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Abstract. The frequent use of basic statistical techniques to detect ran-
somware is a popular and intuitive strategy; statistical tests can be used
to identify randomness, which in turn can indicate the presence of en-
cryption and, by extension, a ransomware attack. However, common file
formats such as images and compressed data can look random from the
perspective of some of these tests. In this work, we investigate the cur-
rent frequent use of statistical tests in the context of ransomware de-
tection, primarily focusing on false positive rates. The main aim of our
work is to show that the current over-dependence on simple statisti-
cal tests within anti-ransomware tools can cause serious issues with the
reliability and consistency of ransomware detection in the form of fre-
quent false classifications. We determined thresholds for five key statis-
tics frequently used in detecting randomness, namely Shannon entropy,
chi-square, arithmetic mean, Monte Carlo estimation for Pi and serial
correlation coefficient. We obtained a large data set of 84,327 files com-
prising of images, compressed data and encrypted data. We then tested
these thresholds (taken from a variety of previous publications in the
literature where possible) against our dataset, showing that the rate of
false positives is far beyond what could be considered acceptable. False
positive rates were often above 50% and even above 90% on several oc-
casions. False negative rates were also generally between 5% and 20%,
numbers which are also far too high. As a direct result of these experi-
ments, we determine that relying on these simple statistical approaches is
not good enough to detect ransomware attacks consistently. We instead
recommend the exploration of higher-order statistics such as skewness
and kurtosis for future ransomware detection techniques.

Keywords: ransomware · anti-ransomware · statistical tests · random-
ness · entropy · chi-square.

1 Introduction

Ransomware is a strain of malware which, upon compromising a victim’s ma-
chine, denies access to a user’s resources. Typically, this is achieved through the
use of a hybrid cryptosystem, where user data is encrypted using symmetric
keys. These keys are then encrypted using asymmetric cryptography, such as
RSA, and the private key is held by the attacker on their Command & Control
(C&C) infrastructure [12]. In this scenario, the attacker would hold the encrypted
data for ‘ransom’, demanding a payment (typically via a cryptocurrency such as
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Bitcoin) from the victim in order to restore their data. This type of ransomware
is known as Crypto-Ransomware [16], and is the main scope of this analysis.

Ransomware is an ever-growing threat and continually causing widespread
disruption. Alarmingly, we have recently observed more targeted attacks, i.e.
ransomware attacks aimed at specific organisations with the intention of causing
maximum damage [2]. For example, the Spanish company Everis was hit by the
BitPaymer ransomware in 2019. It was shown that the ransom note deployed
was specifically aimed at Everis, and the extension used for encrypted files was
.3v3r1s [5]. Additionally, Norsk Hydro was hit by ransomware in 2019 and de-
spite huge disruption to their production lines, they refused to pay the ransom.
They were able to recover from the attack through use of trusted backup servers,
whilst consulting paper documentation to continue business throughout the re-
covery process. This manual recovery process cost Norsk Hydro £45 million [24],
but the company correctly refused to fund the cybercriminal economy.

Thankfully, we have also witnessed an increase in anti-ransomware research.
One such avenue of research covers the development of techniques and tools
aimed at the early detection and recovery from ransomware attacks. A recurring
approach to detecting ransomware is the use of statistical tests for randomness,
because properly encrypted data should appear completely random to anyone
not in possession of the key. Therefore, the problem of detecting ransomware can
be (somewhat simplistically) reduced to the problem of detecting random data
being written to the filesystem. However, this assumption can be problematic.

Motivation. Whilst the use of statistical tests to detect ransomware has shown
promise in the literature, it also raises issues. Most notably, the processing of
random data on a machine does not automatically imply that it is under attack
by ransomware. It is common for perfectly benign data on the filesystem to
appear random and this happens with various image formats (e.g. JPEG and
PNG), as well as frequently after the use of compression tools. Additionally,
even if the presence of randomness is the result of encryption taking place, that
does not necessarily imply that the encryption is malicious (i.e. the result of a
ransomware attack).

In this work, we explore the former of these issues by investigating both
popular image formats and types of compression commonly in use today. After
collecting a representative dataset of JPEG, PNG and WebP images, and com-
pressing and encrypting files from the Govdocs corpus [4], we ran them through
Ent [26], a battery of statistical tests for randomness. We compared their output
to various thresholds in use by current state-of-the-art anti-ransomware tools,
and show our findings in Section 5. We show that the thresholds in use by these
tools often result in too many false positives, which leads to unencrypted data in
the filesystem being incorrectly labelled as encrypted by a ransomware attack.

