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Abstract

This paper discusses veral factors influencing the evaluation
of the degreeof interestingness of rules discovered by a data
mining algorithm. The main goals of this paper are: (1)
drawing attention to several fadors related to rule
interestingness that have been somewhat negleded in the
literature; (2) showing some ways of modifying rule
interestingnessmeasures to take these factors into acount; (3)
introducing a new criterion to meaure dtribute
surprisingness as a fador influencing the interestingness of

discovered rules.
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1 Introduction



A crucia asped of data mining is that the discovered knowledge should be somehow
interesting, where the term interestingness arguably has to do with surprisngness
(unexpededness, usefulnessand novelty [1].

Rule interestingness has bath an objedive (data-driven) and a subjedive (user-
driven) asped. This paper focus on the objedive asped of rule interestingness For a
discusson about subjedive aspeds of rule interestingness the reader is referred e.g. to
[2]. It should be noted that, in practice, bath oljective and subjective approaches ould
be used to select interesting rules. For ingance objedive approaches can be used as a
kind o first filter to seled potentialy interesting rules, while subjective approaches can
then be used as a final filter to seled truly interesting rules.

This paper is organized as follows. Sedion 2 presents a review of several rule
interestingness criteria. Sedion 3 presents a @se study on how a popuar rule
interestingnessmeasure can be extended to take into acoount several rule interestingness
criteriain an integrated, combined fashion. Sedion 4 introduces a new criterion for rule

interestingnessmeasures. Findly, sedion 5 summarizes and concludes the paper.

2 A Review of Rule I nterestingness Criteria

2.1 Rule Interestingness Principles

For the purposes of this paper, a dassfication rule is a knowledge representation of the
form A => B, where A is a conjunction of predicting attribute values and B is the
predicted class When evaluating the quality of arule, three @mmon factorsto be taken
into acoount are the @mverage, the mmpleteness and the mnfidence factor of the rule,
defined as follows. The coverage of the rule (i.e. the number of tuples stisfied by the
rule atecedent) is given by |A|. The rule's completeness (or proportion of tuples of the
target classcovered by therule) isgiven by |JA&B|/ |B|. The rule's confidence factor (or
predictive acauracy) isgiven by |A&B|/ |A|.

Piatetsky-Shapiro [3] has proposed three principles for rule interestingness (RI)



measures, as foll ows.

DRI =0if |A & B|=|A| B|/N.

2) Rl monotonicdly increases with |A& B| when other parameters arefixed.

3) RI monotonicdly deaeases with |A| or |B| when other parameters are fixed.

The firg principle says that the RI measure is zero if the antecedent and the
consequent of the rule are gatistically independent. The second and third principle have
a more subtle interpretation. Note that Piatetsky-Shapiro was careful to state these
principlesin terms of other parameters, which is a phrase general enoughto include any
other parameter that we @n think of. Let us assume for now that the rule parameters
referred to by these principles are the terms |A|, [B|, and JA&B|, which are the terms
explicitly used to state the principle. Note that thisis an implicit assumption in most of
the literature. However, we will revisit thisasaumption later in this sedion.

With the above assumption, principle 2 means that, for fixed |A| and fixed |B|, RI
monotonicdly increases with JA&B|. In terms of the above mentioned rule quality
factors, for fixed |A| and fixed |B|, the cnfidencefactor and the completenessof therule
monotonicdly increase with |A&B|, and the higher these factors the more interesting the
ruleis.

Principle 3 means that: (1) for fixed |A| and fixed |A&B| (which implies a fixed
coverage and a fixed confidence factor) RI monotonicdly deaeases with [B| - i.e. the
less complete, the less interesting the rule is; and (2) for fixed |B| and |A&B| (which
implies afixed rule mmpletenesg Rl monotonicdly deaeases with |A| - i.e. the greater
the cverage, the small er the @mnfidencefactor, and the lessinteresting theruleis.

Major & Mangano [4] have proposed a fourth principle for RI measures (which does
not foll ow from the first threeprinciples), namely:

4) RI monotonicdly increases with |A| (rule mverage), given a fixed confidence
factor greater than the baseline @mnfidencefactor (i.e. the prior probability of the dass.

