
Using SimML to Bridge the Transformation from UML to
Simulation

L.B. Arief and N.A. Speirs
Department of Computing Science,
University of Newcastle upon Tyne,

Newcastle upon Tyne NE1 7RU,
England.

Email: {L.B.Arief, Neil.Speirs}@ncl.ac.uk

Introduction
The cost of building a new system is usually quite high and without a proper design, a

mismatch might occur between the proposed system and the actual system delivered. Also,
it is desired that the performance of the new system can be predicted beforehand, in order
to see whether the proposed solution (architecture) does actually satisfy the requirements.
One way to achieve this is through simulation. Simulation programs can be built to mimic
the execution of the system and the data obtained from running the simulation enable the
performance of the system to be calculated and analysed.

There are some drawbacks though. It is often difficult to transform the design into a
simulation program without a sound knowledge of some simulation techniques. On top of
that, a new simulation program needs to be built each time for different systems, which
can be quite tedious. It would therefore be useful to have a tool that can automatically
generate a simulation program from a design notation.

The currently available design tools, such as the Rational Rose’s UML (Unified Modeling
Language) tool, do not provide a way to do this. This shortcoming is the main reason that
motivates our research. The work involves the investigation of the design method to be
used (UML [1, 2]), a simulation environment (C++SIM [3, 4]), a syntax that can capture the
simulation requirements (SimML [5]) and a parser to transform the design into simulation
program (in the perl [6] scripting language).

What is SimML?

 We have developed a syntax called SimML (Simulation Modelling Language) which
provides a textual notation that can be transformed into a simulation program. SimML
identifies simulation components which are applicable for many simulation programs as
well as the interactions that can be performed among them:

1. Basic Type Components
 The basic type components represent the entities of the simulation and are defined as

classes in the C++ term. There are four such components identified:
a) PROCESS component represents the simulation process and different processes can

be characterised by assigning different name, attributes and operations to them. The
operations are represented as actions (see later) which specify the interaction among
the active components in the simulation.

b) DATA component is a simplified version of the PROCESS component and used only
as a data storage. It does not represent a simulation process, hence it does not
contain any operation.

c) QUEUE component is used to represent the queueing mechanism, which is a very
important aspect of simulation.

d) CONTROLLER component is a special component which initialises the simulation,
obtains the simulation parameters and later summarises the simulation.

2. Auxiliary Components
 They are useful for representing the instances of active objects as well as for specifying

the simulation parameters and the collection of simulation statistics.

a) OBJECT component is an instance of the basic type component and during the
simulation, there will be several, if not many of such OBJECTs being created.
Through these instances, the interactions among the simulation components can be
achieved.

b) INPUT component allows the parameters for the simulation to be obtained from the
user, which are then assigned to the appropriate PROCESS components (through the
constructors).

c) RANDOMS component provides a way to model certain simulation parameters to
various distribution functions.

d) STATISTICS component specifies what information/data to be collected from the
simulation.

3. Actions: supporting the interactions among the PROCESS components.
 The behaviour of a process is determined by its actions. These are specified inside the

+void Body() member function of the PROCESS component. The summary of the
actions allowed is as follows:
a) create: declares a new instance of the basic type (either a PROCESS or DATA

component) which is to be used by the current process to perform the interactions.
b) wait: reschedules the current process to be activated later after a specified time.
c) activate: activates another process; multiple activations are allowed (if the process

instance is actually a group or array of many processes).
d) sleep: passivates the currently active process or another active object (if its name is

supplied as a parameter).
e) enqueue: places an instance of PROCESS or DATA object to the tail of a queue.
f) dequeue: removes an object from the head of a queue.
g) check: passivates the process from which this action is invoked if there is no more

item in the queue.
h) record: sets the value of an object’s member variable to the current time (by default)

or to a specified value/variable (with extra parameters).
i) update: updates the value of a statistics variable.
j) generate: produces a number randomly, using a particular random number

generator (as declared in the RANDOMS component).
k) end: terminates the execution of the current process.
l) delete: deletes an instance of the basic type created before.
m) print: useful for debugging, it allows specified simulation data to be printed during

the simulation.
 On top of these actions, there are some additional actions which are useful for

specifying a more complicated simulation by adding a flow control feature:
n) if: specifies a condition that must be satisfied before certain action(s) can be

performed. It is complemented by the elsif and else actions.
o) while: allows a loop to repeat the same action(s) until a certain condition is met.

