
1

Harvesting High Value Foreign Currency Transactions
from EMV Contactless Credit Cards without the PIN

Martin Emms, Budi Arief, Leo Freitas, Joseph Hannon, Aad van Moorsel
School of Computing Science, Newcastle University
Newcastle upon Tyne NE1 7RU, United Kingdom

{martin.emms, budi.arief, leo.freitas, joseph.hannon, aad.vanmoorsel}@ncl.ac.uk

ABSTRACT

In this paper we present an attack, which allows fraudulent

transactions to be collected from EMV contactless credit and debit

cards without the knowledge of the cardholder. The attack

exploits a previously unreported vulnerability in EMV protocol,

which allows EMV contactless cards to approve unlimited value

transactions without the cardholder’s PIN when the transaction is

carried out in a foreign currency. For example, we have found that

Visa credit cards will approve foreign currency transactions for

any amount up to €999,999.99 without the cardholder’s PIN, this

side-steps the £20 contactless transaction limit in the UK. This

paper outlines our analysis methodology that identified the flaw in

the EMV protocol, and presents a scenario in which fraudulent

transaction details are transmitted over the Internet to a “rogue

merchant” who then uses the transaction data to take money from

the victim’s account. In reality, the criminals would choose a

value between €100 and €200, which is low enough to be within

the victim’s balance and not to raise suspicion, but high enough to

make each attack worthwhile. The attack is novel in that it could

be operated on a large scale with multiple attackers collecting

fraudulent transactions for a central rogue merchant which can be

located anywhere in the world where EMV payments are

accepted.

Categories and Subject Descriptors

K.4.4 [Computers and Society]: Electronic Commerce –

Cybercash, digital cash, Payment Schemes, Security;

C.3 [Special-Purpose and Application-Based Systems]: –

Smartcards

General Terms

Security

Keywords

Contactless cards, EMV, fraudulent transaction, foreign currency

transaction limits, rogue merchant.

1. INTRODUCTION
Our research has identified a practical attack on EMV1 contactless

credit and debit cards, which allows large-scale “harvesting” of

fraudulent payments from unsuspecting cardholders. The attack

exploits six functional characteristics of EMV contactless credit

and debit cards:

1 EMV (Europay, MasterCard, and Visa) is a global standard to support

interoperable card payment system between Visa, MasterCard,

American Express and JCB.

 Many Visa2 credit cards will approve unlimited value

transactions in a foreign currency; this allows the attack to

maximise the money extracted from each credit / debit card.

 The contactless interface allows transactions to be extracted

whilst the card is still in the cardholder’s wallet.

 The cardholder’s PIN is not required for contactless

transactions; this allows the fraudulent transaction to be

extracted from the card without any further interaction from
the cardholder.

 Visa contactless cards will approve transactions in offline

mode; this allows the attack to be performed without

connecting to the card payment system, thereby avoiding any
additional security checks by the bank.

 The merchant details are not included in the data

cryptographically protected by the card; this allows the

merchant details to be added later, making the attack more
flexible and scalable.

 While the EMV protocol requires payment cards to

authenticate themselves to the Point of Sale (POS) terminals,

currently there is no requirement for POS terminals to
authenticate themselves.

The main contribution of this paper is the identification of a newly

discovered vulnerability of the EMV protocol centred on the

card’s handling of foreign currencies. This is made possible by a

combination of the six functional characteristics described above.

The introduction of EMV contactless cards has created a situation

comparable to that described by Reason in his “Swiss cheese”

model [10] where layers of protection can be compromised if

holes on each layer line up to create an exploitable attack. In this

case, the six characteristics line up in a way that defeats the

safeguards put in place by EMV. Through this paper we also

contribute two potential solutions which will block this

vulnerability.

The ability to capture fraudulent transactions and store them for

later transmission to a rogue merchant makes this attack different

from previously described relay attacks [3][6] on EMV

contactless cards. The relay attack depends upon very close

synchronisation between two attackers; the first attacker has to be

in contact with the victim’s card whilst the second attacker makes

a purchase at a POS terminal. This makes relay attacks difficult

to operate on a large scale.

2 The attack presented in this paper has only been observed on contactless
Visa cards. However our testing has showed that the underlying flaw

also exists in MasterCard, but additional security measures implemented

by MasterCard have prevented the manifestation of this attack.

2

Similar to the “Chip & PIN is broken” attack [9], our attack can

potentially be operated on a large scale. “Chip & PIN is broken”

allows attackers to buy goods from retailers, whereas the attack

described in this paper is different in that it targets the money in

the victim’s bank account.

The very recent “Chip and Skim” attack [1] is similar to our attack

in that it could be operated on a large scale and it extracts money

from the victim’s account. It would be interesting to explore the

possibility of using our mobile phone contactless-transaction-

collecting app as the “skimming” platform for the Chip and Skim

attack.

The rest of the paper is organised as follows. Section 2 presents

our methodology for finding the vulnerabilities, including the

outline of the process, and the resulting formal abstract model,

from which we derive our attack. Section 3 provides an overview

of the attack, which is composed of two stages: collection of

fraudulent transactions, and converting these transactions into

money. Section 4 outlines existing safeguard to protect EMV

transactions, while Section 5 looks into the EMV functionality

exploited by the attack. Section 6 outlines the experimental

software implementation to carry out the attack, including an

Android app and a rogue merchant server. Section 7 presents

some results from executing the attack, demonstrating the

feasibility of such attack. In Section 8 we offer potential methods

for preventing the attack and Section 9 concludes our paper.

2. METHODOLOGY
Our work focuses on the analysis of the EMV payments protocol

and specifically the security impact of the introduction of

contactless and mobile payments functionality into the protocol.