Contributions. Firstly, we highlight the issue that one of the most popular
approaches to detecting ransomware is potentially flawed. This weakness could
present a serious problem to many anti-ransomware tools. We also provide in-
sights into statistics beyond those that are currently used in this context, in order
to illustrate the fact that the approach of using statistics to detect ransomware
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needs improving in general. We would like to stress that this does not mean that
there are underlying problems with the statistical tests themselves. The problem
is with using the tests in this context (i.e. for ransomware detection).

Secondly, we provide a number of recommendations for future work in light
of our results. We highlight that the statistics which show the most promise in
this context are chi-square and serial byte correlation. However, we believe that
the research community should also look more carefully to alternatives such as
variance, standard deviation, skewness and kurtosis. Finally, in the interests of
scientific reproducibility, we have made all of the code we used freely available
and open-source, as well as the datasets we used in our analysis.

The rest of the paper is structured as follows. In Section 2, we discuss some
of the major uses of statistics to identify ransomware, as well as previous works
which analyse this approach. In Section 3, we provide some intuition as to why
these tests are used in ransomware detection. Section 4 explains the method-
ology we followed in our experiments, and Section 5 presents and analyses our
results. In Section 6, we discuss what these results mean for anti-ransomware
development, and we provide some recommendations for ransomware detection
moving forwards. Finally, in Section 7, we conclude our work.

2 Related Work

The use of statistical approaches to detect ransomware was the second most
common approach to detecting ransomware in 2019, according to an analysis
of the academic anti-ransomware landscape [20]. Genç et al. classify measuring
entropy inflation as one of the main behavioural analysis approaches to defending
against ransomware [7], and Al-Rimy et al. highlight the use of entropy in their
analysis of ransomware research [1]. There are some potential reasons as to why
statistical approaches may be so popular in this context. For example, it is quite
logical to consider using randomness tests to detect encryption (since the process
of encryption results in data that is effectively random). The relative ease with
which these randomness tests can be implemented may also be a contributing
factor. We expand more on this in Section 3.

Several anti-ransomware tools use a statistical approach. ShieldFS calculates
the entropy of data written to the filesystem and uses this as a machine learning
feature to help detect ransomware attacks [3]. ShieldFS implemented a Windows
Filesystem Minifilter Driver [17] to observe filesystem write operations, including
the data buffer over which the entropy could be calculated. In fact, the approach
of computing the entropy over filesystem write operations is a popular approach.
To evaluate the validity of a detection, UNVEIL calculates the entropy value over
the data buffer of both read and write operations [10]. If there is a significant
increase in entropy between a read and a write, random data has likely been
written and so a ransomware attack may have occurred.

Similarly, Redemption looks at the difference in entropy between a read and
its subsequent write [11]. If there was an increase, the “malice score” of the
associated process is increased, highlighting that there is a greater chance that
this is a ransomware process.
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CryptoDrop also uses entropy to help with ransomware detection [21]. This
tool relies on the fact that ransomware will continually make highly-entropic
writes to the filesystem, and takes weighted entropy averages to ensure that
the low-entropy writes resulting from writing ransom notes do not confuse the
system. CryptoDrop also looks at the delta between a read and its subsequent
write to determine the change in entropy to a specific file. Furthermore, a small
delta (0.1) is used as the threshold, to help cater for the small entropy increase
that occurs when a file that is already highly-entropic (such as compressed data)
is encrypted by ransomware. RWGuard also measures entropy as an indicator of
a ransomware attack; if the entropy of a write request to the filesystem results
in a value greater than 6, the metrics recorded for the specific file are analysed
further due to the increased possibility of a ransomware attack [15].

To the best of our knowledge, Data Aware Defence (DaD) is the only ran-
somware detection tool that uses chi-square, rather than entropy, as its detection
method [19]. In fact, detection is solely achieved using chi-square. Similarly to
the above-mentioned tools, this statistic is computed over the data buffer of
filesystem write operations, and a sliding median over the last 50 writes is used
as a basis for this calculation.

Other work has explored the robustness of using statistical approaches to de-
tecting ransomware. McIntosh et al. conclude that the use of entropy to detect
ransomware should be stopped altogether in future anti-ransomware work [14].
Two methods by which ransomware could implement encryption in such a way
as to avoid entropy-based detection measures are presented, using techniques
including Base64 encoding and partial encryption. Interestingly, the work pre-
sented tackles the same problem explored in this paper, although primarily from
the perspective of false negatives rather than false positives.

3 Randomness for Anti-Ransomware

To provide some explanation of the applicability of using randomness tests to
detect ransomware, consider data (such as writes made to the filesystem, as well
as the content of files) purely as streams of bytes (i.e. values between 0 and 255).
Random (or encrypted) data should comprise of an approximately equal number
of each byte, distributed across the data in an unpredictable way. Therefore, it is
possible to apply widely-used tests for randomness across these byte distributions
to identify the presence of random data. This may then indicate the presence of
encryption, and possibly a ransomware attack.

