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Abstract 

In data mining the quality of prediction rules basically involves three criteria: accuracy, comprehensible 
and interestingness. The majority of the rule induction literature focuses on discovering accurate, 
comprehensible rules. In this paper we also take these two criteria into account, but we go beyond them 
in the sense that we aim at discovering rules that are interesting (surprising) for the user. The search is 
performed by a distributed genetic algorithm (DGA) specifically designed for the discovery of 
interesting rules. DGAs constitute an interesting approach to tackle the premature convergence problem 
in evolutionary algorithms. In our approach the partition of the search space in semi-isolated 
subpopulations (demes) represents a subdivision of the task. We model the migration procedure of 
DGAs as an explicit means to promote cooperation among the demes.  The algorithm addresses the 
dependence modeling task of data mining, where different rules can predict different goal attributes. 
This task can be regarded as a generalization of the very well known classification task, where all rules 
predict the same goal attribute. This paper also compares the results of the DGA with the results of a 
single population genetic algorithm to discover interesting rules. 
 
 
1 Introduction 
In essence, data mining consists of extracting knowledge from data [Fayyad et al. 1996]. A well-known 
data mining task is classification, which consists of predicting the class of an example (a record of a 
data set) out of a predefined set of classes, given the values of predictor attributes for that example 
[Hand 1997]. This paper addresses a kind of generalization of the classification task, called dependence 
modeling [Freitas 2000], where there are several goal attributes to be predicted, rather than just one 
goal attribute. In this context, we address the discovery of prediction rules of the form: 
 

IF some conditions on the values of predictor attributes are true 
THEN predict a value for some goal attribute. 

 
In our approach for dependence modeling the user specifies a small set of potential goal attributes, 

which she/he is interested in predicting. Although we allow more than one goal attribute, each 
prediction rule has a single goal attribute in its consequent (THEN part). However, different rules can 
have different goal attributes in their consequent.  

In principle, the prediction rules discovered by a data mining algorithm should satisfy three 
properties, namely: predictive accuracy, comprehensibility and interestingness [Freitas 2002]. In this 
paper we propose a distributed-population genetic algorithm (GA) designed to discover a few rules that 
are both interesting and accurate. Both these criteria are included in the fitness function of the GA. In 
addition, designating, as the output of the GA, a small set of rules, which can be thought of as 
“knowledge nuggets” extracted from the data, facilitates the discovery of comprehensible knowledge.  

Discovered knowledge should also be comprehensible to the user. Assuming that the output of the 
data mining algorithm will be used to support a decision ultimately made by a human being, knowledge 
comprehensibility is an important requirement [Spiegelhalter et al. 1994]. Knowledge represented as 
high-level rules, as in the above-mentioned IF-THEN format, has the advantage of being closely related 
to natural language. Therefore, the output of rule discovery algorithms tends to be more 
comprehensible than the output of other kinds of algorithms, such as neural networks and various 
statistical algorithms.  



Discovered knowledge should also be interesting to the user. Among the three above-mentioned 
desirable properties of discovered knowledge, interestingness seems to be the most difficult one to be 
quantified and to be achieved. By “interesting” we mean that discovered knowledge should be novel or 
surprising to the user. We emphasize that the notion of interestingness goes beyond the notions of 
predictive accuracy and comprehensibility. Discovered knowledge may be highly accurate and 
comprehensible, but it is uninteresting if it states the obvious or some pattern that was previously 
known by the user. A very simple, classical example shows the point. Suppose one has a medical 
database containing data about a hospital’s patients. A data mining algorithm could discover the 
following rule from such a database: IF (patient is pregnant) THEN (patient is female). This rule has a 
very high predictive accuracy and it is very comprehensible. However, it is uninteresting, since it states 
an obvious, previously known pattern. 

