Handling Inconsistency in Distributed Data Mining with
Paraconsistent Logic

Simone N.M. Ferreitd Alex A. Freitds Braulio C. Avifa

1CEFET-PR, Av. Mont. Lobato, Km 04, s/n, C.P 20nfaocGrossa, PR. 80215-901. Brazil.
%|TA, Praca Mal. Eduardo Gomes, 50, Sao Jose dopaarsP, 12228-900. Brazil.
®Computing Laboratory, University of Kent, Cantefyau€T2 7NF, UK

4PPGIA, PUC-PR, R. Imaculada Conceicao, 1158ritiba, 8025-901, Brazil.

Abstract. This paper addresses the problem of inconsistdatsubsets in distributed
data mining. In this scenarid| rule subsets are independently discovered xbdifferent
data subsets. This can result in inconsistent rdlies. rules with the same antecedent but
different class predictions — across Meule subsets. In order to handle these rule irisens
tencies, this paper proposes a paraconsistentl@gied method for post-processing differ-
ent rule subsets discovered by a rule inductioordhgm in a distributed data mining sce-
nario. The proposed method produces a global instemgy-free rule set by using princi-
ples and concepts of paraconsistent logic, a velstnovel kind of logic developed specifi-
cally for inconsistency handling.

1 Introduction

At present many computing environments are inhreiigtributed. Some typical examples are the
world wide web and distributed databases. Theresaveral driving forces for distributed databases
[18], [15]. First, real-world applications oftenvisive computational constrains, such as the faatt th
the database might be too large to be kept intagiessite. Second, there might be legal constsaint
and/or privacy concerns that require the data talibgibuted, rather than stored at a single site.
Third, distributed databases can offer significarteétter performance than centralized databases.
Finally, data distribution can be a natural apphofac a company whose business activities are inher
ently decentralized.

Hence, it is important to develop data mining atpms that can effectively mine distributed data
[13], [10]. One of the challenges of distributedadenining is that two or more data items stored in
different sites might be inconsistent with eacheotin the context of the data mining task being
solved. For instance, suppose the target taslassification, the class attribute is t@eedit of the
customer, one site stores the tup&ender = male, Salary = high, Loan = No, Credigeod>and
another site the tupleGender = male, Salary = high, Loan = No, Creditbad>. These two tuples
are inconsistent, because they have the same Valuab predictor attributes but different valuefs
the class attribute. In a distributed databasesasg®rthe two main causes for this inconsisteneyaasr
follows.

First, inconsistency can be caused by differenibate value definitions or, more generally, differ
ences in the schema of the local data subsetsinQong the previous example, it is possible that th
two data sites have different definitions for thilute valueSalary = high For instance, the first
data site could contain data about customers adashdon, whereas the second data site could data
about customers located in a small English townretiee salary tends to be much smaller than in
London. Hence, the value of salary used as a thldsb determine a high salary would be different
in the two local data sets.

Second, even if the data sites have exactly the sitabase schema, there can still be data incon-
sistencies due to the fact that different datesditeve different probability distributions. Thistree

case, for instance, when data is independentlecteltl and stored in each data site by a largelrind
pendent unit of a highly decentralized organizatogroup of organizations.

In addition, there are also other possible cau$emta inconsistency that are not specifically re-
lated to the scenario of distribute databasesth®yt can occur in either distributed or centralized
databases. Some examples are the presence ofindiskee problem of missing relevant attributes, as
follows. In essence, noise refers to random erirotbe data. Note that, although noise can lead to
inconsistency, they are different problems. A dasgacan be noisy but inconsistency-free, or noise-
free but inconsistent. To illustrate the importanéehis difference, the noise filtering method pro
posed by Gamberger et al. [11] requires that tlt& la inconsistency free.

The problem of missing relevant attributes, or mduosive data [20], is characterized by the fact
that the available predictor attributes are notughoto discriminate between the classes. This is a
direct cause of data inconsistency, by definitibhe relevance of this problem is clearly shown by
this quote from Uthurusamy [20]After studying several diagnostic databases at Géndotors,
we are convinced that inconclusiveness [inconsisteis a characteristic that rule induction algo-
rithms must be able to deal with if they are todany practical application in industty.