However, some filetypes are comprised of data which, from the perspective
of statistical tests such as entropy, actually appears random. Calculating the
entropy of a JPEG typically results in values of 7.8 and higher. Considering the
highest possible value is 8 bits per byte (i.e. completely uniform), it is clear that
an unencrypted file can look as if it has been encrypted. Figure 1 shows the
entropy values of 1,004 JPEG files, 1,000 PNG files and 1,000 WebP files that
we found in the wild (discussed in more detail in Section 4) compared with a
threshold of 7.8 (shown as a red horizontal line). This shows the consistency with
which these types of files contain highly entropic data, which raises an issue: files
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Fig. 1: Entropy values of 3,004 images found in the wild

like these will frequently cause false positives in anti-ransomware tools heavily
reliant on this statistic. We explore this in more detail in Section 5.

Below, we expand on some of the main statistical tests used to detect the
presence of a ransomware attack. Entropy and chi-square are currently used
by the academic state-of-the-art in ransomware detection. However, we analyse
three additional tests. Whilst these are not currently used by anti-ransomware
tools, the ease with which they can be implemented may make them the next log-
ical step for anti-ransomware developers so we felt it important to preemptively
examine their accuracy in this context.

3.1 Shannon Entropy

In the context of ransomware detection, entropy can be seen as a measure of
a given input’s level of uncertainty. In this case, the input would be a series
of bytes typically representing either a file’s contents or the contents of a write
request made to the filesystem. The equation for Shannon Entropy (H(X)) can
be seen below for a random variable X [22]:

H(X) = −
255∑
i=0

P (xi)logbP (xi)

In this case, the summation is between 0 and 255 as there are 256 possible values.
Additionally, b = 2 allows the representation of bits, and P (xi) is Fi

totalbytes where
Fi is the observed frequency of byte i. This equation returns a value between 0
and 8, where 0 represents totally predictable data and 8 highly uncertain data.

3.2 Chi-Square

The chi-square (χ2) test is a popular statistical test generally used to determine
if an observed distribution is statistically similar to an expected distribution [6].
In the case of perfectly random data on the filesystem, we would expect an equal
occurrence of each byte value. Therefore, for ransomware detection, we use equal
frequencies of byte values for the expected distribution, and use the following
formula to check if the observed distribution is similar:

χ2 =

255∑
i=0

(Fi − fi)
2

fi
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Here, there are again 256 possible values for a given byte. Fi and fi represent
the observed and expected frequency of byte i, respectively.

As there are 256 possible categories that a given byte could be, the degrees
of freedom for our chi-square test is set to 255 (i.e. number of categories − 1).
This allows us to refer to a chi-square distribution table and find what results
we should expect at a given significance level. Researchers often use significance
levels of 1%, 5% or 10% [23], and 5% is used in Data Aware Defence [19]. We
state as the null hypothesis that our observed input is random. After computing
the chi-square, we compare it with a distribution table at a 5% significance level.
If our value is higher than the value in the table, this situation would only occur
5% of the time for a perfectly random distribution. Our observed distribution is
therefore unlikely to be random, so we reject the null hypothesis.

3.3 Other Statistical Tests
In our experiments we used Ent, a Pseudorandom Number Sequence Test Pro-
gram [26] which quickly calculates various statistics. In addition to entropy and
chi-square, Ent provides the following statistics which we have not yet seen used
to detect ransomware:

– Arithmetic Mean. This metric is calculated by summing all of the indi-
vidual byte values and dividing by the total number of bytes. In the event
of random data, or a ransomware attack, we would expect a result close to
127.5, i.e. half way between 0 and 255.

– Monte Carlo value for Pi. For this statistic, every sequence of six bytes is
used to calculate X and Y coordinates inside a square. For a circle inscribed
within this square, the percentage of generated points that fall within the
circle can be used to calculate the value of Pi. With sufficiently long and
random data streams (for example due to a ransomware attack), the result
will be close to the value of Pi.

– Serial Correlation Coefficient. Considering a byte stream of length n,
it is possible to compare byte 0 with byte 1, byte 1 with byte 2 and so on
up until byte n in order to calculate the correlation coefficient of this data.
This is typically measured as a value between -1 and 1. The closer the value
is to one of the extremes (i.e. -1 or 1), the stronger that type of correlation
is. Random data (for example from a ransomware attack) should be highly
uncorrelated. This approach was explored by Pont et al. [20] as a potential
ransomware detection technique.

4 Methodology

In the following section, we first detail our data collection process. This covers the
collection of JPEGs, WebPs, PNGs, compressed and encrypted data. Following
this, we detail how we prepared our dataset for graph generation, and finally
discuss the creation of our threshold values.

