0.1251 0.1140 0.1126

d18 Sonar 0.2153 0.1788 0.1539 0.1701

d19 Waveform 0.1333 0.1485 0.1476 0.1349

d20 Wine-quality 0.3393 0.3220 0.3210 0.3384

d21 Yeast 0.3980 0.3954 0.3952 0.3950

Number of wins 3/21 3/21 7/21 8/21

Average Rank 2.95 2.86 2.19 1.95

with PBIL-Auto-Ens-v1 in the second place (rank 2.14). In addition, PBIL-

Auto-Ens-v2 and PBIL-Auto-Ens-v1 achieved the highest precision among all

methods in 8 and 7 of the 21 datasets, respectively; whilst Auto-WEKA and655
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random forest were the winner in only 4 and 2 datasets, respectively.

In Table 9 (for recall), PBIL-Auto-Ens-v2 obtained the best average rank

(1.76), with PBIL-Auto-Ens-v1 in the second place (rank 2.24). In addition,

PBIL-Auto-Ens-v2 and PBIL-Auto-Ens-v1 achieved the highest recall among

the three methods in 9 and 6 of the 21 datasets, respectively; whilst Auto-660

WEKA and random forest were the winner in only 4 and 2 datasets, respectively.

Regarding the F-measure (involving a trade-off between precision and re-

call), as shown in Table 10, PBIL-Auto-Ens-v2 obtained again the best average

rank (1.81), with PBIL-Auto-Ens-v1 again in the second place (rank 2.19). In

addition, PBIL-Auto-Ens-v2 and PBIL-Auto-Ens-v1 achieved the highest F-665

measure in 9 and 6 of the 21 datasets, respectively; whilst Auto-WEKA and

random forest were the winner in only 4 and 2 datasets, respectively.

We also applied the aforementioned Friedman and post-hoc Nemenyi tests to

the methods’ results for precision, recall and F-measure, based on the methods’

average ranks shown in Tables 8, 9 and 10, respectively. For both statistical670

tests, we used again the conventional significance level of 5%. For precison,

recall and F-Measure, the Friedman test produced the p-values of 0.0114, 0.0023

and 0.0032, respectively. All these results are statistically significant, so we used

the Nemenyi post-hoc test to compare the precision, recall and F-measure for

each of the six pairs of methods.675

Regarding the precision measure, the pairwise comparisons using the Ne-

menyi post-hoc test produced only one statistically significant result: PBIL-

Auto-Ens-v2 obtained a significantly better result than the random forest algo-

rithm (p-value = 0.0210).

Regarding the recall measure, the Nemenyi post-hoc test produced two sta-680

tistically significant results: PBIL-Auto-Ens-v2 was significantly better than

both Auto-WEKA (p-value = 0.0256) and random forest (p-value = 0.0037).

Regarding the F-measure, the Nemenyi post-hoc test produced again two

statistically significant results: PBIL-Auto-Ens-v2 was significantly better than

both Auto-WEKA (p-value = 0.0304) and random forest (p-value = 0.0069).685

These results can be summarized as follows. PBIL-Auto-Ens-v2 consistently
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Table 8: Average Precision on the test set (mean over 25 runs for each dataset).