 
 

2 GA-Nuggets 
In our previous work we have introduced a GA for dependence modeling, called GA-Nuggets [Noda et 
al. 1999]. This GA maintains a single, centralized population of individuals. In this paper we propose a 
major extension of that GA. It maintains a distributed population, consisting of several subpopulations, 
each of them evolving in an independent manner, with occasional migration between them. Subsection 
2.1 briefly reviews the main aspects of GA-Nuggets (see [Noda et al. 1999] for details), whereas the 
new distributed-population scheme is described in subsection 2.2. For am overview of distributed GAs 
in general the reader is referred to [Herrera et al. 1999] and [Cantú-Paz 2000]. 

 
2.1 Single-Population GA-Nuggets 
Each individual represents a candidate prediction rule of the form: IF Ant THEN Cons, where Ant is the 
rule antecedent and Cons is the rule consequent. Ant consists of a conjunction of conditions, where 
each condition is an attribute-value pair of the form Ai = Vij, where Ai is the i-th attribute and Vij is the j-
th value of the domain of Ai. An individual is encoded as a fixed-length string containing z genes (see 
figure 1), where z is the number of attributes (considering both predictor and goal attributes). Only a 
subset of the attribute values encoded in the genome will be decoded into attribute values occurring in 
the rule antecedent. Therefore, although the genome length is fixed, its decoding mechanism effectively 
represents a variable-length rule antecedent. 
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   Figure 1: Individual representation 

 
Once the rule antecedent is formed, the algorithm chooses the best consequent for each rule in such a 
way that maximizes the fitness of an individual (candidate rule). In effect, this approach gives the 
algorithm some knowledge of the data-mining task being solved. This approach can also be seen as an 
efficient way of implementing a genetic search for rules. For a given rule antecedent, with a single scan 
of the training set the system is actually evaluating several different candidate rules and choosing the 
best one. Therefore, the bottleneck of fitness evaluation – viz., scanning the training set – is performed 
just once in order to evaluate multiple candidate rules.  

The fitness function consists of two parts. The first one measures the degree of interestingness of 
the rule, while the second measures its predictive accuracy. The degree of interestingness of a rule, in 
turn, consists of two terms. One of them refers to the antecedent of the rule and the other to the 
consequent. 

 The degree of interestingness of the rule antecedent (AntInt) is calculated by an information-
theoretical measure [Freitas 1998]. In formula [1], n is the number of attributes occurring in the rule 
antecedent and |Dom(Gk)| is the domain cardinality (i.e. the number of possible values) of the goal 
attribute Gk occurring in the consequent. The log term is included in formula [1] to normalize the value 
of AntInt, so that this measure takes on a value between 0 and 1. 

The computation of the rule consequent’s degree of interestingness (ConsInt) is based on the idea 
that the prediction of a rare goal attribute value tends to be more interesting to the user than the 
prediction of a very common goal attribute value [Freitas 1999]. In formula [2] Pr (Gkl) is the prior 
probability (relative frequency) of the goal attribute value Gkl, and β is a user-specified parameter, 
empirically set to 2 in our experiments. The exponent 1/β in the equation [2] can be regarded as a way 
of reducing the influence of the rule consequent interestingness in the value of the fitness function. 

The computation of these two degrees of interestingness is described in detail in [Noda et al. 
1999]. The second part of the fitness function measures the predictive accuracy (PredAcc – formula 



[3]) of the rule. Where |A&C| is the number of examples that satisfy both the rule antecedent and the 
rule consequent, and |A| is the number of examples that satisfy only the rule antecedent. The term ½ is 
subtracted in the numerator of formula [6] to penalize rules covering few training examples – see 
[Quinlan 1987]. 

Formula [4] is the final fitness function. Where W1 and W2 are user-defined weights. In our 
experiment they are set to 1 and 2, respectively.  
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GA-Nuggets uses a well-known tournament selection method with tournament size 2. The algorithm 
uses uniform crossover extended with a “repair” procedure. After the standard crossover is done, the 
algorithm checks if any invalid individual was created. If so, a repair procedure is performed to 
produce valid-genotype individuals. The mutation operator randomly transforms the value of an 
attribute into another value belonging to the domain of that attribute.  

There are two operators, called condition-insertion and condition-removal operators, which control 
the size of the rules being evolved by randomly inserting/removing a condition into/from a rule 
antecedent. The probability of applying each of these operators depends on the current number of 
conditions in the rule antecedent. The larger the number of conditions in the current rules antecedent, 
the smaller the probability of applying the condition-insertion operator. 

