
AUTOMATIC GENERATION OF DISTRIBUTED SYSTEM SIMULATIONS
FROM UML

L.B. Arief and N.A. Speirs
Department of Computing Science
University of Newcastle upon Tyne

Newcastle upon Tyne NE1 7RU
England

E-mail: {L.B.Arief, Neil.Speirs}@ncl.ac.uk

KEYWORDS
Model Design, Discrete Simulation, Program Generators,
Process-Oriented, UML Extension.

ABSTRACT

Nowadays, an object-oriented approach is commonly
used for building computer systems. The benefits of the
object-oriented method, such as scalability, stability and
reusability, make this method suitable for building
complex systems, including those in the distributed
system area. A distributed system application usually
needs to satisfy quite stringent requirements such as
reliability, availability, security, etc. and the cost of
building such an application will be quite high. It is
therefore desirable to be able to predict the performance
of the proposed system before the construction begins. In
order to do this, it is important to evaluate the
requirements of the new system and translate them into a
specification (design). The design process helps the
system developers to understand the requirements better
as well as to avoid misconceptions about the system.
From the specification, a simulation program can be built
to mimic the execution of the proposed system. The
simulation run provides some data about the states of the
system and from these data, the performance of the
system can be predicted and analysed.

UML (Unified Modeling Language) is one example of
the object-oriented design methods that has been widely
used for specifying system requirements. There are also
some object-oriented simulation languages/packages
available, for example, SIMULA or C++SIM package,
but it is often difficult to transform the system’s
requirements into a simulation program without sound
knowledge of some simulation techniques. On top of
that, a new simulation program needs to be built each
time for different systems, which can be quite tedious.
The currently available UML tools do not provide a
feature to generate simulation programs automatically
from UML specifications. In this paper, we describe a
tool for constructing simulation programs in a generic
way, based on a simple specification (preferably in a
UML notation) by identifying the simulation components
and their structure.

1. INTRODUCTION

The advancement of computer technology demands new
systems to be built. New requirements are discovered
and new, more efficient methods are available. There
exist some difficulties though: as the requirements are
normally presented in a plain language, they often
contain many ambiguities, which in turn may lead to a
mismatch between the completed system and the system
proposed by the customer.

This is why it is important to carry out the design
process before the commencement of the system’s
implementation. The aim of the design process is to
transfer the system’s requirements into a standard
notation that can be understood by both the customer and
the system developer. UML is one of the design methods
that can be used for this purpose and more explanation
about UML can be seen in Section 2.1.

Since complex systems are usually expensive to
implement, it is often better to predict or estimate the
performance they would deliver beforehand. This is
where system modeling and simulation is needed. And
bearing in mind that those systems would likely be built
using an object-oriented programming language, such as
C++ (Stroustrup 1997), it is sensible to do the simulation
in an object-oriented manner as well. By using an object
oriented simulation package, it would be easier to
transfer the simulation program into the actual system,
since they would employ the similar concepts. This is
one of the ideas behind the development of the C++SIM
package (Little and McCue 1993; Arjuna 1994) and
consequently, the work presented here will use C++SIM
for building simulation programs.

Building a simulation program is not a trivial task.
The complexity of the proposed system often makes it
difficult to know where to start and quite often people
need to build a new simulation from scratch. The system
developer also needs to know about some simulation
techniques, which is not always the case. These
difficulties can be solved by firstly identifying the
common components of the simulation and their
characteristics. Then, some interactions among those
components can be defined to provide a way to mimic
the behaviour of the proposed system. Based on the
components and their interactions, it would be possible
to construct a language/syntax which can be parsed to
create simulation programs in the desired simulation
language or environment, which is C++SIM in this case.

The syntax can be modeled to follow the UML notation
(in a textual form), which enables automatic generation
of the simulation program from UML-like specification.
The simulation components, their interactions and the
syntax used for the simulation specification will be
described further in Section 2.3 and Section 2.4, while
the feasibility of creating a parser for this syntax is
discussed in Section 3. Section 4 contains a description
of related work that has been done in this area and future
work to be done.

2. FROM DESIGN TO SIMULATION

The work involved here includes the use of UML for
specifying the system’s requirements, the construction of
simulation programs using C++SIM package, the
analysis of the commonly used simulation components,
and the invention of a syntax/language (using the
simulation components) that can be used to automate the
construction of C++SIM programs from UML
specifications.