In passng, we mention that Kamber & Shingha [5] have proposed a fifth principle



for rule interestingness but this principle is mainly oriented for characteristic rules,
which are beyond the scope of this paper.

It should ke noted that the above principles were designed mainly for considering the
widely-used rule quality factors of coverage, completeness and confidence factor.
Another widely-used rule quality factor is rule complexity. Although these factors are
indeed important when evaluating the qudity of arule, they are by no means the only
ones. In this paper we draw attention to five other factors related to rule quality and
particularly to rule interestingness These additiona factors are discussd in the next
subsedions.

Note that, in theory, Piatetsky-Shapiro’s principles gill apply to rule interestingness
measures considering these additional factors, as long as they remain fixed. (As
mentioned before, the principles were arefully defined with the expresson “fixed other
parameters’.) The problem is that, in practice these additiona factors do not remain
fixed. These additional factors will probably vary a grea deal acrossdifferent rules, and

this variation should be taken into account by the rule interestingnessmeasure.

2.2 Digunct Size

A rule set can be regarded as a disunction of rules, so that a given rule can be regarded
as adigunct. The size of a digunct (rule) is the number of tuples satisfied by the rule
antecedent, i.e. |A|.

Thus, small diguncts are rules whose number of covered tuplesis snall, according to
some spedfied criterion (e.g. a fixed threshold, or a more flexible aiterion). At first
glance it seams that small diguncts are undesirable, and indeed most data mining
algorithms have a bias favoring the discovery of large diguncts.

Unfortunately, however, prediction accuracy can be significantly reduced if al small
diguncts are discaded by the data mining algorithm, as $wown in [6]. This is a

particularly serious problem in domains where the small diguncts colledively match a



large percentage of the number of tuples belonging to a given class [7]. The main
problem isthat a small digunct can represent either atrue exception occurring in the data
or smply noise. In the former case the digunct should be maintained, but in the latter
case the digunct is error prone and should be discarded. Unfortunately, however, it is
very difficult to tell which isthe case, given only the data

Holte & al. [6] suggested that one remedy for the probem of small diguncts was to
evaluate these diguncts by using a bias different from the one used to evaluate large
diguncts. Hence, they proposed that small disuncts be evaluated by a maximum-
spedficity bias, in contrast with the maximum-generality bias (favoring the discovery of
more general rules —i.e. larger diguncts) used by most data mining algorithms. Ting [8]
further investigated this approach, by using an ingance-based leaner (as far as we can
go with the maximum-spedficity bias) to evaluate small diguncts.

From arule interestingness point of view, the leson is that small diguncts and large
diguncts should be evaluated in different ways —i.e. with different evaluation biases - by

arule interestingnessmeasure.

2.3 Thelmbalance of the Class Distribution

A classdigtribution isimbaanced if tuples belonging to ane dassare eéther much more
frequent or much rarer than tuples belonging to aher classes. To smplify our discusson,
let us consider the common case of two-classproblems.

Other things being equal, a problem where the two classes have the same relative
frequency (or prior probabiliti es) is more difficult than a problem where there is a grea
difference between the relative frequencies of the two classs. In the latter casg, it is
relatively easy to discover rules predicting the majority class but it is difficult to
discover rules predicting the minority class The smaller the relative frequency of the
minority class the more difficult it isto discover rules predicting it, and thus, intuitively,

the more interesting are the rules predicting the minority classand the lessinteresting are



the rules predicting the majority class This point if often ignored by data mining
algorithms.

Kononenko & Bratko [9] have proposed an information-theoretic measure for
evaluating the performance of a classfier by taking into acocount the problem of
imbalanced class digtributions, and their measure has some interesting properties.
However, their approach was designed to evaluate a tassfier as a whole - mainly to
compare the performance of different classfiers in the same domain or the performance
of a clasdfier in different problem domains - rather than to compare the interestingness
of different rules discovered by the same dassfier, which isthe focus of this paper.