Although some methods have been proposed to resmwe kinds of data inconsistency in a pre-
processing step [12], [7], [17], this “data cleajiimpproach for inconsistency removal might not be
very cost-effective. This approach can be difficelkpensive and slow. In addition, this approach
usually requires a considerable amount of humamiantion. Actually, it is interesting to note that
the database community has recently started tocativa different approach for the problem of in-
consistency handling where, instead of removingnsistency from the database, they keep the in-
consistent data in the database and modify theeguigr such a way that they retrieve only conststen
information [3], [16]. In any case, the data clegnapproach is intended to cope only with data in-
consistency arising from differences in databasermsa or related problems. In principle it cannot
solve, for instance, the problem of inconsistentiadifferent data sets with exactly the same datab
schema but different probability distributions, ahiis an important problem in distributed data min-
ing. Finally, removing inconsistency in a pre-pregiag step might even be undesirable from a data
mining point of view, since the presence of incet®icy can be a valuable clue for the user and can
lead to interesting discoveries. As a simple examplconsistencies in a taxpayer’s records can be
very useful for detecting a possible fraud [22].

To summarize, data inconsistency is a challengioglpm in distributed data mining, and it is im-
portant to develop methods that can effectivelyesahis problem in a principled way. In this spirit
this paper proposes araconsistent logibased method for handling inconsistency in disted
data mining.

The knowledge representation used in this work istmef IF-THEN classification rules, where
the antecedent (IF part) contains a conjunctiomttfbute-value pairs and the consequent (THEN
part) contains the class predicted for an exampleo(d or data item) that satisfies all the condgi
in the rule antecedent. It is well-known that ttépresentation has the advantage of being intljtive
comprehensible for the user [21], which was oumnmadtivation to use it in this work.

In essence, the method proposed in this paper vesrisllows. First, a rule induction algorithm is
applied to each of the local data subsets of ailised data set, discovering a local rule set from
each of those local data subsets. Then inconsisgebetween rules of different local rule sets are
handled. Two or more rules are said to be incomsist they have the same rule antecedent (IF part)
but make different class predictions — i.e., haifernt rule consequents (THEN part). Inconsistent
rules are handled by using concepts and princifigmraconsistent logic [5], [19], a relatively mbv
kind of logic specifically developed to cope witlconsistency. As a result, a global, inconsistency-
free rule set is produced, which can then be usethssify unseen examples in the test set.

Therefore, the proposed method can be regardednastteod for post-processing different rule
subsets discovered by a rule induction algorithna idistributed data mining scenario, in order to
produce a global inconsistency-free rule set. Alfothis was the original motivation for develop-
ment of the method, it turns out that it can als@pplied to other data mining scenarios wherediff
ent rule sets are discovered from different datesets, such as some ensemble scenarios, as will be
discussed later.

To the best of our knowledge, the only previouskusing paraconsistent logic in data mining is
the work of Enembreck et al. [9], which is veryfeient from our work. Enembreck at al. have devel-
oped a paraconsistent version of a decision tigrithm, with no mention of distributed data mining
In particular, their method for computing beliefdadisbelief degrees (terms to be defined later) is
entirely different from ours, since they addreskfferent kind of data mining problem.

2 A Distributed Data mining Scenario

The method for inconsistency handling proposedhimpaper is based on a distributed data mining
framework in which the different data sites have fame database schema but possibly different
probability distributions. More precisely, this segio can be described as follows.

We are given N data sets, each of them with M ptediattributes and a class attribute. Each of
the M attributes has the some domain in all theatd dets. The knowledge representation used in this
work consists of IF-THEN classification rules, asntioned in the Introduction.

The distributed data is mined in two phases: apg#img a rule set for each local data set; and b)
combining the multiple local rule sets into a senglobal rule set. This basic two-phase scenario is
often used in the distributed data mining literatursee, e.g., [14] — and its basic idea is ilistt in
Figure 1.

data data
subsetll subset N

global
rule set

Figure 1generating a global rule set from N local datesstbh

We emphasize that each local prediction model iegged using only a subset of the entire data.
Therefore, it is quite possible that the local nisdge somewhat inconsistent with each other. This
can be due, for instance, to the fact that diffedata subsets have different probability distiits,
as mentioned earlier.