2.1. UML

UML (Unified Modeling Language) is a language for
specifying, visualising, constructing and documenting the
artifacts of software systems (Fowler and Scott 1997). It
uses graphical notations to illustrate a system
specification, and since the specification is usually very
complex, there are several diagrams available to provide
different views of the proposed system:
• Class diagrams

A class diagram represents the static structure of a
system which includes the static elements (objects or
classes) of the system and the static relationships
between them. A class represents a set of objects with
similar structures (attributes) and behaviour
(operations). Two or more classes can have a
relationship between them and the relationship can
be:
− an association.

An association indicates the role a class plays in
the relationship. On top of that, there are some
additional notations available for the association,
such as the multiplicities (which indicates how
many instances a class can have in the
association), aggregation (to show that one class
is a collection of several instances of the other
class), composition (one class is a part of the
other class) and dependency (to indicate that one
class depends on the other).

− a generalisation.
This captures the notion of inheritance; it shows
the relationship between a more general element
(the supertype) and a more specific element (the
subtype). The subtype inherits the properties of its
supertype and it may have some additional (more
specific) information.

The notations for the class diagram can be seen in
Figure 1.

• Use Case diagrams
It is often important to investigate the relationships
between a system and its users. A use case diagram
describes the functional requirements of a system and
the interaction between the actors (which can be a
human user or another computer system), the system
modeled and the use-case - a set of sequences of
actions performed by the system that yield an
observable result of value to a particular actor
(Eriksson and Penker 1998).

• Interaction diagrams
They show the pattern of interactions between objects
in a system. An interaction consists of messages that
are exchanged among objects in order to achieve the
desired result of an operation. There are two types of
interaction diagrams:
− Sequence diagrams: show the interactions in a

time sequence.
− Collaboration diagrams: show the interaction in

term of links between the objects.
• State diagrams

Every object has a state which can change if
something (an event) happens to it. The state diagram
describes the states that an object can get into and the
interactions that are involved to change the state.

• Activity diagrams
These diagrams represent the activities that are
triggered at the completion of an operation. An
activity diagram is a variant of a state diagram but it
emphasises on the actions, i.e. the activities that are
performed to change the object states and the results
of those activities.

• Component diagrams
The structures of the implementations and the source
codes are described in these diagrams. They show the
software components and their dependencies to each
other.

UML has some benefits which make it a popular
choice for a design tool:
• It is an industry standard, so its notation will be

understood by many people.
• The notations employed by the UML are reasonably

simple yet they are powerful enough for complex
specifications.

attribute: Type = initialValue

operation(arg list): return type

Class Name

Class Name

Class
1

Class
*

Class
0..1

Class
m..n

Class Association

Multiplicities

Generalisation

Supertype

Subtype 1 Subtype 2

exactly one

many (zero or more)

optional (zero or one)

numerically specified

Class aggregation

Class A Class A
role A

role B

Figure 1: The Class Diagram notations

UML does not support automatic generation of a
simulation from its specifications. Hence it is desired to
provide a tool to build simulation programs based on a
UML specification. But first, we need to have a look at a
simulation language or environment that can be used to
accommodate the simulation itself.

2.2. C++SIM Package

C++SIM provides a discrete-event, process-based
simulation facilities similar to SIMULA’s (Pooley 1987)
simulation class and libraries. It is written in standard
C++ and since C++ compilers typically generate code
which runs faster than similar SIMULA code, C++SIM
would produce more efficient simulation codes.

The C++SIM environment uses active objects as the
units of simulation. An active object is an object which
has an independent thread of control associated with it,
and it is used to convey the notion of ‘activity’ to the
processes involved in the simulation. Active objects are
created using threads (lightweight processes) and in
C++SIM, they are used for:

1. Simulation Scheduler
Simulation processes (see later) are managed by a

scheduler and are placed on a scheduler queue (the
event list). Figure 2 shows how a tree structure is
used to organise the scheduler queue. Each node
represents a process and the nodes at the same level
of the tree have the same simulation time. Here, the
processes are executed in a pseudo-parallel mode,
i.e. only one process is activated at any instance of
real time, but the simulation clock is only advanced
when all processes have been executed for the current
instance of simulation time.

Inactive process are placed into the scheduler
queue and when the currently active process yields
control to the scheduler (either because it has finished
or been placed back onto the scheduler queue), the
scheduler removes the process at the head of the
queue and activates it (Figure 3). When there is no
process left in the scheduler queue, the simulation
will terminate. Please note that every simulation must
start one scheduler before the simulation can begin.