 
2.2 Distributed-Population GA-Nuggets  
In this new version of GA-Nuggets, the entire population is divided into p subpopulations, where p is 
the number of goal attributes. In each subpopulation all individuals are associated with the same goal 
attribute. The individual representation of the distributed-population version of GA-Nuggets is similar 
to the individual representation of the single-population version of GA-Nuggets, described in 
subsection 2.1. The only difference is that the goal attribute is fixed for all individuals of the same 
subpopulation. Each subpopulation evolves independently from the others (except for some occasional 
migrations). 

One advantage of this distributed population approach, with a fixed goal attribute for each 
subpopulation, is to reduce the number of crossovers performed between individuals predicting 
different goal attributes. Since crossover is restricted to individuals of the same subpopulation, 
crossover swaps genetic material of two parents, which represent candidate rules predicting the same 
goal attribute. Note that this is not the case with single-population GA-Nuggets, where crossover can 
swap genetic material between parents representing rules predicting different goal attributes.  

Distributed-population GA-Nuggets has a migration procedure [ Cantú-Paz 2001] where, from time 
to time, an individual of a subpopulation is copied into another subpopulation. We have developed a 
migration procedure tailored for our prediction-rule discovery task, as follows. The subpopulations 
evolve in a synchronous manner, so that in each subpopulation the i-th generation is started only after 



the (i - 1)-th generation has been completed in all subpopulations, for i = 2, ..., g, where g is the number 
of generations (which is the same for all subpopulations).  

Migration takes place every m generations. Each subpopulation sends individuals to all the other 
subpopulations.  More precisely, in each subpopulation Si, i = 1,..., p, the migration procedure chooses 
(p - 1) individuals to be migrated. Each of those p -1 migrating individuals will be sent to a distinct 
subpopulation Sj, j = 1,..., p,  j ≠ i. The choice of the individuals to be migrated is driven by the fitness 
function, taking into account the fact that different subpopulations are associated with different goal 
attributes. In each subpopulation Si the migration procedure knows, for each individual, not only the 
actual value of its fitness in that subpopulation (called its home fitness), but also what would be the 
value of the fitness of that individual if it were placed in another subpopulation Sj, j = 1,..., p, j ≠ i, 
predicting a value of the j-th goal attribute. The latter is called the foreign fitness of the individual in 
subpopulation Sj. Subpopulation Si sends to subpopulation Sj a copy of the individual with maximum 
foreign fitness in Sj. 

On the other hand, each subpopulation Si, i = 1,..., p, receives p – 1 individuals, each coming from a 
different subpopulation Sj, j = 1,..., p, j ≠ i. Among these incoming p – 1 individuals, only one is 
accepted by subpopulation Si. The accepted individual is the one with the largest fitness value. This is 
equivalent to a tournament selection among the incoming individuals.  

The fitness function of distributed-population GA-Nuggets is the same as the fitness function of 
single-population GA-Nuggets, as defined by formula [1]. In distributed-population GA-Nuggets  
the application of the selection method and genetic operators is independently performed in each  
of the subpopulations. Each subpopulation uses the same selection method and genetic  
operators (described in subsection 2.1.3), which are applied only to the local individuals in that 
subpopulation. 

 
 

3 Computational Results and Discussion  
The data sets used to evaluate the previously described algorithms were obtained from the UCI 
repository of machine learning databases (http://www.ics.uci.edu/AI/Machine-Learning.html). The data 
sets used are Zoo, Car Evaluation, Auto Imports and Nursery. They are normally used for evaluating 
algorithms performing the classification task. In the absence of a specific benchmark data set for the 
dependence-modeling task, these data sets were chosen because they seem to contain more than one 
potential goal attribute. 