4.1 Dataset Creation
After noticing the popularity of statistical tests to detect ransomware [20], we
began by collecting a large dataset on which we could calculate these statistics
for ourselves. Other works have noted that in the case of some filetypes, such as
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images and compressed data, their data is naturally highly entropic [11,13,21].
We therefore focused on these filetypes as we believed they would cause false
positives in state-of-the-art anti-ransomware tools. Most of our data came from
Digital Corpora’s Govdocs [4]. This is a large corpus of real files from .gov do-
mains that are freely available for research purposes. We first downloaded the
entire JPEG image corpus, containing 109,282 JPEG images. This was down-
loaded as a single compressed directory approximately 36.8 GB in size (about
37.5 GB when decompressed). Within this directory were 961 subdirectories,
each containing a number of JPEGs. In order to build a dataset of around 1,000
JPEGs in a way that is easily reproducible, we selected the first 15 of these
subdirectories, providing us with a dataset of 1,004 JPEGs (about 145.4 MB).

We then used ImageAssisstant Batch Image Downloader (a Firefox addon
which unfortunately seems to have been removed from the addon marketplace)
to collect 1,000 WebP images using the Google search engine. Hurley-Smith et
al. show that WebP files are frequently reported as random by Ent and the
FIPS 140-2 randomness tests [9], so we felt it an important filetype to include
in our experiments. We have yet to come across an anti-ransomware tool that
includes this filetype as part of their dataset, which is concerning due to its rising
popularity. In fact, WebP is in use by approximately 20,000 of all websites on
Alexa website rankings, with uptake steadily on the increase [25].

We obtained these files by searching for a keyword followed by the filetype:
operator. As an example, we searched for mountains filetype:webp, then used
the Firefox addon to download a selection of the results in bulk. After repeating
this process for 15 arbitrarily chosen keywords, we completed our collection
of 1,000 WebP images (at approximately 77.1 MB in size). We include these
keywords (along with the images themselves) in our dataset, although using
different keywords for future experiments may be a good way to corroborate our
findings. We repeated this process to collect 1,000 PNG images (at approximately
778 MB in size). This time, only 14 keyword searches were required to reach the
desired quantity of 1,000 images. These two lists of keywords were kept mutually
exclusive to ensure as diverse a dataset as possible.

To complete our image collection, we took our JPEGs and PNGs and used the
command line utility cwebp to convert them to WebP at various quality levels.
This was achieved using a bash script which takes every JPEG and PNG, runs
cwebp at quality levels 0, 25, 50, 75, 80 (the typical quality level used according
to the tool itself) and 100, and stores the output in our WebP directory. We
repeated this process with the -lossless option to include lossless WebPs.

We then moved towards compressed data, whose tendency to generate false
positives has been noted in the literature [7,15]. We compressed data from the
Govdocs threads, which are mutually exclusive sets of approximately 1,000 files.
We chose Thread 4 and Thread 5 due to their larger size (containing 986 files
(311 MB) and 989 files (295 MB) respectively). We used a bash script to call the
Gzip, BZip2 and LZMA command line utilities to compress each file separately
at each compression level (0 through 9 for LZMA, otherwise 1 through 9). A
detailed breakdown of our dataset is presented in Table 1.
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Table 1: The breakdown of our image files dataset
Filetype Quantity Size (MB)
JPEG 1,004 145.4
WebP 25,048 6100.1
PNG 1,000 778.0

LZMA 19,750 5,772.0
Gzip 17,775 5,527.0
Bzip2 17,775 5,351.0

AES Encrypted 1,975 951.7
Total 84,327 Files 24,625.2 MB

Table 2: Statistical thresholds to identify randomness
Statistic Randomness Threshold
Entropy ≥ 7.99

Chi-Square ≤ 293.25
Arithmetic Mean 126.23 ≤ value ≤ 128.78

Monte Carlo Value for Pi 3.11 ≤ value ≤ 3.17
Serial Correlation Coefficient -0.01 ≤ value ≤ 0.01

Baseline Dataset. In order to provide an idea of the statistics we would
expect for data that really has been encrypted, we encrypted each file in Thread
4 and Thread 5 separately using openssl, a command line utility on Linux
allowing the use of encryption algorithms [18]. We used the AES symmetric
encryption algorithm with a 256 bit key and the CBC mode, as ransomware
variants typically implement a hybrid encryption model where user data is en-
crypted with symmetric encryption (such as AES), and the symmetric keys are
encrypted with asymmetric encryption (such as RSA) [16].

4.2 Dataset Preparation
To calculate the statistics described in Section 3, we wrote a Python script to call
ent on the command line for each file in our dataset. Using the terse mode (-t)
option, we were able to generate output in .csv format for easy processing. These
steps provided us with the five statistics we needed for each file. We acknowledge
that anti-ransomware tools often process individual filesystem operation buffers
[3,10], however by processing entire files we are providing the tests with more
data in order to increase accuracy. We then created the graphs in this work using
Matplotlib [8], a data visualisation library for Python.