Note that the problem of imbalanced classdistributions interacts with other problems
discussd in this paper. For ingance consider the interaction between the problem of
imbalanced class distributions and the problem of small diguncts. Let r; and r, be two
small diguncts (rules) of the same size (i.e. the same number of covered tuples), wherer;
predicts the minority class and r, predicts the majority class for a new tuple. Then r;
tends to have a much smaller prediction accuracy than r, [10].

Finally, note that using a rule interestingness measure which takes into account the
relative dass frequencies is not the only approach to cope with the problem of
imbalanced class distributions. For instance, another approach to address this problem
consists of sdectively removing tuples from the mgority class so that the dass
distribution becomes lessimbalanced [11]. In this paper however, we are interested only
in modifying the rule interestingness measure used by the algorithm, leaving the data

being mined intact.

2.4 Attribute Costs

Most rule interestingness measures consider the rule atecedent as a whole, without
paying attention to the individual attributes occurring in the rule atecelent. In this

sense, these measures are warse-grained. However, two rules with the same value of a



coarse-grained rule interestingness measure can have very different degrees of
interestingnessfor the user, depending on which attributes occur in the rule antecedent.

In this dion we mnsider one situation where the notion of attribute interestingness
iscrucial and isrelated to theisaue of attribute wsts. In sedion 4 we will propose a new
criterion to measure the interestingness of individual attributes occurring in a rule
antecalent.

In order to classfy a new tuple with a given rule, it is necessry to match the rule
conditions against the tuple's predicting attributes (i.e. attributes other than the class
one). Hence the agorithm must access the values of the new tuple€'s predicting
attributes. In some applicaion domains, different attributes might have very different
“costs’ to be accessed. The typical example is medicd diagnosis. For example, it is
trivia to determine the gender of the patient, but some health-related attributes can only
be determined by performing a very costly examination. In this case atribute msts must
be taken into acoount when evaluating arule. Continuing with our example, suppose that
the antecadent (“if part”) of adiscovered ruler, involves the result of an exam e, costing,
say, $200, while the antecalent of a discovered rule r, involves instead the result of
another exam &, costing, say, $20. All other things (including prediction accuracy) being
equal, we would rather use ruler, for diagnosis. In other words, the smaller the @st of
the dtributes occurring in the rule, the more interesting (the more useful, the lesscostly)
the rule is. Some data mining algorithms that take into acoount attribute wsts are

described in [12], [13], [14)].

2.5 Misclassification Costs

In some appli cation domains, different misclassfications might have very different costs.
For ingtance, in the domain of bank loans, the @st of erroneoudy denying aloan to a
goad client (who islikely to pay it back) is usually considerably smaller than the st of

erroneously granting a loan to a bad client (who is unlikely to pay it back). In this case



the data mining algorithm must be modified to take misclassfication costs into account
[15], [16], [17], [18]. This implies that the rule interestingness measure should take
misclasdfication costs into acocount. We will revisit the issue of misclassfication costs in
sedion 3.2.1.

We must make here a omment similar to the one made in the sedion on imbalanced
class digtributions. Using a rule interestingness measure which takes into account
misclassfication costs is not the only approach to cope with this problem. For instance
another approach to addressthis problem consists of adjusting the relative proportions of
each classin the data being mined. Once more in this paper, however, we are interested
only in modifying the rule interestingness measure used by the dgorithm, leaving the

data being mined intact.

2.6 Asymmetry in Classification Rules

It should ke noted that classfication is an asymmetric task with resped to the dtributes
in the database. Indeed, we want to dscover rules where the value of the predicting
attributes determine the value of the goal attribute, not viceversa. Hence intuitively a
rule interestingness measure should be asymmetric with resped to the rule anteceadent
and the rule mnsequent.

It is interesting to note that statistical measures of assciation, such as the popular X2
(chi-squared) measure, which is widely used in data mining systems, were not designed
for classfication tasks. Rather, they were designed for measuring the association (or
dependency) between two attributes in a symmetric way, i.e. none of the two rule terms
(antecadent and consequent) being analyzed is given spedal treament when computing
the x? value.

We note in passng that an additional problem associated with the use of statisticd
significancetestsin data mining, as pointed out by Glymour et d. [19], isthat these tests

were designed to evaluate a single hypothesis, whereas data mining algorithms typically



have to evaluate many alternative hypothesis.