The zoo database contains 101 instances and 18 attributes. Each instance corresponds to an animal. 
In the preprocessing phase the attribute containing the name of the animal was removed, since this 
attribute has no generalization power.  The attributes in the zoo data set are all categorical. The 
attribute names are as follows: hair, feathers, eggs, milk, predator, toothed, domestic, backbone, fins, 
legs, tail, catsize, airborne, aquatic, breathes, venomous and type. Except type and legs, the attributes 
are Boolean.  In our experiments the set of potential goal attributes used was predator, domestic and 
type. Predator and domestic are Boolean attributes, whereas the type attribute can take on seven 
different values. The car evaluation dataset contains 1728 instances and 6 attributes. All attributes are 
categorical and there are no missing values. The attributes names are buying, maint, doors, persons, 
lug_boot, safety and car acceptability. The attributes buying and car acceptability were used as 
potential goal attributes. The auto-imports 85M dataset contains 205 instances and 26 categorical 
attributes. The attribute normalized-losses and 12 instances were removed because of missing values. 
The attributes symboling, body-style and price, with 7, 5, and 3 values, were chosen as goals. The 
nursery school data set contains 12960 instances and 9 attributes. The attributes are all categorical. The 
attribute names are as follows: parents, health, form, children, finance, housing, social, has_nurs and 
recommendation. In our experiments, the attributes used as potential goal attributes were finance, social 
and health. 

We emphasize that in our approach for dependence modeling we do not aim at classifying the 
whole test set. Rather, the goal is to discover a few interesting rules to be shown to a user. We can think 
of the discovered rules as the most valuable “knowledge nuggets” extracted from the data. These 
knowledge nuggets are valuable even if they do not cover the whole test set. In other words, the value 
of the discovered rules depends on their predictive accuracy on the part of the test set covered by those 
rules, but not on the test set as a whole. For each data set we have run a 10-fold cross-validation 
procedure [Hand 1997] to evaluate the quality of the rules discovered by two algorithms, namely: 
single-population GA-Nuggets (section 2.1), and distributed-population GA-Nuggets (section 2.2). The 
computational experiments measured both the predictive accuracy (accuracy rate in the test set) and the 
degree of interestingness of the rules discovered by the two algorithms.  
 



3.1 Predicative accuracy 
In this subsection, we compare the results, for all datasets, of the two versions of the GA, concerning 
the predictive accuracy issue. In Tables 1, 2, 3 and 4 the first column is the name of the goal attribute, 
followed by its possible values. Each row of these tables corresponds to a discovered rule whose 
consequent (THEN part) is defined by the combination of the goal attribute and value specified in the 
first two columns. The next columns contain, for each version of the GA, the coverage (number of 
examples satisfying the rule antecedent) and the predictive accuracy of the corresponding rule on the 
test set. The numbers after the “±” symbol denote standard deviations. 

Tables 1, 2, 3 and 4 show the results for the Zoo, Car Evaluation, Auto Imports and Nursery data 
sets, respectively. Considering the single-population GA as a baseline, in the last column of these tables 
the sign (+) indicates that the distributed-population GA significantly outperformed the baseline, 
whereas the sign (-) indicates the opposite, i.e., the baseline significantly outperformed the distributed-
population GA. The difference of predictive accuracy between the two versions of the GA was 
considered significant when the corresponding one-standard deviation intervals do not overlap each 
other.  

With respect to predictive accuracy distributed-population GA-Nuggets obtained somewhat better 
results than single-population GA-Nuggets. In only one case (in Table 4) the single-population GA-
Nuggets found rules with significantly higher predictive accuracy. Distributed GA-Nuggets 
significantly outperformed single-population GA in six cases (one case in Table 1, three cases in Table 
3, and two cases in Table 4).  
 

Table 1: Predictive Accuracy (%) in the Zoo data set 
GA Distrib. GA Goal Attrib. Attrib. 

