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Abstract. This paper addresses the problem of inconsistent rule subsets in distributed 

data mining. In this scenario, N rule subsets are independently discovered from N different 
data subsets. This can result in inconsistent rules – i.e. rules with the same antecedent but 
different class predictions – across the N rule subsets. In order to handle these rule inconsis-
tencies, this paper proposes a paraconsistent logic-based method for post-processing differ-
ent rule subsets discovered by a rule induction algorithm in a distributed data mining sce-
nario. The proposed method produces a global inconsistency-free rule set by using princi-
ples and concepts of paraconsistent logic, a relatively novel kind of logic developed specifi-
cally for inconsistency handling.  

1   Introduction 
At present many computing environments are inherently distributed. Some typical examples are the 

world wide web and distributed databases. There are several driving forces for distributed databases 
[18], [15]. First, real-world applications often involve computational constrains, such as the fact that 
the database might be too large to be kept into a single site. Second, there might be legal constraints 
and/or privacy concerns that require the data to be distributed, rather than stored at a single site. 
Third, distributed databases can offer significantly better performance than centralized databases. 
Finally, data distribution can be a natural approach for a company whose business activities are inher-
ently decentralized.  

 Hence, it is important to develop data mining algorithms that can effectively mine distributed data 
[13], [10]. One of the challenges of distributed data mining is that two or more data items stored in 
different sites might be inconsistent with each other in the context of the data mining task being 
solved. For instance, suppose the target task is classification, the class attribute is the Credit of the 
customer, one site stores the tuple <Gender = male,  Salary = high, Loan = No, Credit = good> and 
another site the tuple <Gender = male,  Salary = high, Loan = No, Credit = bad>. These two tuples 
are inconsistent, because they have the same values for all predictor attributes but different values of 
the class attribute. In a distributed database scenario, the two main causes for this inconsistency are as 
follows. 

First, inconsistency can be caused by different attribute value definitions or, more generally, differ-
ences in the schema of the local data subsets. Continuing the previous example, it is possible that the 
two data sites have different definitions for the attribute value Salary = high. For instance, the first 
data site could contain data about customers based in London, whereas the second data site could data 
about customers located in a small English town where the salary tends to be much smaller than in 
London. Hence, the value of salary used as a threshold to determine a high salary would be different 
in the two local data sets.  

Second, even if the data sites have exactly the same database schema, there can still be data incon-
sistencies due to the fact that different data sites have different probability distributions. This is the 



case, for instance, when data is independently collected and stored in each data site by a largely inde-
pendent unit of a highly decentralized organization or group of organizations. 

In addition, there are also other possible causes of data inconsistency that are not specifically re-
lated to the scenario of distribute databases, but they can occur in either distributed or centralized 
databases. Some examples are the presence of noise and the problem of missing relevant attributes, as 
follows. In essence, noise refers to random errors in the data. Note that, although noise can lead to 
inconsistency, they are different problems. A data set can be noisy but inconsistency-free, or noise-
free but inconsistent. To illustrate the importance of this difference, the noise filtering method pro-
posed by Gamberger et al. [11] requires that the data be inconsistency free.  

The problem of missing relevant attributes, or inconclusive data [20], is characterized by the fact 
that the available predictor attributes are not enough to discriminate between the classes. This is a 
direct cause of data inconsistency, by definition. The relevance of this problem is clearly shown by 
this quote from Uthurusamy [20]: “After studying several diagnostic databases at General Motors, 
we are convinced that inconclusiveness [inconsistency] is a characteristic that rule induction algo-
rithms must be able to deal with if they are to have any practical application in industry.” 