Analysis of the protocol is non-trivial due to the complexity of the

EMV payment protocol specification. EMV is a global payment

system, the protocol therefore has to incorporate competing (and

sometimes conflicting) requirements from each of the credit card

issuers (MasterCard, Visa, Amex, JCB, Diners, Discover,

UnionPay) and from the financial regulators in each of the

countries in which EMV operates. In addition, the introduction of

contactless / mobile payments has significantly increased the

complexity of the EMV specifications. The EMV specification

for contact (Chip & PIN) credit / debit cards describes a single

unified payment protocol sequence (kernel) for all card types.

The specification for contactless / mobile payments contains

seven protocol sequences (kernels), one for each card issuer. The

complexity and page count has expanded, from four books

comprising 765 pages for contact transactions, to fourteen books

containing 2,392 pages for both contact and contactless.

To address this complexity, we have developed a systematic

approach which combines formal and informal techniques. At the

centre of our approach are UML sequence diagrams, an example

of which can be seen in Figure 6, which we use as the informal

but precise description of the protocol fragments. Each UML

diagram is accompanied by a table listing the references in the

EMV specification which were the diagram's information source.

Creating the UML diagrams takes input from three main sources:

(i) the EMV specification documents, (ii) feedback from insights

gained by the developers coding the emulator, and (iii) feedback

from insights gained by the designers constructing a formal

model. Essential to our process is the systematic line-by-line

documentation of the linkage between EMV specification, UML

diagram, abstract formal model, emulator code and test cases.

The formal aspects of our approach are inspired by the Praxis

methodology [2], tailored to our needs. It focuses on the

construction and proof of an abstract model using the Z notation

[13]. This abstract model is used to investigate the consistency of

the requirements, expose descriptive errors, and ultimately be

used to generate test cases for the emulator code. Ultimately, if

our abstract formal model correctly characterises the EMV

requirements, then our test cases will be both minimal and wide-

reaching, given they come from the mathematical characterisation

of the EMV requirements for NFC.

2.1 The Process
Figure 1 shows our analysis process. The rounded boxes are

activity nodes within the process e.g. [A1]. The square boxes are

object nodes e.g. [O1.0]: these are the data sources that drive the

activities. Connecting edges, represented as black solid-arrows,

indicate the default order in the flow of activities. The red

dashed-arrows are connecting edges, which indicate feedback,

creating an iterative process of refinement of the UML diagrams

[O1.1], the abstract model [O2.1] and the emulator code [O4.1].

EMV

Specifications

[O0.0]

Develop Transaction

Sequence Diagrams

[A1]

Develop Transaction

Emulation Code

[A4]

Develop Abstract

Model

[A2]

UML Transaction

Sequence Diagrams

with EMV References

[O1.1]

Abstract Model

[O2.1]

Develop Test Cases

[A3]

Test Cases

[O3.1]

Emulator Code

[O4.1]

Card Capabilities

[O5.0]

Run Test Cases

[A5]

Test Results /

Findings

[O5.1]

List of Anomalies

[O2.2]

Feedback

Feedback

Feedback

Feedback

Figure 1. Protocol analysis process

At the centre of our approach is the construction [A1] of UML

sequence diagrams [O1.1] with accompanying reference lists.

Much of the process is about constructing these sequence

diagrams as accurately as possible. To achieve this, we use a

detailed analysis of the EMV requirements and a detailed working

knowledge of the structure of the various specifications

contributing to a single transaction. Moreover, we use feedback

from the formal model construction [A2], the derivation of test

cases [A3] and the coding [A4].

The EMV specifications [O0.0] are the originating source of all of

the data in the process. Any data or assumption made in the

3

emulator code or in the abstract model should be traceable back to

its origin (i.e. the book/section/page within the EMV

specifications). The EMV specifications are structured so that the

complete description for a single transaction protocol sequence is

split across multiple sections and multiple books. The UML

sequence diagrams [O1.1] collate these multiple sources into a

single easy to follow description of the transaction sequence.

These transaction sequence diagrams are the initial stage of the

iterative process that we used to create the concrete software

implementation of the emulator [O4.1].

At each stage of the process, if additional information is found

about the working of EMV it is fed back into the UML transaction

sequence diagrams [O1.1]. The feedback is essential to refine our

understanding of the EMV specifications and document it. Each

time the diagrams are updated, this drives the improvement of the

emulator code [O4.1]. The completed emulator code is used in

practical experiments [A5], running full or partial transaction

protocol sequences against real bank cards.

2.2 UML Protocol Sequence Diagrams
The role of the UML protocol sequence diagrams is to collate

information from multiple sources in the EMV specification,

creating a single description of the payment protocol sequence

(kernel).

There are eight payment protocol sequences (kernels) in the EMV

specification, one for contact transactions and seven for

contactless transactions. There is a single UML diagram for each

of the eight kernels. Each diagram is accompanied by a table of

references detailing the EMV specification sections from which

the diagram was derived. Each reference details the EMV book,

section number, page number and a section of text describing the

functionality.

Table 1. Snippet of UML diagram references table

Descriptive Text References

7.1 Transaction Setup Data

including PDOL list

If the Visa application is

successfully selected the card will

return the data that the terminal

requires to set up the transaction

including the PDOL list. The

Processing Data Objects List

(PDOL) is a list of data fields the

card requires to complete the

transaction, the terminal returns the

populated PDOL data in the Get

Processing Options command.

Typically the data fields requested

by the card will include the

transaction amount, currency, date,

country and POS terminal

capabilities (TTQ).