Value Cov. Pred. Acc. Cov. Pred. Acc. 
False 4.4 50.5 ± 8.9  3.2  48.0 ± 8.2  Predator 
True 2.8 75.0 ± 11.2  2.4 84.0 ± 11.1  
False 5.2 97.1 ± 5.2  6.2 90.5 ± 4.4  Domestic 
True 0.8 0.0 ± 0.0  0.8 0.0 ± 0.0  

1 6.4 100.0 ± 0.0  6.4 100.0 ± 0.0  
2 3.6 100.0 ± 0.0  3.6 100.0 ± 0.0  
3 0.2 0.0 ± 0.0  1.1 95.0 ± 13.8 (+)  
4 2.2 100.0 ± 0.0  2.2 100.0 ± 0.0  
5 0.5 100.0 ± 0.0  0.8 100.0 ± 0.0  
6 1.1 90.0 ± 10.0  1.1 90.0 ± 10.0  

 
 
 

Type 

7 2.0 83.3 ± 10.2  2.0 85.0 ± 11.0  
 

Table 2: Predictive Accuracy (%) in the Car Evaluation data set 
GA Distrib. GA Goal Attrib. Attrib. 

Value Cov. Pred. Acc. Cov. Pred. Acc. 
V-high 1.2 60.0 ± 16.3 1.0 50.0 ± 16.7 
High 2.5 4.5 ± 3.0  2.2 7.5 ± 3.8  
Med 2.5 2.5 ± 2.5 2.3 5.0 ± 3.3  

 
Buying 

 
Low 2.3 100.0 ± 0.0  2.0 100.0 ± 0.0  

Unacc 10.4 100.0 ± 0.0 10.4 100.0 ± 0.0 
Acc 0.1 0.0 ± 0.0 0.0 0.0 ± 0.0 

Good 0.0 0.0 ± 0.0 0.1 0.0 ± 0.0 

 
 

Accept. 
V-good 0.0 0.0 ± 0.0 0.1 0.0 ± 0.0 

 
3.2 Degree of Interestingness 
The computational results with respect to the degree of interestingness of the discovered rules are 
reported in Tables 5, 6, 7 and 8, whose structure is similar to the structure of Tables 1, 2, 3, and 4. The 
main difference is that, instead of coverage and predictive accuracy results, Tables 5 to 8 contains 
columns reporting the degree of interestingness of the rule consequent (Cons. Int.) and the degree of 
interestingness of the rule antecedent, both expressed in %. Tables 5, 6, 7, and 8 report results for the 
Zoo, Car Evaluation, Auto Imports and Nursery data sets, respectively. Again, the single-population 
GA was considered as a baseline, and in the last column of these tables the sign (+) indicates that the 
distributed-population GA significantly outperformed the baseline, whereas the sign (-) indicates the 
opposite. 



With respect to the degree of interestingness of the discovered rules, distributed-population GA-
Nuggets obtained results considerably better than single-population GA-Nuggets. More precisely, the 
former significantly outperformed the latter in 22 out of 44 cases – considering all the discovered rules 
in all the four data sets – whereas the reverse was true in just five out of 44 cases. In the other cases the 
difference between the two algorithms was not statistically significant. 
 

Table 3: Predictive Accuracy (%) in the Auto Imports data set 
GA Distrib. GA Goal 

Attrib. 
Attrib. Value 

Cov. Pred. Acc. Cov. Pred. Acc. 
-3 0.0 0.0 ± 0.0  0.0 0.0 ± 0.0  
-2 0.0 0.0 ± 0.0  0.8 0.0 ± 0.0  
-1 1.2 55.0 ± 13.8  1.6 63.3 ± 14.4  
0 2.2 96.0 ± 2.7  2.0 98.0 ± 2.0  
1 1.7 70.0 ± 15.3  2.3 70.0 ± 10.2  
2 1.2 63.3 ± 14.4  1.3 90.0 ± 10.0 (+) 

 
 
 

Simb. 

3 1.2 70.0 ± 15.3  1.9 70.0 ± 12.6  
Hardtop 0.6 0.0 ± 0.0  0.4 0.0 ± 0.0  
Wagon 0.6 0.0 ± 0.0  1.6 13.3 ± 5.4 (+) 
Sedan 0.6 60.0 ± 16.3  2.1 82.5 ± 9.9 (+)  
Hatch 2.6 76.7 ± 6.7  2.8 71.7 ± 5.4  

 
 

Body 

Convert. 0.6 40.0 ± 16.3  1.0 25.0 ± 8.3 
Low 11.4  100.0 ± 0.0 13.4 100.0 ± 0.0  

Average 3.2 90.0 ± 4.1  3.7 81.7 ± 9.7  
 

Price 
High 1.4 72.5 ± 12.6 1.3 90.0 ± 10.0  

 
Table 4: Predictive Accuracy (%) in the Nursery data set 

GA Distrib. GA Goal 
Attrib. 