Although some methods have been proposed to remove some kinds of data inconsistency in a pre-
processing step [12], [7], [17], this “data cleaning” approach for inconsistency removal might not be 
very cost-effective. This approach can be difficult, expensive and slow. In addition, this approach 
usually requires a considerable amount of human intervention. Actually, it is interesting to note that 
the database community has recently started to advocate a different approach for the problem of in-
consistency handling where, instead of removing inconsistency from the database, they keep the in-
consistent data in the database and modify the queries in such a way that they retrieve only consistent 
information [3], [16]. In any case, the data cleaning approach is intended to cope only with data in-
consistency arising from differences in database schema or related problems. In principle it cannot 
solve, for instance, the problem of inconsistencies in different data sets with exactly the same database 
schema but different probability distributions, which is an important problem in distributed data min-
ing. Finally, removing inconsistency in a pre-processing step might even be undesirable from a data 
mining point of view, since the presence of inconsistency can be a valuable clue for the user and can 
lead to interesting discoveries. As a simple example, inconsistencies in a taxpayer’s records can be 
very useful for detecting a possible fraud [22].  

To summarize, data inconsistency is a challenging problem in distributed data mining, and it is im-
portant to develop methods that can effectively solve this problem in a principled way. In this spirit, 
this paper proposes a paraconsistent logic-based method for handling inconsistency in distributed 
data mining.  

The knowledge representation used in this work consists of IF-THEN classification rules, where 
the antecedent (IF part) contains a conjunction of attribute-value pairs and the consequent (THEN 
part) contains the class predicted for an example (record or data item) that satisfies all the conditions 
in the rule antecedent. It is well-known that this representation has the advantage of being intuitively 
comprehensible for the user [21], which was our main motivation to use it in this work. 

In essence, the method proposed in this paper works as follows. First, a rule induction algorithm is 
applied to each of the local data subsets of a distributed data set, discovering a local rule set from 
each of those local data subsets. Then inconsistencies between rules of different local rule sets are 
handled. Two or more rules are said to be inconsistent if they have the same rule antecedent (IF part) 
but make different class predictions – i.e., have different rule consequents (THEN part). Inconsistent 
rules are handled by using concepts and principles of paraconsistent logic [5], [19], a relatively novel 
kind of logic specifically developed to cope with inconsistency. As a result, a global, inconsistency-
free rule set is produced, which can then be used to classify unseen examples in the test set.  

Therefore, the proposed method can be regarded as a method for post-processing different rule 
subsets discovered by a rule induction algorithm in a distributed data mining scenario, in order to 
produce a global inconsistency-free rule set. Although this was the original motivation for develop-
ment of the method, it turns out that it can also be applied to other data mining scenarios where differ-
ent rule sets are discovered from different data subsets, such as some ensemble scenarios, as will be 
discussed later. 



To the best of our knowledge, the only previous work using paraconsistent logic in data mining is 
the work of Enembreck et al. [9], which is very different from our work. Enembreck at al. have devel-
oped a paraconsistent version of a decision tree algorithm, with no mention of distributed data mining. 
In particular, their method for computing belief and disbelief degrees (terms to be defined later) is 
entirely different from ours, since they address a different kind of data mining problem. 

2   A Distributed Data mining Scenario 
The method for inconsistency handling proposed in this paper is based on a distributed data mining 

framework in which the different data sites have the same database schema but possibly different 
probability distributions. More precisely, this scenario can be described as follows.  

We are given N data sets, each of them with M predictor attributes and a class attribute. Each of 
the M attributes has the some domain in all the N data sets. The knowledge representation used in this 
work consists of IF-THEN classification rules, as mentioned in the Introduction.  

The distributed data is mined in two phases: a) generating a rule set for each local data set; and b) 
combining the multiple local rule sets into a single global rule set. This basic two-phase scenario is 
often used in the distributed data mining literature – see, e.g., [14] – and its basic idea is illustrated in 
Figure 1. 
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              Figure 1: generating a global rule set from N local data subsets 
 
We emphasize that each local prediction model is generated using only a subset of the entire data. 

Therefore, it is quite possible that the local models are somewhat inconsistent with each other. This 
can be due, for instance, to the fact that different data subsets have different probability distributions, 
as mentioned earlier.  

As mentioned earlier, the method proposed in this paper can be regarded as a post-processing 
method applied to the output of a distributed rule induction algorithm. That is, it generates a single 
global, inconsistency-free rule set out of the N local rule sets discovered by N runs of a rule induction 
algorithm – each run applied to a different data subset. The method will be described in section 4, 
after an overview of paraconsistent logic (in which the method is based) in section 3. 

