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Specifying distributed system services

L B Arief, M C Little, S K Shrivastava, N A Speirs and S M Wheater

Building a software service requires careful analysis of the requirements given by the customer for the system. It is often
difficult to understand the system requirements correctly, due to the fact that they are usually described in plain language.
This difficulty could be overcome if a sufficiently precise description of system services to be provided can be produced that
is easy to follow by both customers and designers. Given such a specification of a service that on the surface permits several
ways of implementing it, the design team should be able to select with reasonable confidence, the most appropriate set of
design options, before commencing the building of the service. Naturally, this requires the development of modelling and
analysis techniques that enable the evaluation of various design options for a given service. As a first step towards achieving
these goals, the paper briefly reviews current approaches to specifying system architectures and explores the suitability of
the Unified Modelling Language (UML) as a specification tool.

1. Introduction

As a first step towards achieving these goals, the paper
briefly reviews current approaches to specifying system
architectures and explores the suitability of the Unified
Modelling Language (UML) as a specification tool that can
be used for developing simulation models of distributed
systems and services. UML was chosen as it has been
adopted by the Object Management Group (OMG) as a
standard and is increasingly being used in industry.

2. Architecture description languages

2.1 Darwin and UniCon

Many of the current generation of ADLs are based upon
specifying distributed systems in terms of components and
connectors. Components are compilation units, objects, etc,
of various types which are specified by interfaces.
Components interact via connectors, which are specified by
protocols; a connector is responsible for mediating
interactions between components, i.e. they define and
impose rules governing the interactions between
components.

Components can be either primitive or composite, and
can be connected by multiple connectors. Connectors can be
simple procedure calls, remote procedure calls, Unix pipes,
files, etc, and can connect multiple components.

Building a software system requires careful planning and
investigation in order to avoid any problems in the later

stages of the development. The first thing to do is to analyse
the requirements of system services given by the customer.
It is often difficult to understand the requirements correctly,
due to the fact that they are usually described in plain
language. What we require is a description of system
services that is sufficiently precise to be easily followed by
both customers and designers. Given such a specification of
a service that on the surface permits several ways of
designing it, system implementors should be able to select,
with reasonable confidence, the most appropriate set of
design options, before commencing the building of the
service.

A problem that one encounters right away is how to
express operating conditions and service requirements in a
manner that permits construction of a model reflecting those
conditions and requirements. Naturally, this requires
developing modelling and analysis techniques that enable
evaluation of various design options for a given service
architecture.

Software architecture specification is intended to
describe the structure of the components of a software

system, their interrelationships, and principles and
guidelines governing their design and evolution; a
component is defined here as a (distributed) self-contained
object (computational unit). Work in this area has produced
high-level notations (architecture description languages —
ADLs) for expressing and representing architectural designs
and styles. This section will review work from a
representative set of research groups — Darwin [1], UniCon
[2] and Rapide [3, 4].
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A well-known system for specifying system
requirements is Darwin [1, 5], which is the configuration
language for the Regis programming environment [6]. In
Darwin, components are strongly typed first-class language
primitives, supporting single inheritance. A component
interface specifies what the component can provide to
others, and what it requires. These ‘provide and require’
statements are implicitly in terms of connectors. For
example, consider Fig 1, which shows a filter component,
which provides communication object ‘left’, and requires
communication objects ‘right’ and ‘output’.

Fig 1 Filter component.

In Darwin, the specification for this component would
be1:

component filter {

provide left <port, int>; 

require right <port, int>,

 output <port, int>;

}

Darwin supports a bind statement which is used to tie
together components using their ‘provide and require’
statements. The Darwin compiler checks that connections
are only made between compatible communication objects.
For example, the specification for a chain of pipelined filter
components as depicted in Fig 2 would be as given below.

component pipeline { 
provide input; 
require output;

Filter1 filter; 
Filter2 filter;

inst Filter1;
inst Filter2;

bind input - - Filter1.left;
bind Filter1.output - - output;
bind Filter1.right - - Filter2.left;
bind Filter2.output - - output;
bind Filter2.right - - output;