4.3 Threshold Creation
Of the five statistics we have looked at in this paper, to the best of our knowledge,
only two (entropy and chi-square) are actively being used by anti-ransomware
tools. Whilst, for entropy, the absolute threshold values used by the current
state-of-the-art in anti-ransomware do not seem to be widely reported, an overall
indication is given as to what can be considered as highly entropic data. For
example, in ShieldFS, an entropy value of 0.948 (recorded on a scale between 0
and 1 – when scaled up to a scale of 0 to 8, this becomes 7.584) is considered
as “very high” [3]. We set our entropy threshold as 7.99 to ensure that only the
most uncertain of data is considered as encrypted. The threshold for chi-square
was taken based on consulting a chi-square value table at 255 degrees of freedom
with a significance level of 5%, as discussed in Section 3. This gives us a threshold
of 293.25, the same value that was used in Data Aware Defence [19].

For the three remaining tests (arithmetic mean, Monte Carlo value for Pi, and
serial correlation coefficient), we defined thresholds based on a 1% error margin.
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We consider any values calculated that fall within 1% of the baseline values to
be random. The baseline values for arithmetic mean, Monte Carlo value for Pi
and serial correlation coefficient are: 127.5, 3.14 and 0.00, respectively. Values
within this range are treated as cases that would be detected as ransomware (i.e.
a false positive for our images and compressed data, and a true positive for our
encrypted data). Table 2 summarises the thresholds we used in our experiments.

5 Results and Analysis

We break the analysis of our results down into two main parts: an analysis of
‘false classifications’, and general observations. Many academic anti-ransomware
tools are not open-source or available for use, so in our experiments we were un-
able to determine false classification rates of the tools themselves. Self-reported
results of these anti-ransomware tools are summarised in [20], although interest-
ingly this work highlights that many false positive rates (FPRs) are not reported.
Below, we investigate the statistics introduced in Section 3.

Minimal FPRs are vitally important for real-time ransomware detection tools
that always run in the background to prevent a user from instinctively dismissing
alerts (putting them at risk of dismissing a real attack) or stopping using the
tool altogether. Where the thresholds are not made available, we set our own, as
described in Section 4. We analyse the percentage of our dataset that falls above
and below these thresholds, providing an indication into the FPRs summarised
in Table 3 and Table 4.

We also included an analysis of false negative rates (FNRs), as shown in
Table 5. This would mean truly encrypted data that is incorrectly classified as
being unencrypted. We acknowledge that these are devastating to a user, however
minimising FNRs is beyond the scope of this paper – it is something that the
authors of the respective tools themselves aim to minimise.

5.1 False Classification Analysis

False Positives Rates (FPRs). Table 3 and Table 4 summarise the FPRs we
saw in our experiments across our images and compressed data, respectively. For
each quality level used (shown as a percentage on the left), we include the number
of files detected as a false positive, alongside the percentage of our dataset that
this number equates to (i.e. the FPR). We also highlight the highest FPRs from
our experiments in bold. We note that in Table 4, we only show the results
for the three compression algorithms (BZip2, GZip and LZMA) at three levels
of compression rate (1, 5 and 9). This was in the interest of creating a more
succinct and readable table. Our complete set of results and graphs are available
on GitHub (https://github.com/anti-ransomware/stats-tools-research).

Focusing first on the entropy and chi-square of our image dataset, we see
a range in FPRs from 0% with chi-square to 83.90% using entropy. At first
glance, this reinforces the idea that chi-square is better at distinguishing between
encryption and JPEG compression [13]. However, analysing further, it quickly
becomes clear that using chi-square is not necessarily the complete solution to
the problem. For example, we see FPRs in the range of 43.13% to 76.69% when
analysing lossy WebP files which have been converted from JPEGs at various

https://github.com/anti-ransomware/stats-tools-research
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Table 3: False positive analysis for images

Data
False Positives

Entropy Chi-Square Mean Pi Correlation
Count % Count % Count % Count % Count %

JPEG 3 0.30% 0 0% 178 17.73% 231 23.01% 92 9.16%
PNG 468 46.80% 2 0.20% 519 51.90% 478 47.80% 74 7.40%
WebP 677 67.70% 454 45.40% 839 83.90% 726 72.60% 668 66.80%

W
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P
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G

)

L
o
ss

le
ss

0% 193 19.22% 0 0% 241 24.00% 342 34.06% 4 0.40%
25% 187 18.63% 0 0% 226 22.51% 312 31.08% 5 0.50%
50% 397 39.54% 3 0.30% 396 39.44% 483 48.11% 9 0.90%
75% 403 40.14% 5 0.50% 391 38.94% 477 47.51% 8 0.80%
80% 411 40.94% 5 0.50% 398 39.64% 481 47.91% 8 0.80%
100% 417 41.53% 3 0.30% 389 38.75% 484 48.21% 4 0.40%