Id Dataset Auto- Random PBIL- PBIL-

WEKA Forest Auto-Ens-v1 Auto-Ens-v2

d1 Abalone 0.0999 0.1030 0.1075 0.1078

d2 Adult 0.8181 0.8038 0.8208 0.8197

d3 Arrhythmia 0.4407 0.3061 0.4505 0.4467

d4 Automobile 0.6662 0.6114 0.6578 0.6861

d5 Car 0.9944 0.8589 0.9913 0.9925

d6 Dermatology 0.9614 0.9684 0.9730 0.9700

d7 Ecoli 0.6259 0.5502 0.6227 0.6296

d8 Flags 0.4728 0.4412 0.4443 0.4101

d9 GermanCredit 0.6711 0.6911 0.6693 0.6916

d10 Glass 0.7334 0.6950 0.7587 0.7636

d11 Image Seg. 0.9768 0.9801 0.9780 0.9785

d12 KR-vs-KP 0.9494 0.9910 0.9937 0.9944

d13 Madelon 0.7022 0.6482 0.7167 0.7041

d14 Nursery 0.7547 0.7712 0.7772 0.8021

d15 Secom 0.4962 0.4834 0.4668 0.4773

d16 Semeion 0.9056 0.9367 0.9435 0.9339

d17 SolarFlare1 0.1351 0.1373 0.1752 0.1488

d18 Sonar 0.7895 0.8292 0.8555 0.8373

d19 Waveform 0.8581 0.8524 0.8534 0.8658

d20 Wine 0.3141 0.3170 0.3137 0.3092

d21 Yeast 0.5512 0.4751 0.5223 0.4985

Number of wins 4/21 2/21 7/21 8/21

Average Rank 2.81 3.10 2.14 1.95

obtained the best results (in terms of both average rank and number of wins) for

all the four measures: error rate, Precision, Recall and F-measure. There was

no statistically significant difference between the results of PBIL-Auto-Ens-v2
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Table 9: Average Recall on the test set (mean over 25 runs for each dataset).

Id Dataset Auto- Random PBIL- PBIL-

WEKA Forest Auto-Ens-v1 Auto-Ens-v2

d1 Abalone 0.1029 0.1028 0.1089 0.1167

d2 Adult 0.7562 0.7641 0.7770 0.7690

d3 Arrhythmia 0.4202 0.3081 0.4198 0.4206

d4 Automobile 0.6491 0.6090 0.6449 0.6731

d5 Car 0.9891 0.8591 0.9886 0.9888

d6 Dermatology 0.9568 0.9565 0.9717 0.9690

d7 Ecoli 0.6190 0.5483 0.6206 0.6207

d8 Flags 0.4593 0.4472 0.4441 0.4237

d9 GermanCredit 0.6348 0.6452 0.6292 0.6599

d10 Glass 0.7136 0.6931 0.7299 0.7385

d11 Image Seg. 0.9759 0.9799 0.9775 0.9791

d12 KR-vs-KP 0.9461 0.9907 0.9935 0.9942

d13 Madelon 0.6991 0.6470 0.7131 0.7013

d14 Nursery 0.7476 0.7713 0.7796 0.8025

d15 Secom 0.5019 0.4835 0.4997 0.5009

d16 Semeion 0.9006 0.9369 0.9410 0.9305

d17 SolarFlare1 0.1308 0.1370 0.1372 0.1319

d18 Sonar 0.7824 0.8185 0.8423 0.8262

d19 Waveform 0.8558 0.8520 0.8528 0.8654

d20 Wine 0.2284 0.2659 0.2400 0.2425

d21 Yeast 0.5174 0.4775 0.4881 0.4938

Number of wins 4/21 2/21 6/21 9/21

Average Rank 2.86 3.14 2.24 1.76

and PBIL-Auto-Ens-v1, for all measures. However, PBIL-Auto-Ens-v2’s results690

were statistically significantly better than the results of both Auto-WEKA and

random forest for three out of the four measures of predictive performance used
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Table 10: Average F-Measure on the test set (mean over 25 runs for each dataset).