}

Although connections are implicitly specified using the
‘provide and require’ statements, there is no explicit
connector language construct. Darwin considers the
component abstraction powerful enough to encompass
connectors, i.e. if a specific type of connector is required, it
can be specified as a component, with other components
connected to it. For example, a Unix pipe ‘connector’ could
be specified in Darwin as:

component UnixPipe {
provide source <port line>;
require sink <port line>;
require error <port line>;
bind source - - sink;

}

UniCon is an architecture description language
developed at Carnegie Mellon University [2, 7]. In UniCon
an interface consists of the component’s type, specific
properties that specialise the type, and a list of players
(methods) through which the component can interact with
the rest of the system. Players are also typed entities, and
may declare properties which further specify the player.
UniCon has a much richer set of language constructs than
Darwin for specifying connectors — whereas connections
are not first-class objects in Darwin, they are in UniCon.
Programmers have more control of the types of connectors
and the roles they play. Although early versions of UniCon

filter

left right

output

1 Ports are one of the standard communication classes provided by Darwin.

Fig 2 Pipelined filters.
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only supported built-in connectors, the aim of the designers
is to allow programmers to specify and refine connectors to
better suit their requirements.

The main difference between languages such as Darwin
and UniCon is whether or not connectors should be treated
as first-class objects. In UniCon there is a specific language
mapping for connectors, unlike in Darwin. For example, the
Unix pipe example above would be specified in UniCon as:

CONNECTOR UnixPipe
PROTOCOL IS

TYPE Pipe
ROLE source IS source

MAXCONNS(1) 
END source 

ROLE sink IS sink 
MAXCONNS(1) 
END sink 

ROLE err IS sink 
MAXCONNS(1)

 END err 
END PROTOCOL 

IMPLEMENTATION IS
 BUILTIN 
END IMPLEMENTATION

END UnixPipe

There is much debate over whether connectors should
be explicit objects within the language as they are in
UniCon, or implicit as they are in Darwin [2, 8].

2.2 Rapide

Rapide is an event-based, concurrent object-oriented
language specifically designed for prototyping architectures
of distributed systems. It goes beyond the work of Darwin
and UniCon in concentrating more on the specification of
software modules, what they provide and require from other
modules, and how their combination achieves an
architectural specification. The Rapide language is
accompanied by a variety of tools to aid in the specification,
design, and testing of software modules and architecture.
Because the language is object-oriented, the distinction
between a module and an architecture depends upon the
context in which it is used, i.e. an architecture can be a
module in another application.

Design goals

The primary design goals of Rapide are:

• to provide architecture constructs that permit systems
to be expressed in a suitable form for simulation before
implementation decisions are made,

• to adopt an execution model which captures distributed
behaviour and timing,

• to provide formal constraints and mappings to support
constraint-based definition of reference architectures
and testing systems for conformance to architecture
standards,

• to address issues of scalability.

An architecture is essentially a template for a suite of
systems (possible implementations of the architecture),
consisting of a set of specifications of modules (interfaces),
a set of connection rules that define communication
between interfaces, and a set of formal constraints that
define legal and/or illegal patterns of communication. As
with Darwin/UniCon, an interface defines the features
provided to, and required from, other modules. An interface
can have an abstract definition of the behaviour of modules.
Typically such behaviour specifies relationships between
data received and data generated by a module. Formal
constraints specify restrictions on various aspects of
interfaces and connections, such as relations between data,
timing constraints, etc.

Architectures are based upon an event-based execution
model — poset (partially ordered set of events). Interface
behaviours execute by waiting to receive events and then
reacting by generating new events. Connections define how
events generated by one interface cause other events to be
received by another interface. Constraints place restrictions
on event activity, both in interfaces and over the set of
connections. Importantly, constraints are checkable, and
Rapide includes a suite of development tools to allow
architecture implementations to be verified with respect to
architecture descriptions at the event level. These tools
allow the gradual instantiation of an architecture, module by
module, into a final system. At each stage of system
development, the current implementation can be simulated
and verified for conformance to its architecture (e.g. type
checking and constraint verification).

Rapide environment

Rapide consists of five parts, which are briefly
described in the following sections:

• the types language for describing the interfaces of
components,

• the architecture language for describing the flow of
events between components,

• the specification language for writing abstract
constraints on the behaviour of components,

• the executable language for writing executable
modules,

• the pattern language for describing patterns of events.