2. Simulation Processes
C++SIM supports the process-oriented approach

to simulation, i.e. each simulation entity can be

considered as a separate process. These entities are
represented by process objects: they are C++ objects
which have an independent thread of control
associated with them when they are created.

Each process has a state and at any point during
the simulation, a process can only be in one of the
following states:
• active: the process has been removed from the

head of the scheduler queue and its actions are
currently being executed.

• suspended: it is on the scheduler queue and is
scheduled to be active at a specified simulation
time.

• passive: it has been removed from the scheduler
queue and if it is not brought back to the queue by
another process, it will not execute anymore.

• terminated: it is not on the scheduler queue and
will not take any further part in the simulation.

C++SIM uses the object-oriented approach for
developing the process objects by allowing classes to
inherit the process functionality from a base class
called Process. This class provides all required
operations for the simulation system to control all of
the processes in the simulation. The most important
operations are:
• Activate: activates a process. This is invoked

by the currently active process which passes the
control to the activated process.

• Passivate: removes the currently active
process from the scheduler queue. Another
process has to put this process back into the queue
if it needs to be scheduled again in the future.

• idle: returns true or false to indicate whether a
process is actually on the scheduler queue or not.

• Hold: reschedules the currently active process to
be active a fixed units of time later.

• Cancel: removes a process from the simulation
queue or suspends it indefinitely if it is currently
active.

• CurrentTime: returns the current simulation
time which is useful for controlling action relative
to a given time period.

Other operations and further explanation on the ones
above are available in (Arjuna 1994).

Any class derived from the Process class must
supply a Body part (member function) within which
its actions must be defined. These actions

Figure 2: Simulation Queue

Figure 3: Scheduler-Process Interaction

Head of Simulation Queue

time t1

time t2

time t3

time t4

simulation
process 1

simulation
process 2

simulation
process 3

active
process

Scheduler

Scheduler Queue

characterise the interactions among the processes in
the simulation and these actions will be executed
when the process to which they belong to is activated.

3. Main System Thread
This is a special thread which is used to initialise

the threads used in the simulation. It is invoked in the
main body of the simulation code and since this
thread has the highest priority in the system, it is
necessary to suspend it in order to allow other threads
to run.

A more detailed description and some examples of
C++SIM programs can be found in (Little and McCue
1993) and (Arjuna 1994). From experience, we have
observed that there are some basic components needed to
construct a simulation program. The next section
identifies those components which are applicable for
many simulation programs.

2.3. Components of Simulation

In general, simulation components can be classified into
simulation’s basic types (which represent entities of the
simulation and are defined as classes in C++SIM) and
auxiliary components (which are useful for representing
the instances of active objects as well as for specifying
simulation parameters and the collection of simulation
statistics). The basic types are:
1. PROCESS

 A PROCESS type is used to represent the simulation
process and different processes can be characterised
by assigning different name, attributes and
operations to them. The PROCESS’s name is used as
the name of the class constructed in C++SIM to
represent this process. This class may have member
variables (public or private) as its attributes as well as
some member functions for defining its operations.
Since the PROCESS type inherits from the Process
class (see Section 2.2), it must specify the actions of
the Body member function derived from that class in
order to provide interactions with other processes. A
PROCESS class may also have some constructors,
through which the simulation parameters specific for
this process can be passed. The structure used for the
PROCESS type is very similar to the Class Diagram
used in the UML (Figure 1).

2. DATA

 DATA is a reduced version of the PROCESS type, where
it actually acts just as a data storage. It is useful for
representing certain simulation entities which do not
need to be active objects. This type does not inherit
from the Process class and hence it takes up a lot
less resources. DATA type has a name and attributes
but it does not have any operation.

3. QUEUE

 A queuing mechanism is a very important concept in
simulation and hence a way of specifying queues (for
different types of object) must be provided.

4. CONTROLLER

 It acts as the main thread which initialises the
simulation, obtains the simulation parameters and
summarises the simulation.

In addition to the components above, there are some
auxiliary components to supplement the simulation
system:
1. OBJECT

 It is an instance of a basic type component and during
a simulation, there will be several, if not many, of
such OBJECTs being created. Through these instances,
the interactions among the simulation components
can be achieved.

2. INPUT

 The parameters for the simulation are obtained from
the user through the INPUT component which then
assigns them to the appropriate PROCESS class
(through the constructors).