 More information about the syntax is available in a separate document [7].

SimML Parser and Example

 A suitable parser has been constructed to automatically generate a C++SIM code from
the SimML notation. This parser was built in perl (Practical Extraction and Report
Language) and it also generates the appropriate makefiles, compiles the C++SIM code and
runs the simulation automatically. This 2000-line script reads the SimML specification
from a file, processes the information gathered and then generates the source code for the
simulation.
 This transformation expands the initial SimML code into a simulation code that is
about 6 times in size (number of lines). This saves the system developer from manually
writing the simulation program. The use of C++SIM as the simulation environment allows
us to “fine-tune” the simulation program to fulfill some specific requirements that are
difficult to include in the design notation, such as a complex condition statement or some
debugging lines.

 As an example, let us consider a simple queuing problem where jobs are generated from
an Arrival process and placed into a queue to be processed by a Server process. The inter
arrival time is distributed exponentially with mean 5 and the server’s execution time is
distributed uniformly between 1 and 5. We are interested to know how long it takes on
average for a job to be completed. Here is the SimML notation that depicts this problem:

 PROCESS Arrival
 {
 +void Body()
 {
 create j of Job
 record arrTime of j
 update totalJobs
 enqueue j to q
 activate s
 wait interArr
 }
 }

 PROCESS Server
 {
 +void Body()
 {
 check q
 dequeue j from q
 wait exTime
 update totalDone
 update totalTime
 }
 }

 DATA Job
 {
 +double arrTime
 }

 QUEUE Queue of Job

 CONTROLLER Controller
 OBJECT a of Arrival
 OBJECT s of Server
 OBJECT q of Queue

 RANDOMS
 {
 interArr exponential 5
 exTime uniform 1 5
 }

 STATISTICS
 {
 double totalTime +now-j->arrTime
 int totalJobs +1
 int totalDone +1
 double avgTime =totalTime/totalDone
 }

 For the simulation length of 1000,000, the following results were obtained:

 totalTime = 1.52947e+06
 totalJobs = 200292
 totalDone = 200291
 avgTime = 7.63624

 Different scenarios can be investigated easily by altering the simulation parameters or if
needed, the structure of the system. For example, if two servers are to be used instead of
one, only the following line needs to be changed:

 OBJECT s of Server ⇒ OBJECT s[2] of Server.
 The new structure gave these results for the same simulation length:

 totalTime = 688537
 totalJobs = 200292
 totalDone = 200291
 avgTime = 3.43768

Future Work

 We are now investigating the feasibility of performing an automatic transformation from
the UML’s class and sequence diagrams into a simulation program through SimML. In a
way, we have provided the “back-end” of the process, namely the transformation from
SimML to C++SIM, so now we can concentrate on the “front-end”. There are two possible
strands of work here:
1. Use a standard UML tool and convert the information contained there into SimML.
2. Build a new UML tool that knows about SimML notation and hence can produce a

simulation code straight from it.

 The second approach is currently being undertaken and we are using Java/Swing to
build a GUI tool for drawing the UML diagrams and performing the transformation in an
implicit way.

References

[1] M. Fowler and K. Scott, UML Distilled: Applying the Standard Object Modeling Language,
Addison-Wesley, 1997.

[2] B.P. Douglass, Real Time UML: Developing Efficient Objects for Embedded Systems,
Addison-Wesley, 1998.

[3] M.C. Little and D.L. McCue, Construction and Use of a Simulation Package in C++,
Technical Report 437, Department of Computing Science, University of Newcastle upon
Tyne, July 1993.

[4] Arjuna Team, C++SIM User’s Guide, Department of Computing Science, University of
Newcastle upon Tyne, 1994.

[5] L.B. Arief and N.A. Speirs, Automatic Generation of Distributed System Simulations from
UML, Proc. 13th European Simulation Multiconference (ESM’99), Warsaw, Poland, pp.
85- 91, June 1999.

[6] L. Wall and R.L. Schwartz, Programming Perl, O’Reilly & Associates, 1990.
[7] L.B. Arief, The SimML User Manual (in preparation).