As mentioned earlier, the method proposed in tligep can be regarded as a post-processing
method applied to the output of a distributed raduction algorithm. That is, it generates a single
global, inconsistency-free rule set out of the bilaule sets discovered by N runs of a rule induact
algorithm — each run applied to a different datassett The method will be described in section 4,
after an overview of paraconsistent logic (in whish method is based) in section 3.

3 An Overview of Paraconsistent Logic

One definition of paraconsistent logic is as fokols], [2]. A deductive syster8is said to be in-
consistent if there is a formutof S such that botla and its negatioif-a) are theorems ds. If all
formulas ofS are theorems thefis said to be trivial, otherwise it is said to kmntrivial. In classical
logic Sis trivial if and only if it is inconsistent. A paconsistent logic is a logic whegds inconsis-
tent and non-trivial. A paraconsistent logic casodbe defined as one that rejects the principkexef
contradiction sequitur quod libet (EC) — i.e., “froa contradiction, everything followsThis princi-

ple can be formalized as follows: “For any thedryfformulasa, b: T, a, -a |- b. Hence, a logic is
paraconsistent if and only if there exists a thebgnd formulasa, b such thab cannot be proved
fromT, a, -a.

In general, paraconsistent logics are useful bectey allows us teestrictthe effects of inconsis-
tencyin a deductive syster8. Intuitively, the EC principle (which is followed by classic logic) is
undesirable in many practical data mining situatioAs a simple example, suppose that for each
patient in a hospital database we have one or smreces of evidence for diagnosing whether or not
the patient has a given disease. It is possibleaththe evidence about a given patienspggests that
p; does not have the disease, whereas we have detdrgdevidence about patieng p i.e., one
evidence suggests it has the disease, whilst anetligence suggests the opposite. Intuitively, esinc
the contradiction involves onlypthis contradiction should not affect our conatusthat p does not
have the disease. However, € principle would allows us to conclude the opposasewell, which
is undesirable. By rejecting that principle a paraistent logic would allow us to conclude onlyttha
p; does not have the disease, and not the opposite.

Among the many paraconsistent logics proposeddrlitérature, this work is based on evidential
paraconsistent logic with a two-valued annotatit®][[6], hereafter denoted 2vA-PL. The basic idea
is that each proposition p is associated with awalaed annotations v>, wherep is the degree of
belief in the proposition p andis the degree of disbelief in p. Bothandv take on values in the
range [0..1]. In other wordg, andv are interpreted as the (normalized) amount ofendd for and
evidence against p, respectively.

One motivation for choosing this kind of paracotesis logic in this work is its evidential reason-
ing interpretation, which is intuitively desirabfea data mining context. Belief is different frarath,
and the classification task of data mining (addrdsa this paper) essentially involves inducticonir
data, where the degree of belief in a rule sho@dioportional to the available evidence — corre-
sponding to the data being mined. In addition,ube of this kind of paraconsistent logic seems suit
able for distributed data mining. As discussediegrin distributed data mining it is quite possibl
that local rule sets — each one discovered fronfferent local data subset — are somewhat inconsis-
tent with each other. Hence, a given rule can lzakighbeliefdegree with respect to the data subset
where it was discovered from but at the same tirhggadisbeliefdegree with respect to other data
subsets (since the latter can, for instance, hguelability distribution quite different from tHer-
mer).

v A
<0,13.. E3
<0,0> <1,0>>p

Figure 2: Two-valued annotation of a proposition represeivieal Cartesian plan

We emphasize that, unlike probability theory, irAZRL there is no requirement that+ v = 1.
Actually, in 2vA-PL the belief and disbelief degsegre independent from each other, that sndv
are computed from different sources of evidencefferdnt data subsets, in the case of distributed
data mining. Hence, the two-valued annotation pf@position can be represented as a point in the
Cartesian plan shown in Figure 2, with the beliefde represented as the horizontal axis and the
disbelief degree represented as the vertical axis.