Id Dataset Auto- Random PBIL- PBIL-

WEKA Forest Auto-Ens-v1 Auto-Ens-v2

d1 Abalone 0.1012 0.1039 0.1082 0.1086

d2 Adult 0.7877 0.7835 0.7902 0.7895

d3 Arrhythmia 0.4282 0.3075 0.4324 0.4360

d4 Automobile 0.6592 0.6130 0.6511 0.6772

d5 Car 0.9917 0.8586 0.9899 0.9900

d6 Dermatology 0.9601 0.9623 0.9724 0.9695

d7 Ecoli 0.6219 0.5506 0.6213 0.6247

d8 Flags 0.4646 0.4401 0.4433 0.4160

d9 GermanCredit 0.6523 0.6742 0.6483 0.6748

d10 Glass 0.7215 0.6947 0.7474 0.7506

d11 Image Seg. 0.9765 0.9805 0.9778 0.9789

d12 KR-vs-KP 0.9478 0.9909 0.9938 0.9943

d13 Madelon 0.7006 0.6476 0.7149 0.7051

d14 Nursery 0.7510 0.7722 0.7784 0.8021

d15 Secom 0.5091 0.4831 0.4827 0.4876

d16 Semeion 0.9031 0.9368 0.9423 0.9322

d17 SolarFlare1 0.1315 0.1377 0.1513 0.1370

d18 Sonar 0.7859 0.8237 0.8488 0.8317

d19 Waveform 0.8579 0.8522 0.8531 0.8656

d20 Wine 0.2641 0.2795 0.2767 0.2780

d21 Yeast 0.5332 0.4741 0.5036 0.4925

Number of wins 4/21 2/21 6/21 9/21

Average Rank 2.90 3.10 2.19 1.81

in our experiments. By contrast, although PBIL-Auto-Ens-v1 outperforms both

Auto-WEKA and random forest for all those four measures, the difference of

results is not statistically significant for any measure. Hence, PBIL-Auto-Ens-v2695
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represents a clear improvement over PBIL-Auto-Ens-v1, in terms of predictive

performance.

Finally, it is worth noting that in general the results for all predictive accu-

racy measures, for all methods, tend to be worse in datasets with a large number

of class labels. The most typical example of this scenario are the results for the700

Abalone dataset, which has by far the largest number of class labels (28). The

results of all methods in this dataset are by far worse than their results in other

datasets. To investigate in more detail the relationship between the number

of class labels and the predictive accuracy results, we have measured the well-

known Pearson’s linear correlation coefficient (r) between the number of class705

labels and the values of each accuracy measure (error rate, precision, recall and

F-measure) across the 21 datasets, for each of the four methods being compared

in our experiments. These results are shown in Table 11.

As observed in this table, there is a strong positive correlation (r greater than

0.7) between the number of class labels and the error rate for all methods – i.e.,710

in general larger numbers of class labels are associated with larger (worse) values

of the error rate. Conversely, there is a strong negative correlation (r smaller

than -0.6) between the number of class labels and the values of precision, recall

and F-measure for all methods – i.e., in general larger numbers of class labels

are associated with smaller (worse) values of precision, recall and F-measure.715

Note also that, for each predictive accuracy measure, there is little variation in

the r values across the methods, i.e. all four methods are equally affected by

the difficulty of predicting a large number of class labels.

Table 11: Pearson correlation between Number of Classes and Accuracy Measures.

Pearson Error Precision Recall F-measure

Auto-WEKA 0.7224 -0.6297 -0.6167 -0.6254

Random Forest 0.7308 -0.6305 -0.6197 -0.6253

PBIL-Auto-Ens-v1 0.7290 -0.6259 -0.6158 -0.6194

PBIL-Auto-Ens-v2 0.7355 -0.6253 -0.6146 -0.6209
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6.3. An Analysis of the Best Solutions Returned by PBIL-Auto-Ens-v2

We now analyse the relative frequency with which different types of classifiers720

are returned by PBIL-Auto-Ens-v2 as the best solution found during its search.

We perform this analysis only for PBIL-Auto-Ens-v2 because it obtained overall

the highest predictive accuracy among the four methods, as discussed earlier.

Although each returned solution consists of the name of a classifier and its

configuration (i.e., its hyper-parameter settings), we report only the name of725

returned classifier, which is higher level information, much easier to interpret

than the low-level information associated with hyper-parameter settings.

Figure 4 presents bar graphs displaying the 25 best solutions (classifiers)

returned by PBIL-Auto-Ens-v2 (i.e., the best solution returned by each run

of this method) for each of the 21 datasets. For each cell (dataset) in this730

figure, the horizontal axis shows the acronyms of the classifiers selected for

that dataset, and the numbers at the top of each bar represent the number of

times that the corresponding classifier was selected, out of the 25 runs. Recall

that, although the search space of PBIL-Auto-Ens-v2 includes mainly classifier

ensembles (and their configurations), it also includes the option of selecting and735

configuring only a single base classifier. The latter is a useful option, since in

some datasets a single classifier can have a similar or perhaps even somewhat

better predictive performance than an ensemble. In addition, a single classifier

has the advantage of avoiding the need for the extra computational cost and

complexity of an ensemble.740

Overall, considering the results across all datasets in Figure 4, the classi-

fication algorithm most frequently selected by PBIL-Auto-Ens-v2 was by far

AdaBoost (ADA), selected in 205 cases; followed by Bagging (BAG) and Ran-

dom Forest (RF), selected in 65 and 60 cases, respectively. Hence, one of these

three ensemble algorithms was selected as the best classifier in 330 cases (about745

63% of all 525 cases).

