
Simulation of a Telecommunication System Using SimML

N.A. Speirs and L.B. Arief
Department Computing Science

University of Newcastle upon Tyne
Newcastle upon Tyne NE1 7RU

England
E-mail: {Neil.Speirs, L.B.Arief}@ncl.ac.uk

Abstract
The cost of building a new system is usually quite
high and without a proper design, a mismatch might
occur between the proposed system and the actual
system delivered. One aspect that is important to be
investigated prior to the system implementation is its
performance. A simulation program could be built to
obtain the performance characteristics of the new
system, but constructing such a program is not a
trivial task. Therefore, it is useful to have a tool that
can generate a simulation program automatically
from a design notation. We have developed a generic
syntax based on the UML design notation which is
transformable into a simulation program. A tool that
performs the transformation automatically has also
been built, and in this paper, we present our
experience in designing a new telecommunication
system using our syntax and tool.

1. Introduction

The provision of providing additional intelligent
services is a pressing problem for the
telecommunications industry. In this paper we discuss
the problem of providing value added services within
a global telecommunications system. As an example
we consider adding call barring and blacklisting
software services to a telecommunication system. We
begin by providing a specification of the system in
UML [1] and then use a simulation generation tool
(SimML [2]) to automatically generate a simulation of
the system. The simulation is then performed to see
whether the proposed system can meet the
performance requirements using current technology.

The paper is structured as follows. In section 2 we

describe the problem and specify it in UML. In
section 3 we describe our tool which generates
simulations from specifications and discuss its
applicability for the problem. In section 4 we present
the results of the simulation and show that building
such a large system is indeed feasible. Section 5
discusses the feasibility of using XML [3] as a bridge
for generating the simulation program directly from
the UML diagrams. Finally we present our
conclusions in section 6.

2. System specification and design

2.1. The Requirements

We first outline a typical hardware specification
for a future world-wide telecommunication system.
Such a system might typically be comprised of a
distributed system of computers, grouped into sites
where each site comprises of approximately 10
machines. There maybe between 60 and 1000 sites
distributed throughout the world. Communication
within a site would typically be carried out via a
Local Area Network (LAN) with ~100Mbps
bandwidth and a latency of ~1 millisecond and sites
would be connected by Wide Area Networks (WANs)
with bandwidth of ~34Mbps and a latency of ~50
milliseconds. The total number of customer objects
(i.e. telephone callers) in the system is estimated to be
in the range 105-108 with an approximately equal
allocation of objects to hosts [4].

We now consider a software architecture which
implements call barring and blacklisting services. Call
barring allows the telecommunication provider to
disable all outgoing calls if for example the customer
has failed to settle a bill. Blacklisting is a service

provided to customers which allows them to reject
calls from specified telephone callers. Customers can
of course modify their blacklist of callers.

Processing is initiated via messages from the
physical switch which contain two parameters - the

calling line identity (CLI) and the dialled number
(DN). Between 3,000 and 3,000,000 messages per
second are expected. Each message is first handled by
a name location mechanism which assigns object uids
to the CLI (OBJ1) and DN (OBJ2). This may be
achieved by, for example, a dedicated name server.
The physical architecture of the basic system is shown
in Figure 1.

The object uids are unique identifiers which
contain the address and host number of the
appropriate caller (OBJ1) and callee (OBJ2) objects.
The makeCall method of OBJ1 is then invoked,
passing OBJ2 as a parameter. This typically takes
place on a different host on the same site (though it
may be in the same process, or a different process on
the same host or, exceptionally, on a different site).
Marshalling routines pack and unpack inter and intra
site messages. The makeCall method of OBJ1 checks
to see that the barOutgoing flag is not set and it then
makes an RPC (Remove Procedure Call) to the
receiveCall method of OBJ2. The receiveCall method
checks whether OBJ1 is in the blacklist of OBJ2 and
sends back a startRinging reply if the call is to be

OBJ1

×

Lookup
Mechanism

×

Phone

OBJ2

×

Lookup
Mechanism

×

Phone

Figure 1: The architecture of the new system

S ite

H o s t

- m e m o ry
- s p e e d
- id

+ c o n ne c tC u s to m e r()

C u s to m e r

- n a m e : S tr in g
- a d d re s s : S tr in g
- id : S tr in g
- b a rO u tg o in g F la g : B o o le a n = fa ls e
- b la c k lis t : L is t< C u s to m e r. id >

+ m a k e C a ll(C u s to m e r. id)
+ re c e iv e C a ll(C u s to m e r. id)
+ up d a te B la c k lis t ()