EMV v2.2 Book C-3

2.4.1 Initiate Application

Processing, page 12

EMV v4.3 Book 3

10.1 Initiate Application

Processing, page 91

EMV v2.2 Book B

3.5 Outcome Processing

(3.5.1.5 Other), page 33

EMV v4.3 Book 4

Annex A - Coding of

Terminal Data Elements,

page 115

Table 1 shows a snippet of the references table for Figure 6,

which provides the details of one of the 26 steps in the Visa fDDA

[5] protocol sequence (kernel 3).

It is these reference tables that provide the documented link

between the UML diagrams and the EMV specification

documents.

2.3 Protocol Emulator
The protocol emulator is a concrete software implementation of

the EMV payments protocol. It is both an end product of the

analysis process and the test-bed used to validate the findings of

our analysis process; for instance the protocol emulator was used

to confirm the existence of the foreign currency flaw in UK issued

credit / debit cards.

To maintain the linkage between the protocol emulator code and

the UML diagrams / EMV specification, we insert comments into

the Java code. These comments contain the same descriptive text

and references as per Table 1. In this way, each line of Java code

can be traced back to its origin in the EMV specification and can

also be understood as part of the overall protocol sequence thanks

to the references to the UML diagrams.

2.4 Formal Abstract Model
In this work, we studied the EMV requirements documents [4][5]

to produce a formal abstract model of its properties and

functionalities, specifically for the Visa fDDA contactless

transaction protocol (summarised in Figure 6). The motivation is

to capture these requirements mathematically, enabling checking

that the properties of interest hold (i.e. the requirements

documents are consistent), and to produce test cases for our EMV

emulator derived from formal proof of operational feasibility of

each protocol stage (i.e. by proving the stage is feasible, we

expose both abstract behaviours: normal and exceptional).

2.4.1 Implementation of the Abstract Model
Our abstract model uses the Z notation [13]. Proof obligations in

Z are usually of three kinds: well-formedness of models, where

partial functions are applied within their domains, and unique

existential quantifiers are sound; operational feasibility, where

specified operations have (implicitly defined) preconditions strong

enough to establish (explicitly defined) post-conditions; and data

reification via (usually forward) simulation, where the use of

(concrete) data structure representations in operations closer to an

implementation language are shown to respect the abstract

representation and operations.

Our models have 49 type definitions, 61 Z schemas representing

the NFC operations of the protocol, and 79 proofs in total, of

which 49 are theorems representing properties of interest for the

whole model [7]. Feasibility proofs are useful in deducing formal

model-based test cases, as they characterise the complete space of

behaviours for all operations of interest, including successful and

all possible error cases, both determined by mathematical

predicates representing disjoint behaviours of the protocol. That

is, feasibility proofs characterise a set of disjoint predicates with

(in EMV’s case) non-overlapping conditions that when

accumulated lead to true (e.g. pre-condition of an operation being

x < 0 or x > 0 or x = 0). Thus, each disjunct represents a unique

class of behaviours for the functionality being proved. Moreover,

we also prove that these disjunct predicates amount to true, hence

we guarantee all behaviours are accounted for.

The formal model follows the methodology advocated in [2],

which enumerates requirements realised by each piece for formal

specification. Thus, if all elements of the requirements are

accounted for within the abstract mathematical model in a way

that conveys the intended behaviour described in English, then

proofs about the abstract model (or rather, proof failure) will lead

(as our experiments show) into potential attacks and

vulnerabilities discovered through proof investigation. Once

validated by EMV experts, such formal model becomes a more

4

accurate representation of the EMV protocol than the EMV books

[4][5].

These efforts correspond to the POS terminal side of Figure 6.

The mechanisation of a formal concrete design, together with a

proof of refinement indicate that these designs faithfully satisfy

the abstract model linked to the requirements. Refinement proofs

are perhaps the most costly aspect of a proof exercise, as it needs

to establish that the implementation details do not breach any of

the contractual requirements established by the abstract model.

This concrete model can then serve to annotate the Java (or any

other implementation) with formal specification for code-level

functional correctness as done by tools such as VeriFast [11].

Furthermore, we derive a set of test cases from this abstract model

that is the smallest with highest coverage possible. We also

derive a systematic code-annotation technique, using the same

principle to enumerate what aspect of the requirements each piece

of code within the emulator is realised. These test cases represent

a test-oracle based on requirements testing, rather than testing for

any implementation issues. Together, the test cases and

systematic code annotation are useful for capturing potential

(major) errors. Errors from the concrete design are more likely to

expose problems with implementation choices, and it is our aim in

the future to annotate the emulator code with formal specification

amenable to static analysis of the properties corresponding to the

behaviour of the code.

2.4.2 Abstract Model for Foreign Currency

Transaction Limits
EMV specifies the transaction currency as one of the data fields

for mandatory inclusion in the Application Cryptogram (AC) [4].

This indicates the importance of the currency as it is one of the

fields which is cryptographically protected against alteration.

Nevertheless, the EMV books do not specify the process required

when the terminal and the card have different currencies. This

omission was discovered as part of the process to formulate the

pre-conditions for the abstract model that currency exchanges

were consistent. It was clear that the currency was one of the pre-

conditions that should be included in the model, but we could not

establish the correct process or outcome when the terminal

currency was different from the card’s currency.

The abstract model has identified the following pre-conditions

relating to currency: (i) the native currency of the card; (ii) the

native currency of the POS terminal; and (iii) the currency of the

current transaction. For instance, when assembling the fDDA

Processing Data Objects List (PDOL) for a Visa NFC transaction

we get the following Z schema (from [7]):

It creates the NFCVisaPDOL! with the adequate fields from both

the card’s and transaction’s data. The PDOL amount, however,

needs to be corrected for the card’s target/preferred currency. For

that we use a bijective function linking currencies and countries,

as well as the agreed transaction currency (returned as

tcurrency!), and the given cardCurrency? input for the

given amount. This PDOL is then used to produce the AC and the

Signed Dynamic Authentication Data (SDAD) for the validation
of the transaction, by the bank and the POS terminal respectively.