3. RANDOMS

 Many aspects of the real system that a simulation
program tries to model (passed as simulation
parameters) have properties which correspond to
various distribution functions. C++SIM provides
several random number generators to accommodate
most of those distributions.

4. STATISTICS

 Statistics collection is an important part of a
simulation. It is important to know beforehand what
are needed to be collected and where/when/how the
collection should be done. This includes the
identification of the simulation statistics variables and
their types, and some mechanisms for updating their
values appropriately.

Based on these components, a language can be
created for specifying a simulation in a generic way, as
illustrated in Section 2.4.

2.4. SML: A modeling language/syntax for specifying
a simulation

In this section we describe SML (Simulation Modeling
Language) which provides a way to specify a simulation
(using the standard components described in Section 2.3)
in a notation that is easy to understand. A basic
component is declared as a type which must be followed
by a name through which it can be referred. The
characteristics of the simulation components can be
specified in the Body part of the PROCESS component
and are referred to as actions. The notation for the
components and the actions of the PROCESS component
are described below:
1. PROCESS component.

The syntax allows the following to be defined:
• constructor: denoted by a hash (‘#’) followed by

the types of parameters passed (separated by a
comma).

• member variable: each member variable is
declared in a separate line which contains the

visibility (‘+’ to indicate public and ‘-’ to indicate
private) followed by its type and name.

• member function: the declaration begins with the
visibility, followed by the return type, function
name and the function parameters (within a pair
of brackets, separated by commas, if any).

The lifetime of a process component is usually
throughout the simulation run, i.e. its actions are
repeated many times. Quite often, though, it is
necessary to create a process that runs only once, for
example, a process that has many instances (created
dynamically) which are independent of each other.
This kind of process is supported by SML and is
denoted by adding a keyword ”once” after the
process’s name.

2. DATA component.
The syntax is the same as the that of the PROCESS

component but it does not allow any member
functions or actions to be declared.

3. QUEUE component.
It is required to specify what type of object the queue
would contain and this can be done by adding an “of”
keyword followed by a named object type.

4. CONTROLLER component.
 Since a CONTROLLER is always required and its

functionality remains almost the same, it is only
necessary to provide a name for this component.

5. OBJECT component.
 An OBJECT is used to represent an instance of an

active object used in the simulation. Many OBJECTs
can be declared by giving a different name to each of
them and specifying which active object it is an
instance of.

6. INPUT component.
 This identifies the parameters and which PROCESS

component’s member variable they should be
assigned to.

7. RANDOMS component.
 The simulation parameters that are modeled to certain

distribution functions are declared as random
variables in this component. The distribution
functions supported are: Uniform, Exponential,
Erlang, HyperExponential and Normal distributions.

8. STATISTICS component.
The STATISTICS component provides a way to specify
statistics items (and their types) and how they should
be updated. Where or when those items should be
updated is specified in the definition of the Body
function of the PROCESS component (as part of the
interaction definition).

The interactions between the instances of the
simulation’s active objects (i.e. OBJECTs) can be
specified as the actions of the corresponding PROCESS

component. There are some actions provided here:
1. create: declares a new instance of the basic type

(PROCESS or DATA component).
2. end: terminates the execution of a process.
3. wait: reschedules the current process to be activated

later after a specified time.

4. activate: activates another process.
5. sleep: passivates the currently active process or

another active object (if its name is supplied as a
parameter).

6. enqueue: places an object (either of PROCESS type or
DATA type) into the tail of a queue.

7. dequeue: removes an object at the head of the queue.
8. check: passivates the process from which this action

is invoked if there are no more items in the queue.
9. update: updates the value of a statistics variable.
10. record: sets the value of an object’s member variable

to the current time (by default) or to a specified
value/variable (with extra parameters).

11. generate: produces a number randomly, using a
particular random variable (as declared in the
RANDOMS component).

12. print: useful for debugging, it allows specified
simulation data to be printed during the simulation.

On top of these, there are some actions useful for
specifying more complicated simulations by adding flow
control feature:
1. if: specifies a condition that must be satisfied before

certain actions can be performed. It is complemented
by the elsif and else actions.

2. while: allows a loop to repeat the same action(s) until
a certain condition is satisfied.

Each control action is followed by a block of actions
(enclosed in ‘[‘ and ‘]’) which determines the appropriate
actions for each condition.

Most of the actions above require some parameters,
as can be seen in Figure 4.

 The concept outlined in this section can be used as a
foundation for building a parser which interprets the
SML specification and transforms it into C++SIM codes.
One example of such a parser is discussed in the
following section.