The point at coordinates <1,0> (i.e.=1, v = 0) represents the case where we have totaff lirelie
the truth of the proposition, and the point at clmaites <0,1> represents the case where we hale tot

disbelief in the truth (or, equivalently, total kelin the falsity) of the proposition. Intuitivelghese
two points correspond to the truth degrees truefalsg of classic logic, respectively. The point at
coordinates <1,1> represents the case where omeesofievidence leads us to have a total belief in
the truth of the proposition, whereas another saifcevidence leads us to have a total beliefsn it
falsity. Hence, we have maximum inconsistency betwthe two sources of evidence. Finally, the
point at coordinates <0,0> represents the caseevthere is no evidence for nor against the proposi-
tion. Hence, we have a situation of maximum indeieacy.

Note that in Figure 2 there is a dashed diagonal linking the point at coordinates <0,1> to the
point at coordinates <1,0>. This line is called ‘therfectly-determined” line. All points belongirig
this line have an interesting property: they sgtible equationn + v = 1. Points “above” this line
satisfy the inequality + v > 1, and they represent propositions that arer‘de¢ermined”. By con-
trast, points below the perfectly-determined liagis$y the inequalityr + v < 1, and they represent
propositions that are “under-determined”. The degreover-determinacy or under-determinacy of a
proposition can be precisely quantified by compuiis degree of indeterminacy, denotedity;, as
follows: ind = u + v — 1|, where |x| denotes the absolute value ofoxe thatind varies in the range
[0..1]. The larger the value @id, the larger the degree of indeterminacy. The nreastiindetermi-
nacy is interpreted either as a measure of overhatacy, ifyu + v > 1, or as a measure of under-
determinacy, i + v < 1. The method proposed in this paper, describbélde next section, uses the
complement ofnd, called the degree of determinadef, defined agslet= 1 —ind. Another concept
of 2vA-PL used by the method proposed in this papéne truth degree of a proposition, dendted
which is defined agr = u - v, that is, the belief degree minus the disbeligfrde. Hencetr varies in
the range [-1..1]. Of course, the closer the valug is to 1, the more we believe the proposition is
true, and the closer the valuetofs to -1, the more we believe the propositioraisd.

4 A Paraconsistent Logic-based Method for Handlingnconsistency in
Distributed Rule Sets

As mentioned earlier, in the context of this pagietributed data is mined in two phases: a) gener-
ating a rule set for each local data set; and Im)bioing the multiple local rule sets into a single
global rule set. The proposed method was desigoeg@edrforming the second phase. Hence, it ac-
cepts, as input, a set of N rule sets — one foh e&the N data sets — which have been discoveyed
a classification algorithm.

At a high level of abstraction, the method consiét8 steps, as follows. First, it computes the de-
gree of belief and disbelief for each rule of eadle set. Second, it detects rules from two or more
different rule sets which have the same antecegetting them into the same group. Third, it merges
the rules within each group into a single rule. Sehsteps are now described in more detalil.

4.1 First Step: Computing a Rule’s Degree of Beliednd Disbelief

The degree of belief of each rule is simply thefidemce factor of that rule, which is essentially
the number of examples correctly classified byrtie divided by the total number of examples cov-
ered by the rule. More precisely, |etbe the degree of belief of a given rule discovdreth a data
subset D, C be the class predicted by the rule fabd the rule antecedent (a conjunction of condi-
tions). Thenu = |C & Alp) / |Alp), where |C & A}y is the number of training examples in D having
class C and satisfying all conditions in A, angp}A$ the number of training examples in D satisfying
all conditions in A.

Note that the degree of belief of a rule is comguig using only the local data subset from which
the rule was discovered. At first glance the degredisbelief, denoted by, could be defined as the
complement of the degree of belief, ixe5z 1 —p. However, this would be wrong. Recall that in evi-
dential paraconsistent logic 2vA-PL the degredsatief and disbelief must be independent from each
other. In other words, the degree of disbelief nligstomputed from a different data source than the
degree of belief, which corresponds to using aedtffit kind of evidence. Therefore, we compute the
degree of disbelief of a rule by using all the daihsetexceptthe one from which the rule was dis-
covered. More precisely, let D’ be the multi-sedggpibly containing duplicates) of examples consist-

ing of all examples that belong to any data subd#gérent from D, which is the data subset from
which the rule was discovered. Ther |C’ & A|p) / |Alpy), where |C’ & A is the number of train-
ing examples in D’ having class different from Qlasatisfying all conditions in A, and |4 is the
number of training examples in D’ satisfying alhditions in A. In other words, the degree of disbe-
lief of a rule is essentially the number of exarsplecorrectly classified by the rule in D’ dividéy
the total number of examples covered by the rul®’in