We could satisfy all requirements when cardCurrency? is

equal to tCurrency!; however we could not do the same when

they are not equal. This prompted us to run foreign currency

transaction experiments on real credit cards using the emulator,

revealing the vulnerabilities leading to the attack.

3. OVERVIEW OF THE ATTACK
Figure 2 shows the key elements of the attack and how they
interact with the EMV payment system.

Figure 2. Transaction harvesting attack

The attack consists of two stages:

 Attackers (collection of fraudulent transactions): attackers

using Near Field Communication (NFC) enabled Android

mobile phones can collect fraudulent transactions from

unsuspecting cardholders. This can be done whilst the

contactless card is still in the cardholder’s pocket (see steps 1
to 3 of Figure 2).

 Rogue merchant (converting transactions into money): a

rogue merchant converts the collected transactions into

money in their bank account by sending the transaction data
to a bank (steps 4 to 5 of Figure 2).

Finally the transaction request enters the Card payment clearing

system where the rogue merchant’s bank acts innocently to

transfer the transactions into the card payment system, which

transfers the money from the victim’s bank account into the rogue
merchant’s bank account (see steps 6 to 10 of Figure 2).

3.1 Collecting fraudulent transactions
Transactions are collected using a malicious app written for NFC-

enabled Android mobile phones. The app automatically initiates

and collects a transaction immediately upon detection of a

contactless credit / debit card in the phone’s NFC field. This

process takes less than 500 milliseconds from card detection to
transaction completion.

It is imagined that attackers will operate in a similar way to

pickpockets, hiding their activity in crowded situations such as on

public transport or in the crowd at an event. When a credit / debit

card is detected, the app gives the attacker an audible signal

through their headphones; a second audible signal is given when

the transaction collection is complete. This will allow the attacker

to operate without attracting too much attention.

5

3.1.1 Hardware
An Android mobile phone is chosen as the attack platform for the

following reasons:

 Android mobile phones have a built-in NFC reader.

 An Android phone is an innocuous item for the attacker to

carry in a crowded place; for example, it will not raise

attention if the attacker is stopped by the police, since

everyone carries mobile phones these days.

 The mobile phone platform provides portability, Internet

connectivity and good battery life, making it a very capable

attack platform.

3.1.2 The transaction collecting app
The attack starts when the NFC-enabled Android phone identifies

a contactless credit / debit card which is vulnerable to this attack

in the victim’s wallet. The app sends a transaction request to the

vulnerable card.

The app plays an audible alert to the attacker to signal that a

vulnerable card has been found.

When the victim’s card receives the transaction request message,

it can approve or decline the transaction. If the card approves the

transaction it generates the AC and the SDAD, this proves to the

bank and POS terminal respectively that the card that approved

the transaction was genuine (see Section 4.3 for more detail).

The cryptographic algorithms used to generate the AC and SDAD

also ensure that the transaction details cannot be changed

subsequent to the card authorising the transaction.

When the attack is complete the app plays a second audible alert.

3.1.3 Storage of approved transactions
The app was designed to operate in locations where an Internet

connection is not always available, for example on underground

public transport. Therefore the app will initially just store the

transaction authorisation data returned by the victim’s card.

When a reliable Internet connection is available, the app will send

the stored transaction data to the rogue merchant who will convert

the transaction data into money.

The ability to capture fraudulent transactions offline and store

them for later transmission is one of the novel features of this

attack. This allows the attack to be operated on a large scale

without the need for synchronisation.

Furthermore, storing the transactions minimises the time required

to collect fraudulent transactions as the app does not have to wait

for a connection. It also allows the attackers to operate in victim-

rich crowded places that are normally without an Internet

connection such as on subway trains, on buses and at large events.

3.2 Converting transaction data into money
The criminals would set up a rogue merchant account with an

acquirer bank in one of the 76 countries that accept EMV

payments. This rogue merchant will receive the fraudulent

transactions collected by the attackers and convert them into

money by sending the transaction data to the bank.

The rogue merchant consists of three elements:

 An Internet-based listening service, which will receive

collected transaction data from attackers.

 A data format conversion process, which converts the

fraudulent transactions collected by the attackers into the

format required by the bank.

 A rogue Point of Sale (POS) terminal, which must imitate the

actions of a legitimate POS terminal so that it does not raise

the bank’s suspicion. To achieve this, the rogue POS takes

the previously converted data, adds the merchant data and

sends that data to the bank using an Internet Protocol (IP)

connection.

3.2.1 Internet-based listening service
The rogue merchant provides an Internet-based listening service

on a pre-arranged IP address and port number, to receive the

fraudulent transactions from the attackers. The transactions are

initially stored to be processed later, once the merchant details

have been added to the transaction and the connection to the

acquirer bank is available.

3.2.2 Data format conversion process
Financial presentment request messages are used to transmit EMV

credit / debit card transactions between the merchant (who

captured the transaction) and the acquirer bank (who will process

the transaction).

Merchant-related data such as merchant ID, terminal ID and the

merchant’s bank account details are added to the transaction to

complete the data required by the EMV card clearing system. The

fraudulent transaction is now ready for transmission to the

acquirer bank.

The exact format of the message will differ slightly between

different acquirer banks. However, there are a number of

mandatory fields that are the same for every acquirer bank.

Standard 70 [12] in the UK and ISO 8583 [8] in other EMV

countries define the mandatory data fields which must appear in

the financial presentment request message and the optional fields

which may differ between the acquirer banks.

The software for our attack prototype implements a Standard 70

message format, complete with all of the mandatory fields and a

number of optional fields (see Section 6).