N e tw o rk c o n ne c t io n

- b a n d w id th
- la te n cy

S y s te m

N a m e S e rv e r

{b an d w id th ~ 10 0 M bp s
a n d la te n c y ~ 1 m s }

{b a n d w id th ~ 3 4 M b p s
a n d la te nc y ~ 50 m s }

H o s ts a re co n n e c te d
to e a c h o th e r th ro u g h
the N e tw o rk C on n e c t io n

C a lle r C a lle e

L A NL o c a l W A N

*
1 . ..101 1

1 1

1 0 5. ..1 08

6 0 . ..10 0 0

1

1
1 . ..n

1

Figure 2: A class diagram notation for the system

accepted. The performance requirements imposed on
the makeCall method are that it must service 90% of
calls in at most 500 milliseconds, 95% of calls in at
most 5,000 milliseconds and 100% of calls in at most
10,000 milliseconds.

It is not immediately clear that a system meeting
these stringent performance criteria can be
constructed using today’s technology. Our approach
to the problem is first to specify it in UML [1] and
then generate a simulation of the system directly from
the specification using SimML [2] - a tool we have
built to generate simulation code automatically.

2.2 Using UML to design a new system

Unified Modelling Language (UML) has become
a standard for specifying, visualising, constructing
and documenting the artefacts of software system [1].
It uses graphical notations to illustrate a system
specification, and here, we are only interested in the
class and interaction diagrams. The class diagram
represents the static structure of a system, i.e. its static
elements (objects or classes) and the static
relationship between them; it can be used to denote
the physical requirement of the new telecom system.

The interaction diagram shows the pattern of
interaction between objects in the system. There are

two types of interaction diagrams: a sequence
diagram (which arranges the interactions in time
sequence) and a collaboration diagram (which shows
the interactions in terms of links between object). Our
work here uses the sequence diagram to illustrate the
behaviour of the system.

The UML notation for the requirement outlined in
Section 2.1 can be seen in Figure 2 (as a class
diagram) and Figure 3 (as a sequence diagram). It is
desired that a simulation program can be generated
automatically from the UML diagrams, but
unfortunately, there is no tool available to perform
such a task yet. We are working towards the
construction of this kind of tool and currently we have
a tool that takes a textual representation of the UML
and generates a simulation program form it, as
described in the next section.

3. Generating the Simulation

3.1. Introducing SimML

We have developed a tool called SimML
(Simulation Modelling Language [2]) which
automatically transforms UML like specifications into
C++ code which can be used by C++SIM [5, 6] - a

initiate(CLI, DN)
assign OBJ1 to CLI

assign OBJ2 to DN

barOutgoing()

[barOutgoing == "false"]
makeRPC()

a

blacklist(OBJ1)

[blacklist(OBJ1) ==
“false”] startRinging()

b

 (b-a) < 500 ms (90%) CLI = Calling Line Identity
 (b-a) < 5,000 ms (95%) DN = Dialled Number
 (b-a) < 10,000 ms (100%)

Notes:

an INAP
message

a Lookup Table :
Host

a CLI (OBJ1) :
Customer

a DN (OBJ2) :
Customer

Figure 3: A sequence diagram notation for the system

discrete-event process-based simulation facility which
is similar to Simula’s simulation class and library. We
selected C++SIM since more programmers are
familiar with C++ programs than with Simula
programs and because C++SIM programs runs much
faster than their Simula counterparts. However, the
tool could be adapted to generate Simula code if
required.

When designing the tool we first identified the
following simulation components which are
applicable for many simulation programs.

• PROCESS - a PROCESS is used to represent
an active object in the simulated system and
different PROCESS’S are characterised by
different names, attributes and operations.
Instances of a PROCESS will be transformed
into a C++SIM class and they must specify the
actions of a Body function which determines
the interaction amongst the active components
of simulation.

• DATA - stores simulation entities which do
not need to be active objects.

• QUEUE - a queuing mechanism is a very
important concept in simulation and hence a
way of specifying queues (for different types
of object) must be provided.

• CONTROLLER - acts as the main thread
which initialises the simulation, obtains the
simulation parameters and summarises the

simulation results.
 In addition to these components there are some
auxiliary components to supplement the simulation
system.

• OBJECT - an instance of a basic type
component. Through these instances, the
interaction among the simulation components
is achieved.

• RANDOMS - provides a way to model certain
simulation parameters to various distribution
functions.

• STATISTICS - used to specify what needs to
be collected and where and when the
collection should be done.