L
o
ss

y

0% 18 1.79% 433 43.13% 373 37.15% 300 29.88% 286 28.49%
25% 267 26.59% 759 75.60% 736 73.31% 505 50.30% 582 57.97%
50% 383 38.15% 764 76.10% 839 83.57% 583 58.07% 669 66.63%
75% 458 45.62% 770 76.69% 878 87.45% 641 63.84% 729 72.61%
80% 505 50.30% 749 74.60% 873 86.95% 654 65.14% 782 77.89%
100% 798 79.48% 569 56.67% 916 91.24% 742 73.90% 895 89.14%

W
e
b
P

(f
ro

m
P

N
G

)

L
o
ss

le
ss

0% 335 33.50% 2 0.20% 450 45.00% 474 47.40% 25 2.50%
25% 357 35.70% 5 0.50% 424 42.40% 482 48.20% 34 3.40%
50% 546 54.60% 21 2.10% 555 55.50% 586 58.60% 84 8.40%
75% 569 56.90% 18 1.80% 566 56.60% 605 60.50% 96 9.60%
80% 571 57.10% 18 1.80% 559 55.90% 593 59.30% 96 9.60%
100% 609 60.90% 25 2.50% 619 61.90% 644 64.40% 93 9.30%

L
o
ss

y

0% 39 3.90% 202 20.20% 392 39.20% 374 37.40% 294 29.40%
25% 408 40.80% 501 50.10% 761 76.10% 600 60.00% 586 58.60%
50% 543 54.30% 546 54.60% 839 83.90% 671 67.10% 659 65.90%
75% 620 62.00% 515 51.50% 863 86.30% 732 73.20% 696 69.60%
80% 665 66.50% 507 50.70% 884 88.40% 737 73.70% 710 71.00%
100% 839 83.90% 417 41.70% 928 92.80% 826 82.60% 850 85.00%

Table 4: False positive analysis for compressed data

Data
False Positives

Entropy Chi-Square Mean Pi Correlation
Count % Count % Count % Count % Count %

BZip2
1 373 37.83% 56 5.68% 395 40.06% 377 38.24% 113 11.46%
5 382 38.74% 62 6.29% 394 39.96% 405 41.08% 143 14.50%
9 384 38.95% 63 6.39% 395 40.06% 403 40.87% 142 14.40%

GZip
1 418 42.39% 235 23.83% 446 45.23% 348 35.29% 409 41.48%
5 401 40.67% 250 25.35% 464 47.06% 356 36.11% 428 43.41%
9 400 40.57% 259 26.27% 471 47.77% 377 38.24% 446 45.23%

LZMA
1 526 53.35% 913 92.60% 868 88.03% 667 67.65% 731 74.14%
5 511 51.83% 910 92.29% 863 87.53% 664 67.34% 730 74.04%
9 509 51.62% 907 91.99% 853 86.51% 663 67.24% 726 73.63%

quality levels. To top this off, when analysing WebPs found in the wild, we still
see an FPR of 45.40%, indicating that almost half of this part of our dataset
would cause a false positive. We believe this is a serious issue due to the rising
popularity of WebP images in the wild [25].

Looking at entropy and chi-square overall, it does appear, however, to be
the case that chi-square is in general a better indicator of ransomware (at least
for images). Chi-square outperformed entropy (i.e. achieved a lower FPR) in
almost all of our batches of data. Interestingly, however, entropy outperformed
chi-square for the case of Lossy WebPs which had been converted from JPEGs.

The remaining FPRs were calculated based on our own thresholds, as dis-
cussed in Section 4. Arithmetic mean in general seems to be a poor indicator
based on the fact that at its best, it still had an FPR of 17.73% and at its worst it
had an FPR of 92.80%. This FPR level would be absolutely unacceptable in any
context. The situation is similar for the value of Pi, which at its best achieved
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an FPR of 23.01% and at its worst, 82.60%. Interestingly, for both arithmetic
mean and Pi, the best cases were achieved for JPEG, and the worst cases were
on Lossy WebPs converted from PNGs at 100% quality.

Serial correlation coefficient, at its best, achieved an FPR of just 0.40%. This
was for lossless WebPs converted from JPEGs at 0% quality. We believe this
kind of FPR would be more palatable to the average end user. However, at its
worst, it had an FPR of 89.14%, higher than the worst case of Pi.

Figure 2a and Figure 2b show the chi-square distributions of our image and
compressed dataset, respectively. The threshold of 293.25 is also included for
reference (shown as a red horizontal line). For clarification, we have divided
the graph into each of the major sub-divisions of our dataset. Within these
sub-divisions are further divisions represented by a change in the corresponding
point’s colour. These separations represent the different quality levels used in
the conversion process (0%, 25%, 50%, 75%, 80% and 100%, respectively). The
same is true for the graphs representing the other statistics we calculated, for
example those which can be found on GitHub.