SPECIFYING DISTRIBUTED SYSTEM SERVICES

BT Technol J Vol 17 No 2 April 1999

129

Types language

A component consists of two parts — an interface
which defines those features through which it interacts with
other components, and a module that either encapsulates an
executable prototype of the component, or hierarchically
defines the component as an architecture of other
components. Interfaces are defined in the types language,
whereas modules are either defined in the executable
language or the architecture language. The types language
supports object-oriented and abstract data type styles of
defining interfaces, and supports multiple interface
inheritance.

The interface below is a simple null-filter — whenever a
receive event occurs, the module which implements the
interface will generate a send event with the same
parameter:

type Application is interface 

  extern action Request(p : params);

     public action Results(p : params);

behavior 

 (?M in String) Receive(?M) =>
Results(?M);;

Architecture language

An architecture declares a set of components and a set
of connections between extern and public constituents of
interfaces of components. As mentioned previously, an
architecture is also a module with its own interface. As a
result of a connection, events generated by one module
cause events to be received by another, or functions called
by one module are executed by another. Therefore, an
architecture defines dataflow and synchronisation between
modules. An example architecture of two of the null-filters
above could be:

architecture Example is

P : Application; Q : Application;

connect (?M in String)

P.Results(?M) to Q.Request(?M);

end Example;

The connect statement can be arbitrarily complex, for
example, specifying timing constraints, state constraints.

Executable language

The executable language provides concurrent, reactive
programming constructs for writing modules. Modules are
defined by a set of processes that observe and react to
events by executing arbitrary code that may generate new
events.

Pattern language

Rapide has an extensive set of language constructs for
specifying patterns of events; only two representative
examples are considered here:

• dependent: P →  P’ — a match of patterns P and P’
where all events which matched P’ depend on all
events which matched P,

• temporal restriction: P during(m, n) — a match for P
where all the events of the match start and finish within
the time interval m to n, inclusive.

Specification language

The specification language uses a combination of
algebraic and pattern constraints. A constraint placed in an
interface constrains visible executions of modules of the
type. Constraints can also be placed in architectures.
Interface constraints include constraints on parameter
values of the interface functions and actions, algebraic
constraints on the abstract state of the interface, and pattern
constraints on the events that can be generated and observed
from the interface. An interface constraint therefore
represents a contract specifying how to use a module of that
type, and what a module of that type promises to do. For
example:

type Application is interface 
  public action Receive(Msg : String); 
  extern action Results(Msg : String);

constraint
  match

     ((?S in String)(Receive(?S) ->
         Results(?S)))^(*~);

end Application;

The constraint specifies that all messages taken in are
delivered. Before a Results  event can occur, there must
have been a corresponding Receive  event (with the same
parameter), and there can be any number of these events (*).
Furthermore, these pairings of events must be disjoint, i.e.
unrelated (~).

2.3 Summary

As the brief description of Rapide has shown, the
language and environment are extremely rich in the
capabilities required to specify arbitrary, complex
distributed systems. Unlike Darwin and UniCon where
specification of connections between components is seen as
the important goal, this is only a part of the architectural
specification which Rapide addresses. For example,
specification of timing constraints on operations by users of
components can be verified with respect to timing
constraints guaranteed by those components.
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3. Unified Modelling Language

• class diagrams — show the static structure of the
system, i.e. the types of object within the system and
the static relationships that exist between them,

• use case diagrams — show interactions between users
and the computer system,

• interaction diagrams — show the pattern of
interactions between objects in a system; there are two
types of interaction diagram:

— sequence diagrams arrange the interactions in time
sequence,

— collaboration diagrams show the interactions in
terms of links between the objects,

• state diagrams — describe the possible states a
particular object can get into and how the object’s state
changes as a result of events,

• activity diagrams — represent the activities that are
triggered at the completion of an operation,

• implementation diagrams — show aspects of imple-
mentation, including the structures of the im-
plementation and the source codes.

Each type of diagram provides a different view of the
system, thus helping to reduce the complexity of individual
diagrams. For example, a class diagram can be used to
describe the static properties of the system while the activity
diagram is used to show the interactions that can happen in
the system.

As it is essential to understand the purposes of these
diagrams, some explanation of the most commonly used
diagrams is provided below [9].

• The class diagram

The class diagram is a graph that classifies the static
elements (classes) of the system and shows the static
relationships between these elements. A class
represents a set of objects with similar structure
(attributes), behaviour (operations) and relationships.
The relationship between two (or more) classes can be
as shown below.