It should be noted that, although the computation uses data frorl — 1 data subsets, there is no
need to move such a large amount of data amondgjstrébuted sites. The only thing that needs to be
moved among the distributed sites are summarizgtits. More precisely, in order to compute
for each rule, each site just has to compute twobmus — the number of examples incorrectly classi-
fied by the rule and number of examples coverethbyrule in its local data subset — and send those
two numbers to the site storing the rule, whichpdymadds up the results to compute |C’ &Alnd
|Alpy. All the N — 1 sites (i.e., the sites different from the stwring the rule) can do this in parallel,
and this activity can also be done in parallel with computation ofi in the site storing the rule.
Hence, the computation of the belief and disbaliefrees for each rule is entirely distributed and
parallel, and it involves just a minor amount ofta communication” among the distributed sites.

4.2 Second Step: Identify Rules with the Same Antedent in Different Sites

This step is simple. Each data site sends its @é&sed rules — witlp andv computed as in the pre-
vious step — to a coordinator site. The coordindfeides the entire rule set ingroups of rules, in
such a way that each group contains all the ruiéstihhe same antecedent. Hence, the number of rules
in each group varies from 1 to N (the number ofdatbsets), assuming that at most one rule with a
given antecedent can be discovered from each éata & very natural assumption in the classifica-
tion task.

4.3 Merging the Rules within Each Group into a Sinfg Rule

In this step the rules within each group of rulasrfed in the previous step are merged into a single
rule. Of course, if a group contains just one rthere is no merging to be done, and the rule s co
sidered a discovered rule, without any modificatilfra group contains two or more rules, this step
uses the evidential paraconsistent logic 2vA-PLcepts that take into account the belief and disbe-
lief degrees of all rules within the group in ordermerge them into a single rule. To simplify our
discussion, suppose a group contains two rules arfuments below can be easily generalized to the
case with more than two rules within a group.

There are two cases to be considered: (i) the prledict the same class in their consequent, or (ii
the rules predict different classes in their consed In case (i) there is no inconsistency ingres
dictions of the rules, and the rule resulting frima “merging” — denoted by r — trivially contairfeet
same antecedent and consequent as the two rulgs ineirged. The only problem is to compute
andv for rule r, denotedh, andv,. There are two sub-cases to consider. Firsteiftého rules being
merged — denoted and s — have the same valuesofindv, the merged rule trivially has the same
values ofu andv, i.e., . = p1 = pe @ndv, = v; = vip. Second, if the rules have a different valuey of
or v, we need to compuig andv, as aggregated values |0f, w.,, Vi1, vi2, respectivelyln this work
we use the supreme operation of paraconsistert, lsgithaty, = maxfy,u2) andv, = maxf,i,vi),
wherep, W, Vi1, Vi are computed using the procedure described inIstigoibsection 4.1). Other
approaches to compute the aggregated valuasdv, will be explored in future research.

Consider case (ii), where clearly there is an is@iancy in the predictions of rulesand g, since
they have the same antecedent but predict differlasses. To cope with this inconsistency we use
the paraconsistent logic’s concepts of truth degrekdeterminacy degree, as explained in section 3.
More precisely, the system first computes ¥ (1 — Vi), the = (W2 — Vvi2), dety = 1 — i + va — 1],
and debt = 1 — Jy» + v — 1|. Then it computes a single measure of qué@iyfor each rule. This
measure favours rules with a larger truth degrekwveith a larger determinacy degree, being defined
as the product of these two degrees. That,iss @, * dety, Q. = tr, * det,. The motivation for this
guality measure is that we want to maximize bothttuth degree and the determinacy degree of a
rule. For instance, the ideal rule would have 1 andv = 0, which would result in tr = 1 and det = 1,
corresponding to the maximum possible value of Q.