3. AN IMPLEMENTATION EXAMPLE

A tool (parser) written in the Perl scripting language
(Wall and Schwartz 1990) is used to transfer the
specification written in SML into C++SIM program. It is

Figure 4: An example of a specification written in SML

QUEUE Queue of Job

CONTROLLER Controller
OBJECT a of Arrival
OBJECT s of Server
OBJECT q of Queue

RANDOMS
{
 interArr exponential 5
 executionTime uniform 2 4
}

STATISTICS
{
 double totalTime +now-j->arrTime
 int totalJobs +1
 int totalDone +1
}

DATA Job
{
 +double arrTime
}

PROCESS Arrival
{
 +void Body()
 {
 wait interArr
 create j of Job
 record arrTime of j
 update totalJobs
 enqueue j to q
 activate s
 }
}

PROCESS Server
{
 +void Body()
 {
 check q
 dequeue j from q
 wait executionTime
 update totalDone
 update totalTime
 delete j
 }
}

beyond the scope of this paper to explain this parser in
detail, only the principal concepts will be discussed here.
The operations can be divided into two parts:
1. Reading the SML specification from a file and

storing the information into some Perl arrays to be
processed later.

2. Generating the header (.h) and implementation (.cc)
files for the C++SIM program from the data stored in
the array.

Perl has some features which makes it an ideal
language for retrieving data. Its array data structure is
flexible and can be manipulated easily, hence it is
suitable for storing information of an arbitrary size. Perl
also facilitates the reading and writing from/to files,
which is useful for reading in the specification and
writing out the code for that specification.

We need to design the structures of the arrays used
beforehand, which is modeled on the SML component
specifications. There is one array each for the PROCESS,
DATA, QUEUE, OBJECT, INPUT, STATISTICS and RANDOMS

components and these arrays will contain different sets of
information†. For example, the PROCESS array is required
to store the information on all of the PROCESS

components. Each PROCESS component contains a
distinct name (through which the process is identified), a
list of constructors (if any), a list of member variables
(both public and private) and its member functions
(complete with the action definitions for each function).
In comparison, the QUEUE array needs to store the
information on all instances of the QUEUE component,
which are just the QUEUE name the type of object this
queue will contain.

Based on these array structures, the information
obtained from the SML specification (read from a text
file) can be arranged and used properly. This information
needs to be transferred into several C++ classes in order
to build a C++SIM program. Since Perl supports
subroutines, several subroutines can be implemented to
convert the information of different simulation
components (stored in the arrays) into their
corresponding C++ codes.

There were some difficulties encountered during the
development of this simulation tool. We had to bear in
mind that this tool must not contain a too complicated
syntax which hinders the prospective users from using it
in the first place.

The most difficult problem was in deciding how the
interactions among the simulation processes should be
administered. This involved the determination of the
actions that can be performed by a process and how the
parameters for those actions are to be passed. It was
decided that (for now) the interactions are specified in
the Body part of each PROCESS component using the
actions described in Section 2.4.

† There is no need to store much information about the CONTROLLER

component since there is only one controller for each simulation and
its behaviour is similar. A template for the CONTROLLER component is
therefore provided.

Statistics collection was not a trivial task either,
especially on how a particular statistical variable should
be updated. This is due to the fact that some complex
calculation might be required to update the values
properly.

Further effort has been made to enable this tool to
perform an automatic compilation and execution of the
simulation programs generated from the specification.
This involves the creation of the appropriate makefiles
which are needed to compile the generated C++ code (on
Linux platform), the actual compilation itself and the
invocation of the resulting simulation program by the
tool.

So far, several non trivial simulation programs have
been generated using this tool, such as the Voltan
(Brasiliero et al. 1996) fault tolerant system and the
Intelligent Network specification of the British Telecom
(Arief et al. 1999).

4. RELATED AND FUTURE WORK

Other projects, e.g. Rapide (Luckham et al. 1995) and
DEPEND (Goswami et al. 1997) use similar techniques.
Rapide provides a set of tools which help in the
specification, design and testing of software modules and
architectures; it is composed of five sub-languages. We
are more interested in its Executable Language, which is
used for writing executable modules defined by a set of
processes that observe and react to events. DEPEND,
meanwhile, is a functional simulation tool which
provides an integrated design and fault injection
environment for system level dependability analysis.
Some techniques for reducing the simulation time
explosion are outlined, which are useful for generating
accurate simulations in a reasonable time.