— Association indicates what role one class has in the
relationship. There are some additional notations
available, such as the multiplicities (which indicate
how many instances of one class can take part in the
association), aggregation (to show that one class is a
collection of several instances of another class),
composition (one class is a part of another class) and
dependency (to indicate that one class depends on
another).

— Generalisation is used to capture the notion of
inheritance and shows the relationship between a more
general element (the supertype) and a more specific
element (the subtype). The subtype inherits the
property of its supertype, i.e. the subtype must be
consistent with the supertype, and it may add some
additional (more specific) information.

The notations for the class diagram are depicted in
Fig 3.

• The sequence diagram

The pattern of interaction between objects can be
shown by using one of the two interaction diagrams —
the sequence diagram or the collaboration diagram. In
this paper, only the sequence diagram will be discussed
further.

UML is (mainly) a set of graphical notations for
specifying, visualising, constructing and documenting

the artefacts of software systems [9]. The design of a system
is captured in UML using a set of graphical notations:

 Fig 3 Class diagram notations.
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A sequence diagram shows an interaction of the objects
in the system in a time sequence (see Fig 4). An
interaction consists of messages that are exchanged
between objects in order to obtain the desired result of
an operation. In the sequence diagram, the objects are
arranged horizontally (on top of the diagram) while the
progress of time is shown by a vertical bar (normally
proceeding down the page), one for each object. A
message is represented by an arrow between the
timelines of the objects, although, on some occasions,
an arrow can point to its own timeline to indicate self-
invocation. An asynchronous message is represented
by a half-arrowhead. Conditions can also be included
to indicate that the message is only sent if the
conditions are satisfied (see Fig 4).

• The activity diagram

An activity diagram shows operations that can be
performed in order to achieve a certain goal, and the
transitions triggered by the completion of the
operations (Fig 5). An activity diagram is a special case
of the state diagram [9].

Fig 5 Activity diagram notations.

• Other notations

There are some additional notations that are useful (see
Fig 6) — the constraint notation (such as some
condition that must be maintained), the note notation

(for displaying textual information, such as comments)
and the object notation (which is also used in the
sequence diagram).

Fig 6 Other useful notations.

The UML offers facilities for system description that
appear comparable to Rapide. However, as yet there are no
analysis and simulation tools available to match Rapide’s
facilities. This situation is expected to change as the
language is gaining in popularity and is increasingly being
used in industry. Section 5 describes the development of a
UML simulation tool.

4. Example — specification of an IN application

New features for call handling (e.g. credit call charging,
0800 calls) in intelligent networks (INs) are typically

delegated to computer systems that are attached to switches.
A switch passes the incoming call request requiring special
processing to the local computer system for processing
before setting up the connection. The processing must be
performed fairly quickly (less than a second for most of the
calls). These computer systems maintain data pertaining to
the customers. Two operations provided for each customer
object are makeCall and receiveCall; the former maintains
information relating to outgoing calls (e.g. should the call
be barred) and the latter maintains information concerning
incoming calls (e.g. does the receiver wish to receive calls
from the caller).

Fig 4 Sequence diagram notations.
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4.1 Physical architecture

The basic system structure is shown in Fig 7. Processing
at a switch site is performed by a high-performance
computing cluster, comprising of about ten hosts.

There are between 60 and 1000 sites. Each host has
10—100 Gbit memory. Sites are connected by WANs with
bandwidth of ~34 Mbit/s and a latency of ~50 ms. The total
number of customer objects in the system is in the range of
105—108. Communication within a site is via a LAN with
100 Mbit/s bandwidth and a latency of ~1 ms.

4.2 Processing requirements

The processing requirements are given, together with
the steps involved in making a call. Processing is initiated
via messages from a switch which contain two parameters
— the calling line identity (CLI) and the dialled number
(DN). Between 3000 to 100 000 messages per second are to
be handled. Each message is first handled by a name server
that maps CLI and DN to corresponding customer object
identifiers, OBJ1 and OBJ2 respectively.

These are unique identifiers which contain the address
and host number of the appropriate makeCall and
receiveCall objects.