3  An Overview of Paraconsistent Logic 
One definition of paraconsistent logic is as follows [5], [2]. A deductive system S is said to be in-

consistent if there is a formula a of S such that both a and its negation (¬a) are theorems of S. If all 
formulas of S are theorems then S is said to be trivial, otherwise it is said to be non-trivial. In classical 
logic S is trivial if and only if it is inconsistent. A paraconsistent logic is a logic where S is inconsis-
tent and non-trivial. A paraconsistent logic can also be defined as one that rejects the principle of ex-
contradiction sequitur quod libet (EC) – i.e., “from a contradiction, everything follows”. This princi-



ple can be formalized as follows: “For any theory T, formulas a, b: T, a, ¬a ├ b. Hence, a logic is 
paraconsistent if and only if there exists a theory T and formulas a, b such that b cannot be proved 
from T, a, ¬a.  

In general, paraconsistent logics are useful because they allows us to restrict the effects of inconsis-
tency in a deductive system S. Intuitively, the EC principle (which is followed by classic logic) is 
undesirable in many practical data mining situations. As a simple example, suppose that for each 
patient in a hospital database we have one or more sources of evidence for diagnosing whether or not 
the patient has a given disease. It is possible that all the evidence about a given patient p1 suggests that 
p1 does not have the disease, whereas we have contradictory evidence about patient p2 – i.e., one 
evidence suggests it has the disease, whilst another evidence suggests the opposite. Intuitively, since 
the contradiction involves only p2, this contradiction should not affect our conclusion that p1 does not 
have the disease. However, the EC principle would allows us to conclude the opposite as well, which 
is undesirable. By rejecting that principle a paraconsistent logic would allow us to conclude only that 
p1 does not have the disease, and not the opposite.  

Among the many paraconsistent logics proposed in the literature, this work is based on evidential 
paraconsistent logic with a two-valued annotation [19], [6], hereafter denoted 2vA-PL. The basic idea 
is that each proposition p is associated with a two-valued annotation <µ, ν>, where µ is the degree of 
belief in the proposition p and ν is the degree of disbelief in p. Both µ and ν take on values in the 
range [0..1]. In other words, µ and ν are interpreted as the (normalized) amount of evidence for and 
evidence against p, respectively.  

One motivation for choosing this kind of paraconsistent logic in this work is its evidential reason-
ing interpretation, which is intuitively desirable in a data mining context. Belief is different from truth, 
and the classification task of data mining (addressed in this paper) essentially involves induction from 
data, where the degree of belief in a rule should be proportional to the available evidence – corre-
sponding to the data being mined. In addition, the use of this kind of paraconsistent logic seems suit-
able for distributed data mining. As discussed earlier, in distributed data mining it is quite possible 
that local rule sets – each one discovered from a different local data subset – are somewhat inconsis-
tent with each other. Hence, a given rule can have a high belief degree with respect to the data subset 
where it was discovered from but at the same time a high disbelief degree with respect to other data 
subsets (since the latter can, for instance, have a probability distribution quite different from the for-
mer).  
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Figure 2: Two-valued annotation of a proposition represented in a Cartesian plan 

 
We emphasize that, unlike probability theory, in 2vA-PL there is no requirement that µ + ν = 1. 

Actually, in 2vA-PL the belief and disbelief degrees are independent from each other, that is, µ and ν 
are computed from different sources of evidence – different data subsets, in the case of distributed 
data mining. Hence, the two-valued annotation of a proposition can be represented as a point in the 
Cartesian plan shown in Figure 2, with the belief degree represented as the horizontal axis and the 
disbelief degree represented as the vertical axis. 

The point at coordinates <1,0> (i.e., µ =1, ν = 0) represents the case where we have total belief in 
the truth of the proposition, and the point at coordinates <0,1> represents the case where we have total 



disbelief in the truth (or, equivalently, total belief in the falsity) of the proposition. Intuitively, these 
two points correspond to the truth degrees true and false of classic logic, respectively. The point at 
coordinates <1,1> represents the case where one source of evidence leads us to have a total belief in 
the truth of the proposition, whereas another source of evidence leads us to have a total belief in its 
falsity. Hence, we have maximum inconsistency between the two sources of evidence. Finally, the 
point at coordinates <0,0> represents the case where there is no evidence for nor against the proposi-
tion. Hence, we have a situation of maximum indeterminacy.  