3.2.3 Rogue POS terminal process
Once correctly formatted, the financial presentment request

message is sent to the bank. The acquirer bank returns a financial

presentment response message, to which the merchant responds

with a financial presentment confirmation message that

acknowledges receipt of the acquirer’s response message.

The supported communication options for this message exchange

are PSTN, X25 over ISDN, IP over ISDN, and IP over public

networks (i.e. the Internet) for transmission of messages between

the merchant and the acquirer bank. The software implementation

presented in this paper uses IP over the Internet.

Our software implements data format conversion (Section 3.2.2)

and implements the sending of the financial presentment request

message over an IP connection protected by SSL/TLS encryption.

For obvious reasons we were not willing or able to check against a

real bank. Of course, one approach to defeating the attack is to try

to detect rogue POS behaviour at the bank, but it is not clear how

well this can be done. A simple solution would be to have the

payment card reject any contactless foreign currency transaction

immediately, but is just not practical. As we will argue in Section

8, a more effective solution can be implemented by either forcing

6

foreign currency contactless transactions to be carried out in

online mode only, or where that is not possible, to switch the

transaction to "Chip & PIN".

4. EMV TRANSACTION SAFEGUARDS
In the UK, EMV credit / debit cards can perform two different

transaction types: contactless “tap and go” transactions, and

contact “Chip & PIN” transactions.

4.1 Contactless “tap and go” transactions
Contactless transactions are intended to be a quick and convenient

replacement for small cash purchases. In a contactless payment,

the credit / debit card is placed on the POS terminal’s contactless

reader for less than 1 second and the payment is approved.

There are two significant differences between a contactless

transaction and a contact “Chip & PIN” transaction. First, the

contact transaction requires the cardholder to enter their PIN,

whereas the PIN is not required for contactless transactions.

Second, contact transactions require the card to be removed from

the wallet and inserted into the POS terminal, whilst contactless

transactions is completed wirelessly by placing the card on the

POS terminal, this can be done whilst the card is still in the wallet.

PIN entry provides one of the key safeguards in “Chip & PIN”

transactions. The PIN ensures that only the cardholder, who

knows the PIN, can use the card. Contactless transactions are not

protected by PIN entry. EMV have therefore implemented the

following safeguards to limit the potential loss from lost or stolen

contactless cards:

 In the UK, each contactless transaction is limited to £20; any

transaction above this value will require a Chip & PIN

transaction.

 EMV cards are limited to five consecutive contactless

transactions, after which the PIN must be entered in a “Chip

& PIN” transaction.

These safeguards ensure that the maximum loss due to a lost or

stolen contactless card is £100.

4.2 Contact “Chip & PIN” transactions
The majority of EMV card transactions are “Chip & PIN”

transactions. “Chip & PIN” transactions allow purchases up to

the balance of a debit card or the credit limit of a credit card.

“Chip & PIN” transactions are protected by the following

safeguards. First, the cardholder must enter their PIN to authorise

the transaction. This is used to ensure that the person making the

payment is the authorised cardholder.

Second, if the value of the transaction is greater than the card’s

offline transaction limit, the card will request that the POS

terminal makes an online connection to the bank to perform

additional authorisation checks. The POS terminal must connect

to the bank to provide the card with the online authorisation code

(Authorisation Response Cryptogram (ARPC)). The bank will

respond with the authorisation code only if the card has not been

reported lost or stolen, and the account has sufficient funds to pay

for the transaction. The card will only authorise the transaction if

it receives a valid online authorisation code from the POS

terminal.

4.3 Cryptographic protection of transactions
The EMV payment system utilises cryptography to ensure that (i)

only genuine EMV credit / debit cards can authorise transactions

(ii) the transaction details approved by the card cannot be altered.

4.3.1 Application Cryptogram (AC)
The AC contains a Message Authentication Code (MAC). The

MAC utilises a symmetric algorithm, either Triple DES or AES,

to encipher the transaction data fields detailed below:

 amount authorised (value of the purchase)

 amount other (cashback amount if required)

 terminal country code (UK - 0826, USA - 0840 etc.)

 terminal verification results (POS status code)

 transaction currency code (UK£ - 0826, US$ - 0840 etc.)

 transaction date

 transaction type (purchase - 00, cash - 01, refund - 20)

 POS terminal unpredictable number (prevents cloned cards)

 application interchange profile (card’s security capabilities)

 application transaction counter (card’s transaction counter)

The AC is sent to the bank as part of the Financial Presentment

message (see Table 2). This allows the bank to verify that the

transaction details supplied by the merchant are the same as the

transaction approved by the EMV card.

4.3.2 Signed Dynamic Authentication Data (SDAD)
The SDAD is a RSA digital signature on a SHA1 hash of the

transaction data. In the Visa fDDA protocol the transaction data

included in the SDAD are:

 POS terminal unpredictable number

 amount authorised

 transaction currency code

 card unpredictable number

 card transaction qualifiers

The SDAD is used by the POS terminal to verify that the card is

genuine in an offline transaction.

5. EMV FUNCTIONALITY EXPLOITED

BY THE ATTACK
The attack circumvents the safeguards built into EMV credit /

debit cards by exploiting some EMV functionality that has been

made vulnerable due to the introduction of contactless payment

interface. In particular, there are three features that are exploited

in our attack scenario:

 Contactless foreign currency transactions. As described in

Section 4.1, the safeguards built into EMV will limit the

maximum value allowed for each contactless transaction to

£20. Any amount over £20 will require the cardholder to

enter their PIN, and any amount above the offline transaction

limit (e.g. £100) will require the POS terminal to connect to

the bank to perform additional checks before the transaction

is approved. Our research has found that EMV credit and

debit cards can be tricked into approving contactless

7

transactions of much higher value than £20, simply by

requesting the transaction in a foreign currency. In our

experiments, EMV cards have been found to approve

contactless transactions up to €999,999.99 without requesting

the PIN, and without requesting that the POS terminal goes

online to perform additional checks. This sidesteps the usual

safeguards employed by EMV payments system.