Note that the work presented here is not a full
programming language, as compared to MODSIM III
(CACI 1996), for example. Instead, it is a tool that can
be used to generate simulation programs from
specifications based on the components described in
Section 2.3 and Section 2.4. Theoretically, this syntax
can be applied for generating simulation program in
many process-oriented simulation environment
(SIMULA, MODSIM III, etc.), but a parser must be built
to perform the transformation. We have provided a
parser/tool for C++SIM environment, as outlined in
Section 3. Using this tool, the performance of the system
to be built can be analysed, and many scenarios can be
investigated easily.

As a summary, the syntax and tool described in this
paper can be used to produce process-oriented simulation
programs from UML-like specifications. They can be
applied for any systems which involve queues and
servers which can then be easily refined to satisfy more
specific simulation requirements. At the moment, the
notation used by SML is not identical to that of UML;
some work is to be done to investigate a way to get the
SML syntax closer to the UML notation.

REFERENCES

Arief, L.B.; M.C. Little; S.K. Shrivastava; N.A. Speirs and S.M.
Wheater. 1999. “Specifying Distributed System Services”. BT
Technical Journal - Special Issue (Apr.).

Arjuna Team. 1994. C++SIM User’s Guide. Department of
Computing Science, University of Newcastle upon Tyne (included in
the C++SIM Package, available at http://cxxsim.ncl.ac.uk/).

Brasiliero, F.V.; P.D. Ezhilchelvan; S.K. Shrivastava; N.A. Speirs and
S. Tao. 1996. “Implementing Fail-Silent Nodes for Distributed
Systems”. IEEE Transactions on Computers, Vol. 45, No. 11 (Nov.):
1226-1238.

CACI Products Company. 1996. MODSIM III: The Language for
Object-Oriented Programming (Tutorial) . CACI Products Co. (Dec.).

Douglass, B.P. 1998. Real Time UML: Developing Efficient Objects
for Embedded Systems. Addison-Wesley.

Eriksson, H. and M. Penker. 1998. UML Toolkit. John Wiley & Sons,
Inc.

Fowler, M. and K. Scott. 1997. UML Distilled: Applying the Standard
Object Modeling Language . Addison-Wesley.

Goswami, K.K.; R. K. Iyer and L. Young. 1997. “DEPEND: A
Simulation-Based Environment for System Level Dependability
Analysis”. IEEE Transactions on Computers, Vol. 46, No. 1 (Jan.):
60-74.

Little, M.C. and D.L. McCue. 1993. “Construction and Use of a
Simulation Package in C++”, Technical Report 437. Department of
Computing Science, University of Newcastle upon Tyne, England.
(July).

Luckham, D.C. et al. 1995. “Specification and Analysis of System
Architecture using Rapide”. IEEE Transactions on Software
Engineering, Vol. 21, No. 4, (Apr.): 336-355.

Mitrani, I. 1982. Simulation Techniques for Discrete Event Systems.
Cambridge University Press.

Pooley, R.J. 1987. An introduction to Programming in SIMULA.
Blackwell Scientific Publications.

Stroustrup, B. 1997. The C++ Programming Language. Addison-
Wesley.

Wall, L and R.L. Schwartz. 1990. Programming Perl. O’Reilly &
Associates.

BIOGRAPHY

Leonardus B. Arief received his B.Sc. in Computing Science with a 1st
class honours from the University of Newcastle upon Tyne in 1997. He
is currently a Ph.D. student at Newcastle University with a scholarship
from the Department of Computing Science. His research interests
include distributed system, simulation, specification languages, and
automatic code generation from software specification.

Neil Speirs obtained a 1st class Honours degree in Mathematics from
the University of Newcastle upon Tyne in 1980 and a doctorate in
Theoretical Physics from the University of Durham in 1985. For 2
years he worked for Sagesoft Ltd. writing many commercial packages.
For two years he worked for Mari Applied Microelectronics Ltd.,
where he was a project leader on the Esprit Projects Concordia and
Delta-4, both of which were concerned with the design and
implementation of Fault-Tolerant Distributed Computer systems. Since
1987, he has been a lecturer in Computing Science at the University of
Newcastle upon Tyne. His main research interests are in fault-
tolerance, reliability and distributed systems. He was the deputy
project manager on the Esprit Delta-4 project. He has since led the

implementation effort on Voltan - a project to built fail-controlled
computing nodes using off the shelf components.