OBJ1.makeCall(OBJ2) is then invoked to perform some
caller-specific processing; in particular, makeCall checks to
see that the barOutgoing flag is not set and then makes RPC
to OBJ2.receiveCall(OBJ1). receiveCall checks the blacklist
for OBJ1 and sends back a startRinging reply. makeCall
must service 90% of calls in at most 500 ms, 95% of calls in
at most 5000 ms, and 100% of calls in at most 10 000 ms.

4.3 Specification using UML

The elements of the architecture and the requirements
above can be translated into several UML diagrams. 

• The physical architecture

The main details of the underlying hardware (the
machines and the connection between them) and
application objects can be represented as a class
diagram (see Fig 8).

• Application logic

Customers can only make a call if they are not barred
from doing so by the telephone company (e.g. due to
unpaid bills). Another requirement is that the caller is
not on the blacklist of the called party. The operation
makeCall tries to connect two customers through a
series of operations that involves several checks to
ensure that both requirements are satisfied. As a
customer can have more than one phone number (in
different locations), it is necessary that makeCall
accesses the name server to find the latest binding
indicating where the called party can be reached.

Figure 9 shows the sequence diagram which represents
the makeCall operation. This diagram also indicates the
time constraints of the makeCall operation. It should be
noted that at present UML cannot describe the probabilistic
constraints except in comments or notes.

In addition to the sequence diagram, an activity diagram
can also be used to show a possible scenario when a
customer tries to telephone another customer using this
system (Fig 10).

Fig 7 The architecture of the new system.
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Fig 8 Class diagram.

Fig 9 Sequence diagram.
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5. Automatic generation of simulation models

• it provides the standard UML shapes, so there is no
need to create one’s own,

• the diagrams for a particular specification can be saved
into one model, which improves the organisation of the
graphs, and, within one model, the user can view
different diagrams and browse through them by
expanding these diagrams into their components,

• different views are provided — use case view, logical
view, component view and deployment view,

• documentation can be attached to each diagram —
these documents can help in understanding the
meaning of the diagrams, as they can contain the
original specification or other useful comments,

• as each component of the diagram is an object, it is
possible to change them separately and to relate them
to other (appropriate) components in the diagram,

• a report and C++ skeleton codes can be automatically
generated from the diagrams.

Although such tool sets are quite useful for drawing
UML diagrams, they can be made even more useful if they
can be augmented with modelling and analysis tools (e.g. a
simulation tool) based on the facts and constraints given in
the diagrams, in order that the performance of the proposed
system can be analysed.

Current development is aimed at producing such a tool
which could be used to generate a simulation model from a
design specification automatically without the requirement
for users to know how to construct simulation programs.
The tool is intended to be suitable for a variety of
distributed system applications and would allow different
performance requirements to be incorporated in the
simulation. In order to achieve this, the generic components
of a simulation model have begun to be investigated. By
being able to identify these components, the construction of
a simulation program can be quite a straightforward process
as it only involves the composition of the components in an
appropriate way. As, inevitably, there may still be some
special components required for a particular simulation,

Fig 10 Activity diagram.
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UML design tools are becoming available to make the
job of drawing the UML diagrams easier. The best

known is the Rational Rose tool [10], which has the
following features:



SPECIFYING DISTRIBUTED SYSTEM SERVICES

BT Technol J Vol 17 No 2 April 1999

135

there is a need to provide room for specific simulation
requirements to be incorporated into a simulation.

In the current implementation, a textual UML
description of the problem is fed to the simulation generator
which produces code for use with the C++SIM tool-kit [11].
The code produced can be immediately compiled and run.
The simulation generator currently produces only simple
simulations where work is generated by a single process and
is queued for servicing by a second processor. The tool is
currently being extended to allow simulation of a pipeline
of services to be generated directly from UML.

It is expected that simulations of problems similar to
that specified previously may soon be generated
automatically from their UML representation.

6. Conclusions

 UML turns out to be quite useful for this project. By
translating the requirements into several diagrams, different
views of the problem can be obtained and the requirements
can be made more formal. UML design tools are becoming
available to make the job of drawing the UML diagrams
easier.

Although such tool-sets are quite useful for drawing
UML diagrams, they can be made even more useful if they
can be augmented with modelling and analysis tools (e.g.
the simulation tool described earlier), based on the facts and
constraints given in the diagrams, so that the performance of
the proposed system can be analysed.
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