3 A Case Study on the Applicability of Additional Rule

I nter estingness Factors

The above subsedions 2.2 through 2.6 have identified five factors that should be
involved in measuring the interestingness of a rule, but that have often been somewhat
ignored in the literature on rule interestingness We now discusshow these factors can be
applied to define arule interestingnessmeasure.

There ae several rule interestingness measures proposed in the literature. As a case
study, we will focus on one of the most popular ones, introduced by Piatetsky-Shapiro
[3] as the simplest measure satisfying the three principles discussed in subsedion 2.1.
Thismeasure, hereafter call ed PS(Piatetsky-Shapiro’s) measure, is defined as:

PS=|A&B|- [A|BIN. (1)

Theremaining o this sedion is divided into two parts. Sedion 3.1 dscusses how the
PSmeasure addresses the additional rule interestingnessfactors discussed in subsedions
2.2 through 2.6. Sedion 3.2 shows how this measure can be extended to better address

some of those rule interestingnessfactors.

3.1 Analyzing the PS Rule Interestingness M easure

We now discuss how the PS measure, given by formula (1), addresss the rule quality
factors of digunct size, imbalance of the dass didribution, attribute @sts,
misclassfication costs and the asymmetry of classfication rules.

Digunct sze - The PS measure takes into account the size of the digunct, since
formula (1) contains the term |A|. However, this measure treats small diguncts and large
diguncts in the same way, with the same bias, which is undesirable, as discussd in

sedion 2.2.



Imbalance of the Class Distribution - The PSmeasure takes into acocount the relative
frequency (prior probability) of the dasspredicted by therule, snceformula (1) contains
the term |B|. Other things being equal, the larger the value of |B|, the small er the value of
PS so that the PS measure has the desirable property of favoring rules that predict the
minority class

Attribute Costs - The PS measure does not take into account attribute csts, neither
any other measure of attribute interestingness Actually, this measure mnsiders the rule
antecedent as a whole only, without paying atention to individua attributes of the rule
antecalent.

Misclassification Cogts - The PS measure does not take into account misclassfication
costs.

Asymmetry of Classification Rules - The PS measure is ymmetric with resped to the
rule antecalent and the rule mnsequent. We mnsider this an undesirable property of this
measure, given the asymmetric nature of the dassfication task.

To summarize, out of the five factors influencing rule interestingness discussed in
subsedions 2.2 through 2.6, the PS measure takes into account only one of them

(imbalance of the dassdigribution).

3.2 Extending the PS Rule Interestingness M easure

To render our case study more mncrete, we will consider how to extend the PS rule
interestingnessmeasure in the context of a medicd diagnosis appli cation, where the goal
is to predict whether or not the patient has a given fatal disease. We will make the
redi stic assumption that our appli cation domain has two important characteristics, which
will influence our design of an extended PS measure, namely varying misclassfication
costs and varying attribute sts. The next two subsections will discuss these two

characteristics and how arule interestingnessmeasure can be extended to take them into



acoount.

3.2.1 Varying Misclassification Costs

Different misclassfication have different costs. The st of predicting that a patient does
not have a disease, while (s)hein reality does, is very high, sinceit can lead to the death
of the patient due to lack of proper treatment. On the other hand, the st of predicting
that a patient has a disease, whil e (s)he in redity does naot, is relatively small er — seealso
sedion 2.5. Hence, in our example application domain, the PSmeasure must be modified
to take misclassfication costs into acoount. A simple way of doing this is to multiply
formula (1) by a new term cdled MisclasCost, defined as the inverse of the sum of the
expeded misclassfication costs, as foll ows:

k
MisclasCost = 1/ = Prob(j)Cost(i,j), (2)
=1
where Proh(j) is the probabilit y that a tuple satisfied by the rule hastrue dassj, classi is
the dass predicted by the rule, Cost(i,j) is the mst of misclassfying a tuple with true
classj as classi, and k isthe number of classs.
Asauming atwo classproblem, anatural estimate for Prohb(j) would be
Prob(j) = [A&~BI/IAl, (3)
where ~B denotes the logical negation of the rule mnsequent B. One problem with
this estimate is that, if the rule cvers few tuples, this estimate is not reliable. In other
words, there is an interaction between therule interestingnesscriteria of misclassfication
costs and digunct size. Unfortunately, these aiteria ae usualy considered independently
from each other in the literature. In order to take into acoount the interaction between
these two criteria, the reliability of the above probability estimate can be improved by
using the Laplace @rredion [16], so that the estimate for Proh(j) in formula (3) would be

given by



Prob(j) = (1 + |A&~B|))/ 2+ |A]). (4)
(Thiscorredion can be esily generalized to an n-classproblem by replacing the “2”
in the denominator with n.) Note how the Laplace @rredion improves the reliability of a
probability estimate for small diguncts without significantly affeding this reliability for

large diguncts.

3.2.2 Varying Attribute Cogs

Different attributes have different costs of testing — see sedion 2.4. In our example
application domain, attributes can represent several different kinds of predicting
variables, including the patient’s physical characterigtics — e.g. gender, age, etc. —and the
results of medical exams undergone by the patient — e.g. X-rays, blood tests, etc. Let us
asame that each attribute has a well-defined cost, which represents the cost of
determining the value of that attribute. Hence attributes referring to the patient's
physical characteristics have a minimum (virtually zero) cost to have their values
determined, while atributes referring to the result of medical exams have much more
significant costs to have their values determined.

Hence in our example applicaion domain, the PSmeasure must be modified to take
attribute @sts into acoount. A simple way of doing this is to multiply formula (1) by a
new term cdled AttUsef (Attribute Usefulness, defined asthe inverse of the sum of the
costs of all the atributes ocaurringin the rule atecedent, that is:

k
AttUsef = 1/ % Cost(A), (5)
i=1
where Cost(A)) isthe st of thei-th attribute occurring in the rule antecedent, and k is
the number of attributes occurringin the rule antecedent.
Note that this formula has the side dfed of penalizing “complex” rules, i.e. rules

with many attributes in their antecalent. In some a@ses, however, the number of



attributes in the rule is aready being taking into account by another term of the rule
interestingnessmeasure, such as an explicit measure of rule omplexity. In this case, to
avoid that a rule be penalized twice for its high complexity, AttUsef can be smply
defined astheinverse of the aithmetic average of the sts of all the attributes occurring
in therule antecedent, that is:

k
AttUsef = 1/ (Z Cost(A) / k), (6)
i=1
where Cost(A;) and k are as defined above.

To summarize, in our example applicaion domain, the PSmeasure must be extended
to take into account bath misclassfication costs and attributes costs, and a simple way of
doing thisis to multiply formula (1) by formulas (2) and (6). Notice that this extension
also hasthe dfed of rendering the PSmeasure asymmetric. It is easy to seethat in other
application domains the PSmeasure should be extended in other ways, depending on the
particular characteristics of the gplication. Hence, arule interestingness measures is a
bias and, as any other bias, has a domain-dependent effectiveness[20], [21], [17]. The
challenge is to define arule interestingness measure that is the most suitable for the

target applicaion domain.

4 A New Criterion for Rule I nterestingness M easur es:

Attribute Surprisingness

Sedions 2.4 and 32.2 discussed attribute asts asakind o rule interestingnessfactor. In
the literature, this ans to be the only rule interestingness factor defined on a “fine-
grain, predicting-attribute level” - i.e. diredly based on individual attributes occurringin
arule's antecalent - rather than being defined on a “coarse-grain” level, considering a

rule atecedent as a whole. This ®dion proposes a new rule interestingness criterion



defined on the predicting-attribute level. Instead of focusing on attribute @sts, which are
related to rule usefulness our new criterion focuses on the asped of rule surprisingness
(Recall that rule interestingnessinvolves sveral aspeds, including bath usefulnessand
surprisingness)

Hence we introduce a new term to measure rule surprisingness called AttSurp
(Attribute Surprisingness. In principle, any ruleinterestingnessmeasure can be extended
to take thisterm into acoount. For instance the PSmeasure defined in formula (1) can be
extended by multi plying that formula by the new term AttSurp. We propose that AttSurp
be defined by an information-theoretic measure, based on the foll owing idea

First, we alculate the information gain of each attribute, defined as the class entropy
minus the dassentropy given the value of the predicting attribute. Attributes with high
information gain are good predictors of class when these attributes are mnsdered
individually, i.e. one & atime. However, from arule interestingness point of view, it is
likely that the user aready knows what are the best predictors (individual attributes) for
its application domain, and rules containing these atributes would tend to have alow
degreeof surprisingness(interestingness for the user.