Finally, the rule r resulting from the merging aoles f and g is defined as follows. First, r con-
tains the same antecedent aand (recall that these two rules always contain thmesantecedent,
as a result of the grouping process performedep 8). Second, if @> Q. then r contains the same
consequent ag,rand we make (x Q;. Otherwise r contains the same consequeny asd we make

Q= Qo.

4.4 Classifying Examples in the Test Set

Once the previous three steps have been perfottmedystem has produced a set of rules where
each rule has a different antecedent and eachisrakssigned a quality measure Q. We are now ready
to classify examples in the test set, which is doyesing a procedure which is commonplace in the
rule induction literature, as follows.

For each new test example, the system determieesilbs covering that example. If there is a sin-
gle rule covering that example, the example idgalti assigned to the class predicted by that rile.
there is no rule covering that example, it is syrgdsigned to the majority class — correspondirg to
“default rule”. Finally, if there are two or morales covering that example, it is classified by rile
with the largest value of the Q measure.

5 A “Proof-of-Concept” Computational Experiment

In order to evaluate the proposed method, we hav®mned a preliminary experiment with the
tic-tac-toe data set, a public domain data setimdtafrom the well-known UCI data repository
(http:// www.ics.uci.edu/~mlearn/MLRepository.htingind a simple simulation of a distributed envi-
ronment with two data subsets. We emphasize thstettperiment is intended to be a “proof-of-
concept” experiment. In order to effectively evadughe performance of the proposed method we
would need to use more data sets and preferatdytdat is really distributed in the real-world, wini
is left for future research. The tic-tac-toe dath contains 958 examples and 9 predictor attributes
corresponding to the 9 squares in a game of titelacThe class attribute indicates whether oranot
given position of the board is a win for a giveaydr. The data set was first randomly divided mto
training set and a test set, with 638 examples3#tdexamples, respectively. The training set was
then divided into two “local” training subsets wiBd9 instances each, to simulate a distributed-envi
ronment.

Recall that the method proposed in the previousasehas the goal of integrating the rule sets dis-
covered by different runs of a rule induction altfon (or even runs of different rule induction algo
rithms), in a post-processing phase. Hence, argyinduction algorithm could be used to discover
rules from each data subset, including decisiomitrduction algorithms — since a decision treelsan
directly converted into a set of rules. In this ware use the well-known PRISM rule induction algo-
rithm [4], more precisely the public-domain implemtation of this algorithm available from the
WEKA data mining tool [21].

After applying PRISM to each of the two trainingosats, the proposed paraconsistent logic-based
method was applied to post-process the two diseoveule sets, producing a global rule set which
was used to classify examples in the test set.cldssification error rate obtained in the testveas$
6.88%.

We also measured the classification error ratecéest®al with PRISM only, as a baseline method —
i.e., without using the proposed paraconsistenicibgsed post-processing method. This baseline
method consists of applying PRISM separately td eiggning subset and simply create a global rule
set with all discovered rules, ignoring inconsisiea between the two local rule sets. At a higlellev
of abstraction, the procedure used to classify @kasnn the test set is the same as the one uslked wi
the proposed post-processing method, as descmbsetion 4.4. One difference, at a lower level of
abstraction, is that the quality measure of thesul used to choose the “winner” rule when two or
more rules cover the test example — is differerthentwo methods. When using the proposed para-
consistent logic-based post-processing method quedity is given by the product of truth degree an
determinacy degree, as discussed earlier. Wheg tistnbaseline method, rule quality is given sim-

ply by the quality measure computed by the origtaISM algorithm. This baseline method obtained
an error rate of 7.41%.

To summarize, the use of the proposed paraconsiktgit-based method (applied as a post-
processing method to two local rule sets discovbseBRISM) led to a reduction of the error rate (by
comparison with the baseline use of PRISM) froml%40 6.88%, which can be considered a valid
“proof-of-concept” result.

It is also interesting to note that the baselinesiom of PRISM discovered 81 rules from the two
data subsets. When the two rule subsets were lthbgleur paraconsistent logic-based method, the
system detected that 10 out of those 81 were ist@ns$. This confirms that indeed inconsistentsule
arise when independently mining distributed datassts. Those 10 inconsistent rules were then post-
processed by our method, so that each pair of gistemt rules (with the same antecedent but predict
ing different classes, each rule in the pair confiogn a different data subset) was merged into a
single rule, as discussed earlier. This producghblaal set with 76 rules, which led to a reductidn
the error rate in the test set.