In Figure 4 we show the specification needed to
simulate a very simple system where jobs are
generated by an arrival process, are sent to a queue
and are then processed sequentially by a server. This
specification can then be transformed into a
simulation program completely automatically. The
specification we have used allows the following to be
defined:

1. PROCESS component, consists of:
• a name: used for identifying a PROCESS

as well as for naming the C++ class.
• member variables: each member variable is

declared on a separate line which contains
the visibility (+ for public, - for private)
followed by its type and name.

Figure 4: Specification of a simple queueing system in SimML

PROCESS Arrival
{
 +void Body()
 {
 create j of Job
 record arrTime of j
 update totalJobs
 enqueue j to q
 activate s
 wait interArr
 }
}

PROCESS Server
{
 +void Body()
 {
 check q
 dequeue j from q
 wait exTime
 update totalDone
 update totalTime
 }
}

DATA Job
{
 +double arrTime
}

QUEUE Queue of Job

CONTROLLER Controller
OBJECT a of Arrival
OBJECT s of Server
OBJECT q of Queue

RANDOMS
{
 interArr exponential <mean>
 exTime uniform <low> <high>
}

STATISTICS
{
 double totalTime +now-j->arrTime
 int totalJobs +1
 int totalDone +1
}

• member function: the declaration begins
with the visibility followed by the return
type, function name and the function
parameters. There must exist a +void
Body() function which contains the
actions to be performed by this PROCESS.

2. DATA component
 The syntax is the same as that of PROCESS

but no member functions are allowed.
3. QUEUE component
 The name of the queue is specified, followed

by the word ‘of’ and the type of object this
queue will contain (either of the PROCESS or
DATA component).

4. CONTROLLER component
 A controller component is always required and

its functionality remains almost the same so it
is only necessary to give this component a
name.

5. OBJECT component
 An object represents an entity used in the

simulation. Objects must be named and their
type specified.

6. RANDOMS component
 This identifies the statistical distributions and

parameters of variables to be defined.
7. STATISTICS component
 The STATISTICS component provides a way

to specify statistics items (and their types) and
how they should be updated. Where and when
the items should be updated is specified in the
Body function of the PROCESS component.

The interactions between the instances of the
simulation’s active objects can be specified in the
operation definition of the PROCESS type. We
present some identified actions below:

1. create: declares a new instance of the basic
type.

2. wait: reschedules the current process to be
activated later after a given time.

3. activate: activates another process.
4. sleep: passivates the current process.
5. enqueue: places an object (either PROCESS or

DATA type) onto a queue.
6. dequeue: removes an object from the head of a

queue.
7. check: passivates the process from which this

action is invoked if there are no more items on
the queue.

8. record: sets the value of an objects member

variable to the current time or a specified
value.

9. update: updates the value of a statistics
variable (used in conjunction with the
STATISTICS component).

10. generate: produces a number randomly, using
a particular random number generator (as
specified in the RANDOMS component).

11. end: terminates the execution of the current
process.

12. print: useful for debugging, it allows specified
simulation data to be printed during the
simulation.

On top of these, there are some actions that are
useful for simulating a more complicated system by
allowing a flow control feature to be specified:

13. if: specifies a condition that must be satisfied
before certain actions can be performed. It is
complemented by the elsif and else actions.

14. while: allows a loop to repeat the same
action(s) until certain condition is satisfied.

Most of these actions require parameters as shown
in Figure 4.

We have built a parser that reads in an SimML
specification and automatically transforms it into
C++SIM code. This parser is written in the Perl [7]
scripting language its operations can be divided into:

1. Reading the specification and storing the
information in Perl arrays for processing.

2. Generating the header (.h) and implementation
(.cc) files for the C++SIM program.

This tool also automatically generates appropriate
makefiles for the C++SIM code generated. The parser
allows any system configuration which consists of
queues and servers to be specified and simulation
code to be automatically generated. Systems where
many queues feed into a server and where pipelines of
servers are required can also be specified. It is of
course possible for the user to insert their own code
into the C++SIM code generated. This is necessary so
that any features of the simulation not supported by
the parser can be added.

3.2. Using SimML to specify a
telecommunication system

SimML can be used to specify the
telecommunication system based on the requirements
outlined in Section 2.1. Figure 5 shows the
specification of this system, which can then be parsed

using our SimML tool into C++SIM code. Here we
have three PROCESSes:

1. Call: represents a phone call, which goes
through several stages of initiation process
before both parties (phone objects) are
connected.

2. Arrival: generates new Calls and randomly
assign them to be either a local, LAN or WAN

type calls (see Section 2.1).
3. Lookup: simulates the lookup mechanism in

assigning the object uids for the objects
involved in the calls.