 Wireless interaction with card. This attack exploits the

wireless interface on contactless cards to collect transaction

authorisations whilst the card remains in cardholder’s wallet.

This means the cardholder remains unaware that they have

been exploited until their card statement arrives, thereby

allowing the attack to operate for longer and be more

lucrative to the attackers.

 The merchant ID and terminal ID can be added later by the

rogue merchant, as these data are not included in the AC

generated by the card. The AC cryptographically ensures that

the transaction data approved by the card is the same as that

received by the issuing bank (see Section 4.3).

6. IMPLEMENTATION
To validate our research, we have implemented a number of

software elements which demonstrate the viability and practicality

of the attack. The software consists of three separate applications:

 An Android mobile phone app which captures transactions

from the cards. Transactions are stored on the Android

phone to be transmitted to the rogue merchant later.

 A rogue merchant Internet listening service which waits to

receive the captured transactions from attackers using the

Android mobile phone app.

 A rogue merchant bank communications module which

packages the transactions into financial presentment request

messages for transmission to the bank. This module handles

all of the communication with the bank, which involves

sending the financial presentment request messages and

receiving acknowledgement messages.

6.1 Android transaction capture app
We have implemented the attack platform on an NFC enabled

Android mobile phone as this would be an innocuous device for

an attacker to carry around in a crowd.

6.1.1 Attack platform
For implementation and testing, we selected the Google Nexus 5

mobile phone. Implementing on a mobile phone platform limits

the effective range to approximately 1 cm. However in testing the

Nexus 5 was capable of extracting transactions from an EMV

contactless card which was located in a leather wallet in the

pocket of a pair of jeans worn by our “unsuspecting” test victim.

6.1.2 Android app operation
The attacker starts by pre-setting the amount and currency for all

the transactions which will be captured from the victims cards.

Figure 3 shows the attacker setting the amount to 999,999.00 and

setting the currency to 0978 which is the code for Euros. In

testing we have also obtained transaction approvals in US Dollars

for $999,999.99 (currency code 0840).

The app is now ready and will automatically collect a transaction

from every EMV contactless card that it detects, without any

further interaction from the attacker. This will minimise the

chance of the attacker being detected, as they are not constantly

interacting with their phone.

Figure 3. Capture transaction settings

Figure 4. Capturing the transaction

In Figure 4 the screen on the left shows the app waiting to detect

an EMV contactless card. The screen on the right shows the

€999,999.99 transaction being captured from the card.

When the app detects an EMV contactless card, it sounds an

audible alert in the attacker’s headphones; a second alert is given

once the transaction has been successfully collected. This takes

less than 500 milliseconds. Once the transaction has been

captured the app stores the transaction data for transmission to the

rogue merchant later. As soon as the app has collected a

transaction, it automatically returns to waiting to detect another

EMV card; it is now ready to collect the next transaction.

Figure 5 shows the data fields as captured by the app, this

includes all of the data and cryptographic authorisation codes

required by the bank to accept the transaction as genuine.

8

The mobile app stores transaction data until it has an Internet

connection, at which point the app transmits the data to the rogue

merchant.

Figure 5. Captured transaction data

6.1.3 Transaction protocol
The code implements the Visa fDDA [5] contactless transaction

protocol sequence (depicted as Figure 6) as this is an offline only

contactless protocol. This allows the attack to be performed in

less than 500 milliseconds and avoids additional validation by the

bank.

Payment CardPOS Terminal

1.0 InitiateTransaction()

3.0 PresentCardToTerminal()

4.0 ListAvailableNFCApplications()

4.1 List of available applications

7.0 SelectApplication(AID)

7.1 Transaction setup data inc. PDOL list

4.2 Command Error

7.2 Command Error

9.0 GetProcessingOptions(PDOL data)

9.7 Transaction Approved - TC + SDAD +

Application Cryptogram (AC) + AFL

9.8 Transaction Must Go Online -ARQC

9.10 Command Error

9.9 Transaction Declined - AAC

10.0 ReadAFLRecord(SFI, Record)

10.1 AFL record

[for each AFL SFI / record]

12.0 RemoveCard()

Loop

9.1 GenerateUPN()

9.2 GenerateSDAD()

9.3 GenerateAC()

9.4 UpdateTransactionCount()

9.5 DecrementNFCCount()

9.6 UpdateAvailableOffline()

11.0 ValidateTransaction()

8.0 PopulatePDOL()

2.0 WaitForCard()

5.0 ChooseAID()

6.0 SelectTheKernel(AID)

Figure 6. Visa fDDA transaction protocol sequence

6.1.4 Storing the transaction data
The transaction data is sent by the card in TAG / Length / Value

(TLV) format. The Android application stores all of the data fields

returned by the card for later transmission to the rogue merchant.

6.1.5 Transmission to the rogue merchant
Our software can collect and store multiple offline transactions,

without a connection to the Internet. The stored transactions can

then be transmitted once a suitable connection is available. The

transaction details will include all of the data fields required by

the bank. The Application Cryptogram (AC) and the clear text

equivalent fields listed in Section 4.3 are arguably the most

important, as together they are used by the bank to verify and

thereby approve the transaction.