(a) Chi-square of 27,052 images

(b) Chi-square of 55,300 compressed files

Fig. 2: Chi-square of our dataset
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Table 5: False negative analysis for encrypted data

Data
False Negatives

Entropy Chi-Square Mean Pi Correlation
Count % Count % Count % Count % Count %

A
E

S Thread4 230 23.33% 48 4.87% 51 5.17% 184 18.66% 115 11.66%
Thread5 241 24.37% 49 4.95% 50 5.06% 174 17.59% 133 13.45%

We consider data points that fall below this line as false positives. We also
note that some points are not visible on the graph due to chi-square values much
higher than our axis limits. The only data type to achieve zero false positives
is JPEG. The false positive count of PNG is low (i.e. 2), but all other data
types have a high number of false positives. An interesting point to note is
the huge number of false positives received for WebP when lossy compression
is used. Our experiments show much lower FPRs when lossless compression is
used. However, the FPR of our WebPs “from the wild” (i.e. 45.40%) suggest
that the most common type of WebP compression in use is lossy. In fact, when
cross-referencing the FPR of all WebPs from Table 3, it seems the most common
type of WebP are those from PNGs and using lossy conversion.

Shifting to look at the compressed data, FPRs for both entropy and chi-
square unfortunately do not look very promising. As discussed in Section 4,
compressed data is often highlighted as a potential cause of false positives, so
we hope our results reaffirm this serious issue. Looking at Table 4, the FPR
for entropy is consistently within the range of 37.83% and 53.35%. Whilst these
rates are generally more promising than those of our image dataset, we still
deem them to be far beyond the realms of acceptability. Kharraz et al. conduct
usability testing in [11], which may be a crucial step going forward to identify an
acceptable FPR from a user’s perspective. Interestingly, the range of FPRs for
chi-square is much larger. At its best, chi-square had an FPR of 5.68%, which
is closer (although still not satisfyingly enough) to what could be considered
acceptable. However, at its worst, we observe an FPR of 92.60%. This is almost
the highest FPR observed across all of our experiments, topped only by using
arithmetic mean on lossy WebPs from PNGs at 100% quality.

Moving on to the three remaining statistics, FPRs are again far too high to
be considered acceptable. The best performance we see is for BZip2 at a level 1
compression rate. Using correlation, we see an FPR of 11.46%. However, FPRs
for these statistics are generally in the range of 40 to 60%, even reaching 88.03%
in the case of using arithmetic mean for data compressed using LZMA at level
1 compression rate.

False Negative Rates (FNRs). Table 5 summarises the FNRs we saw
in our experiments for the individual statistics. As with the above tables, we
provide the number of files detected as a false negative, alongside the FNRs,
whilst highlighting the highest FNR in bold. In this context, this represents data
that has been encrypted but has incorrectly been classified as not encrypted. In
a real life scenario, this would represent ransomware encrypting a user’s files
without any active protection mechanisms alerting the user to some form of
malicious activity.

Whilst this is not the focus of our paper, we thought it would still be relevant
to report our findings. The best case we saw was an FNR of 4.87% when using
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the chi-square statistic over Thread 4. Conversely, the worst case we saw was an
FNR of 24.37% when using entropy over Thread 5. Thankfully, we recorded no
FNR higher than this, although we still believe that these rates are too high to
be acceptable. In this case, almost a quarter of encrypted files go undetected.

An important point we would like to mention is that it was our choice to con-
sider this encryption as malicious. We wanted to include this data to represent
what data would look like from a statistical point of view if it had been en-
crypted by ransomware. However, the presence of encryption on a system does
not automatically imply that a ransomware attack is underway. For example,
benign applications may use encryption for communication, or a user may wish
to encrypt their files for privacy.

Fig. 3: Entropy of 27,052 images

5.2 General Observations

Figure 3 shows the entropy values calculated for our image dataset, which ac-
curately summaries the patterns we saw for the majority of our other statistics.
Within each major sub-division of the dataset, it is clear how – as we progress
from left to right through the different conversion quality levels – the dispersion
of entropy decreases. In other words, as both JPEGs and PNGs are converted to
WebPs at higher quality levels, the resulting entropy of the data is increased. For
this reason and that a similar pattern can be observed for the other statistics, we
believe investigating the variance, standard deviation and higher-order statistics
such as skewness and kurtosis could be a step towards detecting consistently
random data, but this would require more experimentation.