Comparing the selection frequencies of ensembles and single classifiers as a

whole, PBIL-Auto-Ens-v2 selected a classifier ensemble in 355 cases (about 68%

of the cases), whilst it selected a single base classifier in the remaining 170 cases.
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Figure 4: The best algorithms returned by PBIL-Auto-Ens-v2 for each dataset. The classifiers’

acronyms: ADA, BAG, RF, STA, VT, NB, MLP, SMO, IBK, DCT and J48 refer to AdaBoost,

Bagging, Random Forest, Stacking, Vote, Naive Bayes, Multilayer Perceptron, Suport Vector

Machine, K-Nearest Neighbors, Decision Table, and Decision Tree, respectively.
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Moreover, for 5 datasets, PBIL-Auto-Ens-v2 selected an ensemble algorithm750

in all of its 25 runs. This was the case for the Abalone, Flags, Glass, KR-vs-KP,

and Yeast datasets. By contrast, there was no dataset where PBIL-Auto-Ens-v2

selected a single base classifier (rather than an ensemble) in all 25 runs.

However, for 7 of the 21 datasets, PBIL-Auto-Ens-v2 selected a single base

classifier in the majority of its runs. This was the case for the Adult, German755

Credit, Madelon, Semeion, Solar Flare1, Waveform and Wine datasets.

Among the single base classifiers returned as best solutions across all datasets,

the most frequently selected ones were a Suport Vector Machine (SMO), Mul-

tilayer Perceptron (MLP), and a K-Nearest Neighbor algorithm (IBK), which

were selected in 40, 35 and 30 cases, respectively. Overall, there is less variation760

in the selection frequency of single classifiers than in the selection frequency of

the ensemble algorithms, since the other three single classifiers, namely the J48

decision tree, Naive Bayes (NB) and Decision Table (DCT), were selected in 25,

20 and 20 cases, respectively.

In summary, despite the overall dominance of three classifier ensembles765

(ADA, BAG, and RF), PBIL-Auto-Ens-v2 is exhibiting great flexibility in se-

lecting the best classification algorithm for each dataset, which is the core mo-

tivation for Auto-ML.

7. Conclusion and Future Work

This work proposed a new version of our Estimation of Distribution Algo-770

rithm (a type of Evolutionary Algorithm), called PBIL-Auto-Ens-v2, for the

Automated Machine Learning (Auto-ML) problem of automatically selecting

the best classifier-ensemble method and its best hyper-parameter settings for

an input dataset. PBIL-Auto-Ens-2 was compared against its previous version

(PBIL-Auto-Ens-1) [28] and against two strong baseline methods: a random775

forest algorithm (a popular type of ensemble) and an adapted version of the

well-known Auto-WEKA method [4] as an Auto-ML method. Both PBIL-Auto-

Ens versions and the adapted Auto-WEKA version used the same search space
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of candidate solutions (focusing on classifier ensembles) and the same evalua-

tion function to guide their search. Hence, the differences in their predictive780

accuracies reflect mainly their different search methods, as discussed earlier.

In experiments using 21 classification datasets, overall, the proposed PBIL-

Auto-Ens-2 obtained better predictive performance than its previous version and

the other two methods (Auto-WEKA and random forest) for all the four predic-

tive accuracy measures used in our experiments, namely error rate, precision,785

recall and F-measure. In addition, PBIL-Auto-Ens-2 significantly outperformed

Auto-WEKA for three out of the four measures (viz., error rate, recall and F-

measure); and PBIL-Auto-Ens-2 also significantly outperformed random forest

for three measures (precision, recall and F-measure).

We also analysed the frequencies with which different types of classifica-790

tion algorithms were chosen as the best algorithm by the overall best Auto-ML

method in our experiments (i.e., PBIL-Auto-Ens-v2). As the main result of this

analysis, overall the three most frequently selected algorithms were Adaboost,

Bagging and Random Forests, with Adaboost being the clear winner overall.

As a direction for future work, it would be interesting to extend the exper-795

iments to consider other Auto-ML methods, like the one recently proposed in

[19]. Another future work direction would be to carry out experiments with

much larger datasets, using more powerful computational resources.
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