6.2 The rogue merchant application
The rogue merchant application consists of three processes:

 an Internet listening service to receive the transactions from

the Android transaction capture app

 a data conversion module which converts the EMV data in

TLV format into the ISO 8583 / Standard 70 format required

by the bank

 a POS terminal emulation which sends the formatted data to

the bank to collect the money from the fraudulent

transactions

6.2.1 Internet based listening service
This is a simple Internet based service which listens to a pre-

agreed IP address and port number. The Android transaction

capture app (Section 6.1) connects to the pre-arranged IP address

and port number to send all of the collected transactions to the

rogue merchant. The listening service stores the transactions for

later processing.

6.2.2 Data conversion process
The data conversion process accepts TLV data as captured from

the EMV credit / debit card and converts it into ISO8583 /

Standard 70 format required by the bank.

To request the money from the victim’s account, the rogue

merchant must send a financial presentment message (in ISO8583

or Standard 70 format) to the acquirer bank that holds their

merchant account.

Table 2 shows the data fields required by the ISO 8583 financial

presentment message and shows how the rogue merchant will

complete the data fields from the data generated by the EMV card

during transaction approval.

6.2.3 POS terminal emulation
Once the financial presentment request message has been

generated, it is sent to the acquirer bank to complete the

transaction and transfer the money from the victim’s bank account

into the rogue merchant’s account.

In the UK, communications with the acquirer bank over a public

IP network must be protected using Secure Sockets

Layer/Transport Layer Security (SSL/TLS) or IPSec [12].

The use of standard encryption such as SSL/TLS and/or IPSec

allows the rogue terminal to be implemented in Java on a PC

platform; no specialist hardware is required.

9

Table 2. Financial presentment message data requirements

Item Name Description and mapping to EMV card data

1 bit map extended List of fields included in the message

2 primary account number 0x5A – 16-digit card account number

3 processing code Constant 00 for goods and purchases

4 amount, transaction 0x9F02 – the transaction amount

5 amount, reconciliation Transaction amount 0x9F02 converted into the currency to be applied to the

victim’s card, this value is calculated by the rogue POS terminal

7 date and time, transmission Date and time the rogue POS transmits the transaction to the bank

9 conversion rate, reconciliation Conversion rate for the reconciliation amount, calculated by the rogue POS

terminal

10 conversion rate, cardholder billing As above; this value is calculated by the rogue POS terminal

11 systems trace audit number Transaction sequence number generated by the rogue POS terminal

14 date, expiration 0x5F24 – Expiry date of the card (YYMM)

16 date, conversion Date / time of the currency conversion (same as 7)

19 country code, acquiring institution Country code of the rogue POS terminal (e.g. 0826 for UK, 0840 for USA, 0036

for Australia)

20 country code, primary account number 0x5F28 – Country code for the card i.e. 0826 – UK

21 country code, forwarding institution 0x5F28 – Country code for the bank that issued the card i.e. 0826 – UK

22 point of service entry mode Type of POS terminal, constant value “051” for Chip & PIN / EMV contactless

terminals

23 card sequence number 0x5F34 – Identifies subsidiary EMV cards issued on the same 16-digit account

number

25 point of service condition code Constant “00” normal card presentment

26 point of service PIN capture code Constant “x8xx” indicates a POS terminal that accepts up to 8 digits

27 approval code length Constant set by acquirer bank

32 acquiring institution identification code Constant set by acquirer bank

33 forwarding institution identification code Constant set by acquirer bank, indicates the institution that will provide the card

payment clearing (steps 6 to 9 in Figure 2)

34 primary account number, extended Not applicable to Visa – used only when the primary account number begins

with “59”

39 action code (was response code) Constant “0xx” for financial transaction request messages

43 card acceptor name/location Constant string name and location of the merchant

49 currency code, transaction 0x5F2A – Transaction currency code

50 currency code, reconciliation Currency code for reconciliation, see item 5

51 currency code, cardholder billing 0x9F42 – Currency Code from the card.

66 country code, receiving institution 0x5F28 – Country code for the bank that issued the card i.e. 0826 – UK

100 receiving institution identification code Code that identifies victim’s bank – ISO 7812

102 account identification 1 Information contained in 16-digit card account number 0x5A

103 account identification 2 Information contained in 16-digit card account number 0x5A

In the above table, data fields from the EMV card data are denoted by their EMV reference number e.g. 0x5A.

10

Table 3 shows the communication sequence required for the POS

emulation to transmit a transaction to the acquirer bank.

Table 3. POS / acquirer communication sequence

Message
From →

To
Purpose

financial presentment

request message

POS →

Acquirer

Requests approval and

money transfer by the

acquirer

financial presentment

response

Acquirer

→ POS

Contains the answer to the

request

financial presentment

confirmation

POS →

Acquirer

Confirms that the

response was received

7. TEST RESULTS
The attack software has been tested against various UK-issued

credit / debit cards. Table 4 shows the vulnerability of several

different card types.

Table 4. Vulnerability of UK-issued contactless card types

Card Type Max Value Comment

Visa credit cards

(UK currency)
£85.00

Visa credit cards will

approve multiple

transactions until offline

limit reached

Visa credit cards

(foreign currency)

€999,999.99

$999,999.99

Visa credit cards will

approve foreign currency

transactions up to the

maximum value possible

in EMV

Visa debit cards

(UK currency)
£45.00

Visa debit cards will

approve multiple

transactions until offline

limit reached

Visa debit cards

(foreign currency)

€0.00

$0.00

Visa debit cards decline

foreign currency

contactless transactions

MasterCard N/A

MasterCard is not

affected by this attack as

the cards request online

completion of transactions

in local currency and

foreign currencies

7.1 Transaction capture timings
The Android transaction capture app is designed to operate as

quickly as possible, thereby reducing the risk of detection for the

attacker. The software automatically collects the fraudulent

transaction as soon as it detects a Visa contactless credit or debit

card. Table 5 shows analysis of protocol timings from 20 captured

fraudulent transactions.