6 Discussion

This paper has proposed a paraconsistent logicbasthod for post-processing different rule
subsets discovered by a rule induction algorithna idistributed data mining scenario, in order to
produce a global rule set where rule inconsistanc@ve been properly handled. Although the origi-
nal motivation for developing the method was tdkkadhe problem of inconsistency in distributed
data mining, it turns out that it can also be agplio other scenarios where different rule sets are
discovered from different data subsets. In pariGut can be applied in some ensemble scenarios (a
popular scenario in the machine learning and datanliterature), as follows.

The basic idea of many ensemble methods consistsmophases. In the first phase the system
learnsN base-level rule subsets from the training sets Thin be achieved in several different ways
[8], [1]. For instance, one can riMdifferent rule induction algorithms on the traigiset, one can
use training set resampling to ledtnrule sets fronN different subsets of the training set, etc. In any
case, theN base-level rule subsets might contain inconsistelels, since they were independently
discovered from each local data subset. In thergbpbase the rules of the base-level rule subsets
have to be combined into a single rule set. Methodserform this second phase can be roughly di-
vided into two broad kinds of approach, namely apphes without meta-learning and approaches
with meta-learning.

A typical representative of the no-meta-learningrapch is plurality voting. A typical representa-
tive of the meta-learning approach is stacking, reteemeta-learning algorithm is applied to the pre-
dictions made by thé&l base-level classifiers (e.g., local rule subsétsprder to generate a meta-
classifier (e.g., a global rule set). In the cohtafixan ensemble of rule sets, the method proposed
this paper is directly applicable if no meta-leaghapproach is used. However, it is not very sietab
for the meta-learning approach, where inconsisésnici the predictions of the base-level rule sugbset
are already handled by the meta-learning algorithm.

To summarize, the proposed method has the advaafdggng quite generic. It can be applied to
virtually any data mining scenario where severdissts of classification rules have been independ-
ently discovered from different data subsets. Bsthscenarios a simple union of those rule subsets
would produce a global rule set prone to rule istgtencies. In order to solve this problem, the pro
posed method can be used to handle those rulesistemcies and produce a global inconsistency-
free rule set, using principles and concepts ofl@ial paraconsistent logic. This is a principled
approach, since this kind of logic was specificdiyveloped to handle inconsistency.

In addition, it should be noted that the proposedhwod is well suited for parallel processing be-
cause the most computationally expensive stepeoifrithod, the computation of the degrees of belief
and disbelief for each rule (section 4.1), is etyidistributed and parallel. The data subsets them
selves are never moved — only very summarizedsstainformation is moved among the distributed
sites. The other two steps of the method (secdoBsand 4.3) involve a central coordinator site, so
they cannot exploit parallelism across differentadsites, but this is not a serious problem because

these two steps are computationally fast. In palrdita mining (as in other parallel processindiapp
cations, for that matter) the most important thisi¢p parallelize the most computationally expeasiv
part of the algorithm [10], which is accomplishedtie proposed method.

The main limitation of this work is that the repmtcomputational results are still preliminary.
Hence, future research should involve more extensomputational experiments — with more data
sets and larger data sets. It would also be irtiege® investigate new ways of using paraconsisten
logic in data mining.

The method proposed in this paper is the firsingtteto apply paraconsistent logic to distributed
data mining, and so it offers many opportunitiesféother research in this area. We hope thatlit wi
generate enough interest in the data mining contyndai do this further research, which would
probably lead to more advanced paraconsistent-lmaged algorithms for data mining.

References

1. K. Ali. On the link between error correlationdaarror reduction in decision tree ensembles. Dept.
of Information and Computer Science, Technical Repb-38. University of California at Irvine,
CA, USA. 1995.

2. J.-Y. Beziau. What is paraconsistent logic? Dn:Batens, C. Mortensen, G. Priest, J.-P. Van
Bendegem (EdsHrontiers of Paraconsistent Logipp. 95-111. Baldock, Hertfordshire, UK : Re-
search Studies Press, 2000.