On the other hand, the user would tend to ke more surprised if (S)he saw a rule
containing atributes with low information gain. These attributes were probably
considered as irrdevant by the users, and they are kind o irrelevant for classfication
when considered individualy, one & a time. However, attribute interactions can render
an individually-irrelevant attribute into a relevant one. This phenomenon is associated
with surprisingness and so with rule interestingness Therefore, al other things
(including prediction accuracy, coverage and completenesg being equal, we argue that
rules whose antecelent contain attributes with low information gain are more interesting
(more surprising) than rules whose antecedent contain attributes with high information
gain. This idea can be expressed mathematically by defining the term AttSurp in therule

interestingnessmeasure as.



k
AttSurp =1/ (Z InfoGain(A;) / k), (7)
i=1
where InfoGain(A;) isthe information gain of thei-th attribute occurring in therule

antecadent and kisthe number of attributes occurring in the rule antecedent.

5 Summary and Discussion

This paper has discuseed several factors influencing the interestingness of a rule,
including disunct size, imbalance of class distributions, attribute interestingness
misclassfication costs and the asymmetry of clasdfication rules. These factors are often
negleded by the literature on rule interestingness which often focuses on factors sich as
the mverage, completenessand confidencefactor of arule.

As a case study, we focused on a popular rule interesting measure, defined by
formula (1). We have shown that this measure takes into acoount only one of the five
rule quality factors discussed in this paper, namely imbalanced classdistributions. Then
we discussed how this measure @uld be extended to take into account the other four
factors. In particular, the extended rule interestingnessmeasure has the form:

(JA&BJ - |A| B|/ N) * AttUsef * MisclasCost, (8)
where the term AttUsef measures attribute usefulness- computed e.g. by formula (5) or
(6) - and the term MisclasCost measures the misclassfication cost - computed e.g. by
formulas (2) and (4). Findly, the probem that formula (1) is symmetric, whereas
clasdfication rules should be asymmetric, was lved by adding the asymmetric terms
AttUsef and MisclasCost to the extended formula (8).

The main goal of this paper was not to introduce yet another rule interestingness
measure. Rather this paper had the main goals of: (1) drawing attention to several factors
related to rule interestingnessthat have been somewhat negleded in the literature; (2)

showing some ways of modifying rule interestingness measures to take these factors into



acoount, which will hopefully inspire other reseaches to do the same; (3) introducing a
new criterion to measure attribute surprisingness as a factor influencing the
interestingness of discovered rules. In particular, we believe that this new criterion is
guite generic, and can be used in alarge range of different appli cation domains, so that it
isapromisng factor to take into account when designing arule interestingnessmeasure.

We @nnot overemphasize that aruleinterestingnessmeasureisabias, and so thereis
no wiversally best rule interestingness measure across al application domains. Each
reseacher or practitioner must adapt arule interestingnessmeasure (or invent a new one)
to his’her particular target problem.

One limitation of this paper is that we have, implicitly, largely focused on how to
measure the interestingness of different rules discovered by the same data mining
algorithm, mining the same data. An open problem is how to extend aur arguments for
comparing the interestingness of different rules discovered by different data mining
algorithms, or discovered from different data sets. Ancther limitation is that our
discusgon has not taken into acoount the interaction between rules in the induwced rule
set. In principle, however, the isaie of rule interaction is somewhat orthogona to the
isaue of individual rule interestingness in the sense that the measure of rule interaction
(typically a measure of rule overlapping) is often independent of the measure of
individual rule interestingness The reader interested in rule seledion procedures taking

into account rule interaction isreferred to [22], [4], [23].
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