Table 5. Fraudulent transaction capture timings

Statistics Time (in milliseconds)

Average transaction duration (card

discovery to transaction approval)
478ms

Standard deviation 36ms

Fastest transaction 452ms

Slowest transaction 527ms

8. POTENTIAL SOLUTIONS
The key weakness exploited in this paper is that Visa credit cards

will authorise unlimited value transactions in a foreign currency.

This makes the attack described in this paper both scalable and

very lucrative.

The solution is relatively simple. This can be done by changing

future Visa credit cards to implement one or both of the

following:

 the cards will request online completion of contactless

foreign currency transactions; making the transaction subject

to the additional online verification steps.

 the cards will force “Chip & PIN” completion of all foreign

currency transactions; this will eliminate the possibility of

high value transactions without the added security of

cardholder’s PIN.

9. CONCLUSION
In this paper we have demonstrated that it is possible to collect

high value transactions from contactless Visa credit cards whilst

the card is still in the victim’s pocket. The attack exploits a

previously undocumented flaw in the cards, in which the cards

will approve transactions of unlimited value in a foreign currency.

Combined with the lack of POS terminal authentication and the

threat of contactless payment card skimming, this vulnerability

poses a real risk that allows high value fraudulent transaction to

be harvested and converted into money.

Our experimental results show that the attack could be

implemented in the “real world” because:

 it takes less than 500milliseconds to collect a transaction

 NFC enabled Android phones are cheap and readily available

 the phone looks innocent if the attacker is challenged by the

police or a member of the public

We have also outlined a scenario by which the captured fraudulent

transactions could be exploited by a rogue merchant to access the

money in the victim’s bank account. The rogue merchant receives

the transactions and passes them off as genuine transactions to

their bank. It should be noted that although we have implemented

the rogue POS terminal software, we have not tested it against a

live acquirer transaction clearing system.

From this we can conclude that this attack represents a plausible

threat to contactless Visa credit cards. We can also see that it can

be easily remedied.

We have proposed two simple changes in the operation of Visa

credit cards that would eliminate the risk posed by this attack.

Both of which use the existing functionality of the cards and

would therefore be relatively inexpensive to implement.

10. ACKNOWLEDGMENTS
Our thanks to Feng Hao and Dylan Clarke for proof reading some

sections of this paper. The work presented here is partly

supported by the UK RCUK Social Inclusion through the Digital

Economy (SiDE) EP/G066019/1 project and the UK EPSRC

Cybercrime Network EP/K003410/1.

11

11. REFERENCES
[1] Bond, M., Choudary, O., Murdoch, S.J., Skorobogatov, S.,

Anderson, R. 2014. Chip and Skim: cloning EMV cards with

the pre-play attack. 35th IEEE Symposium on Security and

Privacy. http://arxiv.org/pdf/1209.2531.pdf

[2] Cooper, D. and Barner, J. 2008. Tokeneer ID station EAL5

demonstrator. Technical Report S.P1229.81.1, Altran Praxis.

[3] Drimer, S. and Murdoch, S.J. 2007. Keep Your Enemies

Close: Distance Bounding Against Smartcard Relay Attacks.

16th USENIX Security Symposium, Boston, MA, USA.

http://www.cl.cam.ac.uk/~sjm217/papers/usenix07bounding.

pdf

[4] EMVCo. 2011. EMV Integrated Circuit Card Specifications

for Payment Systems – Version 4.3.

http://www.emvco.com/specifications.aspx?id=223

[Accessed: 22 August 2014]

[5] EMVCo. 2014. EMV Contactless Specifications for Payment

Systems – Version 2.4.

http://www.emvco.com/specifications.aspx?id=21

[Accessed: 22 August 2014]

[6] Francis, L., Hancke, G., Mayes, K., Markantonakis, K. 2012.

Practical Relay Attack on Contactless Transactions by Using

NFC Mobile Phones. The 2012 Workshop on RFID and IoT

Security (RFIDsec 2012 Asia), Nai-Wei, L., Yingjiu, L.

(editors). Vol. 8, IOS Press (Cryptology and Information

Security Series), pp. 21-32.

http://eprint.iacr.org/2011/618.pdf

[7] Freitas, L. and Emms, M. 2014. Formal specification of

EMV protocol. School of Computing Science Technical

Report Series 1429, Newcastle University.

[8] International Organization for Standardization. 1995. ISO

8583:1995 – Financial transaction card originated messages

– Interchange message specifications.

[9] Murdoch, S.J., Drimer, S., Anderson, R., Bond, M. 2010.

Chip and PIN is Broken. IEEE Symposium on Security and

Privacy, pp. 433-446.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5

504801&isnumber=5504699

[10] Reason, J. 1990. Human Error. Cambridge University Press.

[11] Smans, J., Jacobs, B., and Piessens, F. 2013. VeriFast for

Java: A Tutorial. In: Clarke, D., Noble, J., Wrigstad, T. (eds.)

Aliasing in Object-Oriented Programming. LNCS, vol. 7850,

pp. 407– 442. Springer, Heidelberg.

[12] The UK Cards Association Limited. 2013. Standard 70 –

Card Acceptor to Acquirer Interface Standards.

[13] Woodcock, J. and Davies, J. 1998. Using Z. Prentice Hall.

http://arxiv.org/pdf/1209.2531.pdf
http://www.cl.cam.ac.uk/~sjm217/papers/usenix07bounding.pdf
http://www.cl.cam.ac.uk/~sjm217/papers/usenix07bounding.pdf
http://www.emvco.com/specifications.aspx?id=223
http://www.emvco.com/specifications.aspx?id=21
http://eprint.iacr.org/2011/618.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5504801&isnumber=5504699
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5504801&isnumber=5504699