3. A. Celle and L. Bertossi. Querying inconsistelatabases: algorithms and implementation.
Computational Logic: Proc. 1st Int. Conf. (CL-200Q@ecture Notes in Artificial Intelligence
1861, pp. 942-956. Springer-Verlag, 2000.

4. J. Cendrowska. PRISM : an algorithm for induaingdular rulesinternational Journal of Man-
Machine Studies, 27pp. 349-370. 1987.

5. N.C.A. da Costa. On the theory of inconsistemtil systemsNotre Dame Journal of Formal
Logic, Vol. XV, No. 4pp. 497-510. Oct. 1974.

6. N.C.A. da Costa, J.M. Abe, J.I.S. Filho, A.C. mdlo, C.F.S. Leite.Logica paraconsistente
aplicada (In Portuguesesao Paulo, Brasil: Atlas, 1999.

7. W.W. Cohen, H. Kautz, and D. McAllester. Harawnsoft information sources. IRroc. 6th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Dataik (KDD-2000) pp. 255-259. ACM,
2000.

8. T. Dietterich. Machine learning: four currentetitions. Al Magazine 18(4)pp. 97-136. 1997.

9. F. Enembreck, B.C. Avila and R. Sabourin. Decidree-based paraconsistent learnifigc. XIX
Int. Conf. of the Chilean Computer Socigty, 43-52 IEEE Computer Society Press, 1999.

10. A.A. Freitas & S.H. LavingtorMining Very Large Databases with Parallel ProcesgsiKluwer,
1998.

11. D. Gamberger, N. Lavrac, and C. Groselj. Expents with noise filtering in a medical domain.
Proc. ICML-99 Morgan Kaufmann, 1999.

12. W. Hsu, M.L. Lee, B. Liu and T.W. Ling. Expldi@n mining in diabetic patients databases: find-
ings and conclusions. Iferoc. 6th ACM SIGKDD Int. Conf. on Knowledge Disagvand Data
Mining (KDD-2000) pp. 430-436. ACM, 2000.

13. H. Kargupta and P. Chan (Edédvances in Distributed and Parallel Knowledge Disery
AAAI/MIT, 2000.

14. A. Lazarevic and Z. Obradovic. The distribubsisting algorithm. InProc. 7th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data MinikdpD-2001) pp. 311-316. ACM, 2001.

15. R. Pairceir, S. McClean, B. Scotney. Discowdrynulti-level rules and exceptions from a distrib-
uted databaseProc. 6th ACM SIGKDD Int. Conf. on Knowledge Disegvand Data Mining
(KDD-2000) pp. 523-532. ACM, 2000.

16. S. Rice and J.F. Roddick. Lattice-structurecthaos, imperfect data and inductive queries. In:
Database and Expert Systems Applications (Proc. SEB00), LNCS 1873pp. 664-674.
Springer, 2000.

17. S. Sarawagi and A. Bhamidipaty. Interactiveugdidation using active learning. liroc. 8th
ACM SIGKDD Int. Conf. on Knowledge Discovery andeDidlining (KDD-2002) ACM, 2002.

18. S. Stolfo, A.L. Prodromidis, S. Tselepis, WeL®.W. Fan and P.K. Chan. JAM : Java agents for
meta-learning over distributed databagerec. 3rd Int. Conf. on Knowledge Discovery and &at
Mining (KDD-97) AAAI, 1997.

19. V.S. Subrahmanian. Towards a theory of evidérgasoning in logic programminigogic Collo-
quium’87 — The European Summer Meeting of the Aasmt for Symbolic Logic Granada,
Spain, July 1987.

20. R. Uthurusamy, U.M. Fayyad, S. Spangler. Legyrniseful rules from inconclusive data. In: G.
Piatetsky-Shapiro & W.J. Frawley (Ed&Khowledge Discovery in Databasgmp. 141-157. AAAI
Press/MIT Press, 1991.

21. I.H. Witten and E. Franlpata Mining: practical machine learning tools anechniques with
Java implementationsdorgan Kaufmann, 2000.

22. P. Wong. Inconsistency and preservatitopics in Atrtificial Intelligence (Proc. PRICAI-20)
LNAI 1866,pp. 50-60. Springer, 2000.