Attrib. Value 
Cov. Pred. Acc. Cov. Pred. Acc. 

Conv. 2.2 80.0 ± 13.3  3.4 100.0 ± 0.0(+)  
Finance Inconv. 3.4 100.0 ± 0.0  3.9 100.0 ± 0.0 

Non-prob 3.2 1.11 ± 1.1  2.2 0.0 ± 0.0  
Slightly prob 27.7 6.4 ± 4.3  2.0 0.0 ± 0.0 (-) 

 
Social 

Problem. 4.4 100.0 ± 0.0  10.2 100.0 ± 0.0  
Recomm. 0.0 0.0 ± 0.0  0.0 0.0 ± 0.0 
Priority 291.6 0.0 ± 0.0 0.2 0.0 ± 0.0  

Not recomm. 54.5 12.8 ± 9.8  15.8 41.8 ± 14.4(+)  
Spec priority 4.6 100.0 ± 0.0  10.0 100.0 ± 0.0  

 
 

Health 

Very recomm. 10.8 100.0 ± 0.0  8.6 100.0 ± 0.0  
 

Table 5: Interestingness (%) in Zoo data set 
Antecedent Interestingness Goal Attrib. Attrib. 

Value 
Cons. 
Int. GA Distrib. GA 

False 74.4  97.5 ± 0.4  95.9 ± 1.0 (-)  Predator 
True 66.8  94.9 ± 0.5  96.4 ± 0.4  (+) 
False 35.7 96.3 ± 0.5  96.9 ± 0.6  Domestic 
True 93.3  96.9 ± 0.7  97.9 ± 0.4  

1 77.1  94.7± 0.2  94.6 ± 0.1  
2 89.0  93.9 ± 0.3   93.9 ± 0.3  
3 97.5  93.2 ± 0.6   92.3 ± 0.2  (-) 
4 94.3  93.4 ± 0.2  94.7 ± 0.3 (+) 
5 97.9  94.3 ± 0.4  94.0 ± 0.3  
6 95.9  93.4 ± 0.3   92.4 ± 0.4 (-) 

 
 
 

Type 

7 94.9  95.3 ± 0.1  95.1 ± 0.2  
 
 
 



We have also observed that distributed-population GA-Nuggets has performed a more cost-effective 
search than single-population GA-Nuggets, in the sense that in general the former has obtained good 
solutions in earlier generations, by comparison with the latter. (Both versions of the GA had the same 
total population size, so that the comparison was fair.) Hence, overall, considering the results in the 
four data sets, distributed-population GA-Nuggets represents an improvement over single-population 
GA-Nuggets. 
 

Table 6: Interestingness (%) in Car Evaluation data set 
Antecedent Interestingness  Goal Attrib. Attrib. 

Value 
Cons. 
Int. GA Distrib. GA 

V-high 86.6 99.4 ± 0.0  99.4 ± 0.0  
High 86.6 99.4 ± 0.0  99.4 ± 0.0  
Med 86.6 99.3 ± 0.0  99.4 ± 0.0 (+)  

 
Buying 

 
Low 86.6 98.8 ± 0.0 99.0 ± 0.0(+) 

Unacc 54.7 96.5 ± 0.0  96.4 ± 0.0 (-) 
Acc 88.3 93.2 ± 0.0  93.3 ± 0.0 (+) 

Good 97.9 94.3 ± 0.0 94.3 ± 0.0 

 
 

Accept. 
V-good 98.1 94.3 ± 0.0 94.3 ± 0.0 

 
 

Table 7: Interestingness (%) in Auto Imports data set 
Antecedent Interestingness Goal 

Attrib. 
Attrib. 
Value 

Cons. Int. 
GA Distrib. GA 

-3 100.0 99.3 ± 0.1  100.0 ± 0.0 (+) 
-2 99.2 98.3 ± 0.1  99.0 ± 0.3 (+)  
-1 94.1 97.7 ± 0.1  97.8 ± 0.1 (+) 
0 82.1 97.7 ± 0.2  97.5 ± 0.1  
1 85.8 97.8 ± 0.2  97.9 ± 0.1  
2 91.6 97.4 ± 0.2  98.1 ± 0.1 (+)  

 
 
 

Simb. 