The actions of the PROCESSes mimic the
initialisation procedure of making a phone call, which
is comparable to the sequence diagram in Figure 3.
The RANDOMS component provides randomly

Figure 5: Specification of the telecom system in SimML

QUEUE Queue of Call

PROCESS Call once
{
 +int type
 +double netDelay
 +double arrTime
 +void Body()
 {
 wait netDelay
 enqueue this to ltq
 activate lt
 sleep
 wait netDelay
 wait readTime
 wait netDelay
 wait searchTime
 wait netDelay
 update totalTime
 update totalDone
 if type == 1
 [
 update localTime
 update localDone
]
 elsif type == 2
 [
 update lanTime
 update lanDone
]
 else
 [
 update wanTime
 update wanDone
]
 end
 }
}

PROCESS Arrival
{
 +void Body()
 {
 wait interArrivalTime
 create c of Call
 generate rndVal using rndCallGen
 if rndVal < 0.33
 [
 record type of c = 1
 generate rndDelay using localDelay
 record netDelay of c = rndDelay
 update totalLocal
]
 elsif rndVal < 0.67
 [
 record type of c = 2
 generate rndDelay using lanDelay
 record netDelay of c = rndDelay

 update totalLan
]
 else
 [
 record type of c = 3
 generate rndDelay using wanDelay
 record netDelay of c = rndDelay
 update totalWan
]
 update totalCalls
 record arrTime of c
 activate c
 }
}

PROCESS Lookup
{
 +void Body()
 {
 check ltq
 dequeue call from ltq
 wait lookupTime
 activate call
 }
}

CONTROLLER Controller
OBJECT ltq of Queue
OBJECT a of Arrival
OBJECT lt of Lookup

RANDOMS
{
 interArrivalTime exponential 7
 lookupTime exponential 7
 rndCallGen uniform 0 1
 localDelay exponential 0
 lanDelay exponential 1
 wanDelay exponential 50
 readTime exponential 0.00023
 searchTime exponential 0.0057
}

STATISTICS
{
 double totalTime +now-this->arrTime
 double localTime +now-this->arrTime
 double lanTime +now-this->arrTime
 double wanTime +now-this->arrTime
 int totalCalls +1
 int totalLocal +1
 int totalLan +1
 int totalWan +1
 int totalDone +1
 int localDone +1
 int lanDone +1
 int wanDone +1
}

generated numbers based on a certain distribution
function. These numbers are used to simulate the
network delays (local, LAN and WAN), the read
delay (for performing the check on the barOutgoing
flag), the search delay (for checking the blacklist), the
lookup delay (for assigning the object uids of the
calls), and the inter arrival time of the calls.

We are interested to know how long it takes for a
call to be processed on average. Therefore, the
statistics to be collected are the total processing time
and the total number of calls completed. A more
detailed statistics on the type of calls (local, LAN and
WAN) are also obtained.

4. Simulation Results

We have simulated the problem described in
Section 2 where incoming calls arrive, the identity of
the calling and receiving objects are found, the caller
object is invoked and a check on the boolean value of
the barOutgoing flag is made. The caller object then
invokes the receiver object which checks to see that
the caller is not on the blacklist whereupon the call is
accepted.

We assume that network delays have an
exponential distribution with a mean of 1 millisecond
for a LAN and 50 milliseconds for a WAN. The time
taken to invoke an object on the same host is assumed
to be zero. The time to inspect a barOutgoing flag is
exponentially distributed with mean 0.23
microseconds and the time to search a blacklist is
exponentially distributed with mean 5.7
microseconds. These mean figures were established
by experimentation with a simple implementation of a
customer object. The lookup time for each object (i.e.
the time to map a calling line identifier onto on object
address) was assumed to be exponential with mean 7
milliseconds. This figure was the best we could
achieve and was derived experimentally based upon a
system with 1 million objects evenly distributed over
1000 hosts using our new name location mechanism.

Table 1: The simulation results for the inter arrival
time of 10 ms.

Local LAN WAN Total
Number of Calls
Processed

3332 3315 3311 9958

Avg. Response
Time (ms)

13.4 19.1 219.8 84.1

Finally, we assume that the probability of an
object being local or on the same LAN or on the same
WAN are equal. Table 1 shows the simulation results
for a run of 100,000 milliseconds with a mean inter
arrival time of 10 milliseconds.

These figures show that the system will easily
meet the performance criteria given in Section 2. The
system is relatively insensitive to variations in the
inter arrival time until it is comparable to the mean
name lookup time. With a mean inter arrival time of 7
ms the simulation behaves as shown in Table 2.