Note that in Figure 2 there is a dashed diagonal line linking the point at coordinates <0,1> to the 
point at coordinates <1,0>. This line is called the “perfectly-determined” line. All points belonging to 
this line have an interesting property: they satisfy the equation µ + ν = 1. Points “above” this line 
satisfy the inequality µ + ν > 1, and they represent propositions that are “over-determined”. By con-
trast, points below the perfectly-determined line satisfy the inequality µ + ν < 1, and they represent 
propositions that are “under-determined”. The degree of over-determinacy or under-determinacy of a 
proposition can be precisely quantified by computing its degree of indeterminacy, denoted by ind, as 
follows: ind = |µ + ν – 1|, where |x| denotes the absolute value of x. Note that ind varies in the range 
[0..1]. The larger the value of ind, the larger the degree of indeterminacy. The measure of indetermi-
nacy is interpreted either as a measure of over-determinacy, if µ + ν > 1, or as a measure of under-
determinacy, if µ + ν < 1. The method proposed in this paper, described in the next section, uses the 
complement of ind, called the degree of determinacy (det), defined as det = 1 – ind. Another concept 
of 2vA-PL used by the method proposed in this paper is the truth degree of a proposition, denoted tr, 
which is defined as tr = µ - ν, that is, the belief degree minus the disbelief degree. Hence, tr varies in 
the range [-1..1]. Of course, the closer the value of tr is to 1, the more we believe the proposition is 
true, and the closer the value of tr is to -1, the more we believe the proposition is false.   

4 A Paraconsistent Logic-based Method for Handling Inconsistency in 
Distributed Rule Sets 

As mentioned earlier, in the context of this paper distributed data is mined in two phases: a) gener-
ating a rule set for each local data set; and b) combining the multiple local rule sets into a single 
global rule set. The proposed method was designed for performing the second phase. Hence, it ac-
cepts, as input, a set of N rule sets –  one for each of the N data sets – which have been discovered by 
a classification algorithm.  

At a high level of abstraction, the method consists of 3 steps, as follows. First, it computes the de-
gree of belief and disbelief for each rule of each rule set. Second, it detects rules from two or more 
different rule sets which have the same antecedent, putting them into the same group. Third, it merges 
the rules within each group into a single rule. These steps are now described in more detail. 
 
4.1 First Step: Computing a Rule’s Degree of Belief and Disbelief 

The degree of belief of each rule is simply the confidence factor of that rule, which is essentially 
the number of examples correctly classified by the rule divided by the total number of examples cov-
ered by the rule. More precisely, let µ be the degree of belief of a given rule discovered from a data 
subset D, C be the class predicted by the rule, and A be the rule antecedent (a conjunction of condi-
tions). Then µ = |C & A|(D) / |A|(D), where |C & A|(D) is the number of training examples in D having 
class C and satisfying all conditions in A, and |A|(D) is the number of training examples in D satisfying 
all conditions in A.  

Note that the degree of belief of a rule is computed by using only the local data subset from which 
the rule was discovered. At first glance the degree of disbelief, denoted by ν, could be defined as the 
complement of the degree of belief, i.e., ν = 1 – µ. However, this would be wrong. Recall that in evi-
dential paraconsistent logic 2vA-PL the degrees of belief and disbelief must be independent from each 
other. In other words, the degree of disbelief must be computed from a different data source than the 
degree of belief, which corresponds to using a different kind of evidence. Therefore, we compute the 
degree of disbelief of a rule by using all the data subsets except the one from which the rule was dis-
covered. More precisely, let D’ be the multi-set (possibly containing duplicates) of examples consist-



ing of all examples that belong to any data subset different from D, which is the data subset from 
which the rule was discovered. Then ν = |C’ & A|(D’) / |A|(D’), where |C’ & A|(D’) is the number of train-
ing examples in D’ having class different from C and satisfying all conditions in A, and |A|(D’) is the 
number of training examples in D’ satisfying all conditions in A. In other words, the degree of disbe-
lief of a rule is essentially the number of examples incorrectly classified by the rule in D’ divided by 
the total number of examples covered by the rule in D’. 