Due to the uncertainty as to which filetypes any given user may have on their
computer, we do not believe the solution is as simple as picking the statistics
that achieve the lowest FPR and FNR. It may be the case that whilst this works
well for some users, it does not work at all for others. For example, the obvious
choice would be using chi-square or serial correlation coefficient due to their
lower FPRs and FNRs in general, but they don’t always perform well.

We believe that these results highlight a serious flaw in the current state-
of-the-art in ransomware detection. Whilst the tools are generally excellent at
detecting ransomware, more effort needs to be put into reducing FPRs. We
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acknowledge that these tools often use statistics as part of a wider detection
mechanism, for example behavioural analysis such as in ShieldFS [3]. Despite
this, it is very common for these tools to place heavy reliance on the results of
statistical tests. We believe this is worrying due to their susceptibility to errors,
as shown by our results. We would again like to stress that this does not mean
that there are underlying problems with these tests; the problem is with using
them for ransomware detection.

6 Recommendations and Future Work

As discussed in Section 2, McIntosh et al. recommended that future research
should avoid the use of entropy for ransomware detection [14]. This was due
to the relative ease by which ransomware could implement encryption without
triggering any entropy thresholds in place. We come to a similar conclusion from
the perspective of false positives rather than false negatives. The immediately
obvious recommendation would be to avoid the sole use of entropy to reliably
and consistently detect a ransomware attack. The frequency of false positives in
our results show that an average user would be plagued by false alarms, ending in
a practically unusable system. However, our results also show that the problem is
not just with entropy but for all of the statistics we tested. Whilst some statistics
(entropy, chi-square and serial correlation coefficient) performed extremely well
in certain cases (e.g. FPRs of around 0% to 0.5%), they did not perform this
well consistently across our experiments. We are therefore unable to recommend
a single statistic as the optimal way of detecting ransomware reliably.

Due to their lower FPRs whilst still achieving the lowest FNRs, we believe
chi-square and serial correlation coefficient deserve the most attention going
forwards. To the best of our knowledge, Data Aware Defence is the only tool so
far that has used chi-square for ransomware detection [19].

The statistics we calculated were for single files at any one given time. An
improved approach would be to identify deltas in these statistical values over
time for a given set of files. This idea has been explored by Redemption [11] and
CryptoLock [21]. It should be immediately obvious when ransomware writes to
a file by identifying a significant change in (for example) the entropy value of the
read, followed by the subsequent write. This approach may still be susceptible
to false positives, for example if a file is highly structured before the encryption
takes place (like much of the data used in our dataset).

As discussed in Section 5.2, we believe it would be worthwhile for the anti-
ransomware community to investigate variance and standard deviation of the
previously discussed statistics. We would expect highly random data to be writ-
ten to the filesystem consistently during a ransomware attack. By calculating
the statistics of these writes for a given time window, the variance and standard
deviation could be calculated in order to determine spread and dispersion from
central tendency. We expect a low variance and standard deviation in the case
of consistent highly random writes to the filesystem, but a high variance and
standard deviation in the case of normal system usage. It may also be possible to
apply this technique using higher-order statistics such as skewness and kurtosis,
although this would require further experimentation.
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7 Conclusion

In this paper, we have highlighted the very serious issue that in the context of
ransomware detection, popular file formats in use by typical computer users can
cause frequent false positive alerts when analysed with various statistical tests
for randomness. We analysed a dataset of 84,327 files (at 24.6 GB) consisting of
JPEG images, PNG images, WebP images, compressed data (using BZip2, GZip
and LZMA), and encrypted data (using AES in CBC mode with a 256 bit key).
On this dataset, we calculated values for entropy, chi-square, arithmetic mean,
Monte Carlo value for Pi and serial correlation coefficient (using the command
line tool Ent). We compared these values against thresholds that were both found
in and based on the literature (using a 1% error margin where no thresholds were
available) to determine their false classification rates.

We observed FPRs of up to 92.80%, with a large proportion of our dataset
attaining FPRs of over 80%. Only an extremely small proportion achieved rates
that could be considered acceptable (i.e. below 0.5%). In addition, the lowest
FNR we saw was still 5.06%, with the highest being 24.37%. This shows that
even in the best case for our dataset, approximately five out of 100 files could
be maliciously encrypted without being recognised by these tests.

Some of these tests are in use by many of the state-of-the-art tools in ran-
somware detection. We believe our results indicate that testing of these anti-
ransomware tools has not been sufficient. We therefore believe future anti-ransom-
ware tools should be tested on much larger and representative datasets, partic-
ularly including lots of images (especially WebP files) and compressed data, to
ensure FPRs and FNRs are as accurate and realistic as possible. This, combined
with a detailed analysis and visualisation of these results, would help to highlight
the true accuracy of these tools. Finally, experimenting with the use of variance,
standard deviation and higher-order statistics such as skewness and kurtosis may
help to classify ransomware attacks more accurately and consistently.
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