Table 2: The simulation results for the inter arrival
time of 7 ms.

Local LAN WAN Total
Number of Calls
Processed

4731 4724 4715 14170

Avg. Response
Time (ms)

53.8 62.9 258.2 124.4

These figures are still acceptable but it is clear that
the system is approaching its capacity. Hence for this
system to have the desired performance, the crucial
parameter is the lookup time of the name location
service and not the performance of the network or the
objects in the system.

5. Current and Future Work

At the moment, the SimML tool can only take a
textual representation of the specification, i.e. it is not
yet possible to automatically generate the simulation
code from the UML notation. We are currently
working towards the provision of a tool that can
perform the transformation in a direct manner.

One way to achieve this is by capturing the
information contained in the UML diagrams into a
standard notation that can be parsed easily. With the
acceptance of the Extensible Markup Language
(XML) [3] as a standard for data/information
interchange, it is thought that having a tool that
accepts an XML notation would be an advantage.
Also, there are some standard parser packages
available for reading the XML notation, such as the
IBM’s XML4J [8] parser for Java [9]. The XML4J
package provides the libraries for parsing an XML
document and can be used in conjunction with the
SAX [10] interface to construct an application that
reads in an XML document and transform them into a
desired code. Since the parser is written in Java, it is

only appropriate that the simulation program is to be
written in Java as well. The JavaSim [11] package
suits this requirement well because it is derived from
the C++SIM package.

We have created a Data Type Definition (DTD)
for SimML that allows a simulation specification to
be written in XML. We have also constructed an
application parser that reads an XML specification
and transforms it into a JavaSim program. This
application parser can be used later as the back end of
the ultimate tool that transform the UML notation
straight into a simulation code. We are planning to
use the UML class diagram to capture the static
structures (classes) of the simulation system and the
sequence diagram to represent the interactions among
the objects involved in the simulation (i.e. the actions
in SimML term).

The future work therefore involves the
construction of a front end that serves as a UML
design tool which is compatible to the application
parser above. There are some UML tools that can be
modified to suit this need, such as Argo/UML [12],
but it is also feasible to construct a new tool
specifically for this purpose. We are still investigating
both possibilities at the moment.

6. Conclusions

We have described a methodology for assessing
the performance of complex distributed
telecommunications applications based upon
specification in UML and the automatic generation of
a simulation based upon this specification. We have
shown how the methodology can be applied to a
sample telecommunications problem and have
deduced the crucial parameters in the design. This
allows the system designer to concentrate upon the
parts of the system which most affect the performance
of the system. This can be done very early in the
design process and so is a cost effective solution to
the problems of complex system design.

Acknowledgements

We would like to thank Paul Martin of British
Telecom for describing the telecommunication system
which was used as the study case in this paper.

References

[1] M. Fowler and K. Scott, UML Distilled: Applying the
Standard Object Modeling Language, Addison-
Wesley, 1997.

[2] L.B. Arief and N.A. Speirs, “Automatic Generation of
Distributed System Simulations from UML” , Proc.
13th European Simulation Multiconference
(ESM’99), Warsaw, Poland, June 1999, pp. 85-91.

[3] W3C, “Extensible Markup Language (XML)”, online
material, available at http://www.w3.org/XML/.

[4] L.B. Arief, M.C. Little, S.K. Shrivastava, N.A. Speirs
and S.M. Wheater, “Specifying Distributed System
Services”, BT Technical Journal - Special Issue, April
1999, pp. 126-136.

[5] M.C. Little and D.L. McCue, “Construction and Use
of a Simulation Package in C++”, Technical Report
437, Department of Computing Science, University of
Newcastle upon Tyne, July 1993.

[6] Arjuna Team, “C++SIM User’s Guide”, Department
of Computing Science, University of Newcastle upon
Tyne (available at http://cxxsim.ncl.ac.uk/), 1994.

[7] L Wall and R.L. Schwartz, Programming Perl,
O’Reilly & Associates, 1990.

[8] IBM Alpha Works, “XML Parser for Java-XML4J”,
online material, available at
http://www.alphaworks.ibm.com/tech/xml4j.

[9] K. Arnold and J. Gosling, The Java Programming
Language, Addison-Wesley, 1996.

[10] D. Megginson, “SAX: The Simple API for XML”,
online material, available at
http://www.megginson.com/SAX/index.html .

[11] M.C. Little, “JavaSim”, online material, available at
http://javasim.ncl.ac.uk/.

[12] UCI, “Argo/UML - Providing Cognitive Support for
Object-Oriented Design”, online material, available at
http://www.ics.uci.edu/pub/arch/uml/.