It should be noted that, although the computation of ν uses data from N – 1 data subsets, there is no 
need to move such a large amount of data among the distributed sites. The only thing that needs to be 
moved among the distributed sites are summarized statistics. More precisely, in order to compute ν 
for each rule, each site just has to compute two numbers – the number of examples incorrectly classi-
fied by the rule and number of examples covered by the rule in its local data subset – and send those 
two numbers to the site storing the rule, which simply adds up the results to compute |C’ & A|(D’) and 
|A|(D’). All the N – 1 sites (i.e., the sites different from the one storing the rule) can do this in parallel, 
and this activity can also be done in parallel with the computation of µ in the site storing the rule. 
Hence, the computation of the belief and disbelief degrees for each rule is entirely distributed and 
parallel, and it involves just a minor amount of “data communication” among the distributed sites.  
 
4.2 Second Step: Identify Rules with the Same Antecedent in Different Sites 

This step is simple. Each data site sends its discovered rules – with µ and ν computed as in the pre-
vious step – to a coordinator site. The coordinator divides the entire rule set into groups of rules, in 
such a way that each group contains all the rules with the same antecedent. Hence, the number of rules 
in each group varies from 1 to N (the number of data subsets), assuming that at most one rule with a 
given antecedent can be discovered from each data set – a very natural assumption in the classifica-
tion task. 
 
4.3 Merging the Rules within Each Group into a Single Rule   

In this step the rules within each group of rules formed in the previous step are merged into a single 
rule. Of course, if a group contains just one rule, there is no merging to be done, and the rule is con-
sidered a discovered rule, without any modification. If a group contains two or more rules, this step 
uses the evidential paraconsistent logic 2vA-PL concepts that take into account the belief and disbe-
lief degrees of all rules within the group in order to merge them into a single rule. To simplify our 
discussion, suppose a group contains two rules – the arguments below can be easily generalized to the 
case with more than two rules within a group. 

There are two cases to be considered: (i) the rules predict the same class in their consequent, or (ii) 
the rules predict different classes in their consequent. In case (i) there is no inconsistency in the pre-
dictions of the rules, and the rule resulting from the “merging” – denoted by r – trivially contains the 
same antecedent and consequent as the two rules being merged. The only problem is to compute µ 
and ν for rule r, denoted µr and νr. There are two sub-cases to consider. First, if the two rules being 
merged – denoted r1 and r2 – have the same values of µ and ν, the merged rule trivially has the same 
values of µ and ν, i.e., µr = µr1 = µr2 and νr = νr1 = νr2. Second, if the rules have a different value of µ 
or ν, we need to compute µr and νr as aggregated values of µr1, µr2, νr1, νr2, respectively. In this work 
we use the supreme operation of paraconsistent logic, so that µr = max(µr1,µr2) and νr = max(νr1,νr2), 
where µr1, µr2, νr1, νr2 are computed using the procedure described in step 1 (subsection 4.1). Other 
approaches to compute the aggregated values µr and νr will be explored in future research.  

Consider case (ii), where clearly there is an inconsistency in the predictions of rules r1 and r2, since 
they have the same antecedent but predict different classes. To cope with this inconsistency we use 
the paraconsistent logic’s concepts of truth degree and determinacy degree, as explained in section 3. 
More precisely, the system first computes trr1 = (µr1 – νr1), trr2 = (µr2 – νr2), detr1 = 1 – |µr1 + νr1 – 1|, 
and detr2 = 1 – |µr2 + νr2 – 1|. Then it computes a single measure of quality (Q) for each rule. This 
measure favours rules with a larger truth degree and with a larger determinacy degree, being defined 
as the product of these two degrees. That is, Qr1 = trr1 * detr1, Qr2 = trr2 * detr2. The motivation for this 
quality measure is that we want to maximize both the truth degree and the determinacy degree of a 
rule. For instance, the ideal rule would have µ = 1 and ν = 0, which would result in tr = 1 and det = 1, 
corresponding to the maximum possible value of Q.  