3 93.8 98.1 ± 0.1  98.7 ± 0.1(+)  
Hardtop 97.9 97.5 ± 0.3  98.3 ± 0.4 (+)  
Wagon 93.6 97.6 ± 0.2  98.1 ± 0.3  
Sedan 72.3 96.5 ± 0.5  97.8 ± 0.5 (+) 
Hatch 82.1 97.1 ± 0.3  97.5 ± 0.1  

 
 

Body 

Convert. 98.4 98.1 ± 0.2  98.6 ± 0.1 (+) 
Low 64.8 94.2 ± 0.5  96.8 ± 0.1 (+)  

Average 80.8 92.9 ± 0.9  95.1 ± 0.3 (+) 
 

Price 
High 96.3 90.8 ± 0.4  96.1 ± 0.2 (+)  

 
 

Table 8: Interestingness (%) in Nursery data set 
Antecedent Interestingness Goal 

Attrib. 
Attrib. Value Cons. Int.  

GA Distrib. GA 
Conv. 71.1 99.8 ± 0.0  99.9 ± 0.0 (+)  

Finance Inconv. 70.3 99.8 ± 0.0 99.9 ± 0.0 (+) 
Non-prob 81.7 99.7 ± 0.0  99.9 ± 0.0 (+) 

Slightly prob 81.6 99.8 ± 0.0 99.9 ± 0.0 (+) 
 

Social 
Problem. 81.6 99.7 ± 0.0 99.8 ± 0.0 (+) 
Recomm. 81.7 94.9 ± 0.0 94.9 ± 0.0  
Priority 99.9 99.7 ± 0.0  99.9 ± 0.0 (+) 

Not recomm. 98.7 96.3 ± 0.7  94.6 ± 0.4 (-) 
Spec priority 81.9 93.5 ± 0.3 93.4 ± 0.3 

 
 

Health 

Very recomm. 82.9 94.1 ± 0.3  94.3 ± 0.3  
 
 
 



4 Conclusion and future works 
  
In this paper we have presented two algorithms for discovering “knowledge nuggets” – rules that have 
both a good predictive accuracy and a good degree of interestingness. The algorithms were developed 
for discovering prediction rules in the dependence modeling task of data mining. This task can be 
regarded as a generalization of the very well known classification task.  

The algorithms presented in this paper are actually two different versions of a Genetic Algorithm 
(GA). One of these versions uses a single population of individuals, whereas the other version uses a 
distributed population of individuals. With the exception of this major difference, the other 
characteristics of the GA were kept the same, as much as possible, in the two versions, in order to allow 
us to compare the two versions in a manner as fair as possible.  

This comparison was performed across four public domain, real-world data sets. The computational 
experiments measured both the predictive accuracy (accuracy rate in the test set) and the degree of 
Interestingness of the rules discovered by the two algorithms.  

As discussed in section 3, overall the computational results indicate a somewhat better performance 
of the distributed approach, with respect to predictive accuracy. With respect to the degree of 
interestingness of the discovered rules, the distributed-population version of the GA obtained results 
considerably better than the single population algorithm.  

One direction for future research consists of developing a new version of the distributed-population 
GA where each subpopulation is associated with a goal attribute value, rather than with a goal attribute 
as in the current distributed version. It will be interesting to compare the performance of this future 
version with the performance of the current distributed version, in order to empirically determine the 
cost-effectiveness of these approaches. It would also be useful to extend the computational experiments 
reported in this paper to other data sets, and other migration policies to further validate the reported 
results.  
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