Finally, the rule r resulting from the merging of rules r1 and r2 is defined as follows. First, r con-
tains the same antecedent as r1 and r2 (recall that these two rules always contain the same antecedent, 
as a result of the grouping process performed in step 2). Second, if Qr1 > Qr2 then r contains the same 
consequent as r1, and we make Qr = Qr1. Otherwise r contains the same consequent as r2, and we make 
Qr = Qr2. 
 
4.4 Classifying Examples in the Test Set 

Once the previous three steps have been performed, the system has produced a set of rules where 
each rule has a different antecedent and each rule is assigned a quality measure Q. We are now ready 
to classify examples in the test set, which is done by using a procedure which is commonplace in the 
rule induction literature, as follows. 

For each new test example, the system determines the rules covering that example. If there is a sin-
gle rule covering that example, the example is trivially assigned to the class predicted by that rule. If 
there is no rule covering that example, it is simply assigned to the majority class – corresponding to a 
“default rule”. Finally, if there are two or more rules covering that example, it is classified by the rule 
with the largest value of the Q measure. 

5   A “Proof-of-Concept” Computational Experiment 
In order to evaluate the proposed method, we have performed a preliminary experiment with the 

tic-tac-toe data set, a public domain data set obtained from the well-known UCI data repository 
(http:// www.ics.uci.edu/~mlearn/MLRepository.html), and a simple simulation of a distributed envi-
ronment with two data subsets. We emphasize that this experiment is intended to be a “proof-of-
concept” experiment. In order to effectively evaluate the performance of the proposed method we 
would need to use more data sets and preferably data that is really distributed in the real-world, which 
is left for future research. The tic-tac-toe data set contains 958 examples and 9 predictor attributes, 
corresponding to the 9 squares in a game of tic-tac-toe. The class attribute indicates whether or not a 
given position of the board is a win for a given player. The data set was first randomly divided into a 
training set and a test set, with 638 examples and 320 examples, respectively. The training set was 
then divided into two “local” training subsets with 319 instances each, to simulate a distributed envi-
ronment. 

Recall that the method proposed in the previous section has the goal of integrating the rule sets dis-
covered by different runs of a rule induction algorithm (or even runs of different rule induction algo-
rithms), in a post-processing phase. Hence, any rule induction algorithm could be used to discover 
rules from each data subset, including decision tree induction algorithms – since a decision tree can be 
directly converted into a set of rules. In this work we use the well-known PRISM rule induction algo-
rithm [4], more precisely the public-domain implementation of this algorithm available from the 
WEKA data mining tool [21]. 

After applying PRISM to each of the two training subsets, the proposed paraconsistent logic-based 
method was applied to post-process the two discovered rule sets, producing a global rule set which 
was used to classify examples in the test set. The classification error rate obtained in the test set was 
6.88%.  

We also measured the classification error rate associated with PRISM only, as a baseline method – 
i.e., without using the proposed paraconsistent logic-based post-processing method. This baseline 
method consists of applying PRISM separately to each training subset and simply create a global rule 
set with all discovered rules, ignoring inconsistencies between the two local rule sets. At a high level 
of abstraction, the procedure used to classify examples in the test set is the same as the one used with 
the proposed post-processing method, as described in section 4.4. One difference, at a lower level of 
abstraction, is that the quality measure of the rules – used to choose the “winner” rule when two or 
more rules cover the test example – is different in the two methods. When using the proposed para-
consistent logic-based post-processing method, rule quality is given by the product of truth degree and 
determinacy degree, as discussed earlier. When using the baseline method, rule quality is given sim-



ply by the quality measure computed by the original PRISM algorithm. This baseline method obtained 
an error rate of 7.41%.  

To summarize, the use of the proposed paraconsistent logic-based method (applied as a post-
processing method to two local rule sets discovered by PRISM) led to a reduction of the error rate (by 
comparison with the baseline use of PRISM) from 7.41% to 6.88%, which can be considered a valid 
“proof-of-concept” result. 

It is also interesting to note that the baseline version of PRISM discovered 81 rules from the two 
data subsets. When the two rule subsets were handled by our paraconsistent logic-based method, the 
system detected that 10 out of those 81 were inconsistent. This confirms that indeed inconsistent rules 
arise when independently mining distributed data subsets. Those 10 inconsistent rules were then post-
processed by our method, so that each pair of inconsistent rules (with the same antecedent but predict-
ing different classes, each rule in the pair coming from a different data subset) was merged into a 
single rule, as discussed earlier. This produced a global set with 76 rules, which led to a reduction of 
the error rate in the test set. 

6  Discussion 
This paper has proposed a paraconsistent logic-based method for post-processing different rule 

subsets discovered by a rule induction algorithm in a distributed data mining scenario, in order to 
produce a global rule set where rule inconsistencies have been properly handled. Although the origi-
nal motivation for developing the method was to tackle the problem of inconsistency in distributed 
data mining, it turns out that it can also be applied to other scenarios where different rule sets are 
discovered from different data subsets. In particular, it can be applied in some ensemble scenarios (a 
popular scenario in the machine learning and data mining literature), as follows.  

The basic idea of many ensemble methods consists of two phases. In the first phase the system 
learns N base-level rule subsets from the training set. This can be achieved in several different ways 
[8], [1]. For instance, one can run N different rule induction algorithms on the training set, one can 
use training set resampling to learn N rule sets from N different subsets of the training set, etc. In any 
case, the N base-level rule subsets might contain inconsistent rules, since they were independently 
discovered from each local data subset. In the second phase the rules of the base-level rule subsets 
have to be combined into a single rule set. Methods to perform this second phase can be roughly di-
vided into two broad kinds of approach, namely approaches without meta-learning and approaches 
with meta-learning.  

A typical representative of the no-meta-learning approach is plurality voting. A typical representa-
tive of the meta-learning approach is stacking, where a meta-learning algorithm is applied to the pre-
dictions made by the N base-level classifiers (e.g., local rule subsets), in order to generate a meta-
classifier (e.g., a global rule set). In the context of an ensemble of rule sets, the method proposed in 
this paper is directly applicable if no meta-learning approach is used. However, it is not very suitable 
for the meta-learning approach, where inconsistencies in the predictions of the base-level rule subsets 
are already handled by the meta-learning algorithm.  

To summarize, the proposed method has the advantage of being quite generic. It can be applied to 
virtually any data mining scenario where several subsets of classification rules have been independ-
ently discovered from different data subsets. In these scenarios a simple union of those rule subsets 
would produce a global rule set prone to rule inconsistencies. In order to solve this problem, the pro-
posed method can be used to handle those rule inconsistencies and produce a global inconsistency-
free rule set, using principles and concepts of evidential paraconsistent logic. This is a principled 
approach, since this kind of logic was specifically developed to handle inconsistency. 

In addition, it should be noted that the proposed method is well suited for parallel processing be-
cause the most computationally expensive step of the method, the computation of the degrees of belief 
and disbelief for each rule (section 4.1), is entirely distributed and parallel. The data subsets them-
selves are never moved – only very summarized statistic information is moved among the distributed 
sites. The other two steps of the method (sections 4.2 and 4.3) involve a central coordinator site, so 
they cannot exploit parallelism across different data sites, but this is not a serious problem because 



these two steps are computationally fast. In parallel data mining (as in other parallel processing appli-
cations, for that matter) the most important thing is to parallelize the most computationally expensive 
part of the algorithm [10], which is accomplished in the proposed method.   

The main limitation of this work is that the reported computational results are still preliminary. 
Hence, future research should involve more extensive computational experiments – with more data 
sets and larger data sets. It would also be interesting to investigate new ways of using paraconsistent 
logic in data mining. 

The method proposed in this paper is the first attempt to apply paraconsistent logic to distributed 
data mining, and so it offers many opportunities for further research in this area. We hope that it will 
generate enough interest in the data mining community to do this further research, which would 
probably lead to more advanced paraconsistent logic-based algorithms for data mining. 
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