
Software Architectures and Open Source Software – Where
can Research Leverage the Most?

Budi Arief, Cristina Gacek, and Tony Lawrie

Centre for Software Reliability
Department of Computing Science

University of Newcastle
Newcastle upon Tyne NE1 7RU

United Kingdom
{L.B.Arief, Cristina.Gacek, A.T.Lawrie}@ncl.ac.uk

1 INTRODUCTION
Software architectures have been playing a central role
in software engineering research for some years now.
They are considered of pivotal importance in the success
of complex software systems development. However,
with the emergence of Open Source Software (OSS)
development, a new opportunity for studying
architectural issues arises. In this paper, we introduce
accepted notions of software architectures (Section 2),
discuss some of the known issues in OSS (Section 3),
resulting in a set of aspects we consider to be relevant
for future research (Section 4).

2 SOFTWARE ARCHITECTURES
Software Architecture can be defined as the structure(s)
of a system, which comprise software components, the
externally visible properties of those components and the
relationships among them [1]. It typically acts as a
bridge between software requirements and
implementation. The architectural design of a software
system can represent the most vital artefact for a
software project, as it directly impacts upon the
important management and technical processes of
production and integration [2]. Hence, a sound software
architecture is desirable in order to build a solid software
system.

Some of the reasons why software architectures are
believed to be important are that they: facilitate the
communication among stakeholders, represent the
manifestation of the earliest design decisions, and
constitute a relatively small and understandable model of
how a system is structured [1]. Garlan further elaborates

six aspects of software development within which
software architecture can play an important role:
facilitating understanding by using high-level
abstractions, supporting reuse at multiple levels of
granularity, providing a partial blueprint for
development by indicating the major components and
dependencies among them, exposing the dimensions
among which a system is expected to evolve, providing
analysis opportunities at early stages of development,
and for basic management support [3].

In order to fulfil their expected roles, software
architectures should be modularised. This
modularisation plays a triple role:
• It facilitates understanding by using high-level

abstractions and reducing the complexity of the task
at hand,

• It highlights areas where work can occur in a
concurrent and distributed fashion, and

• It can also be used to determine the organizational
structure that should be in place for developing the
system being considered1.

Based on its intrinsic characteristics, software
architecture design becomes essential while developing a
large complex software system. It should be the
responsibility of a main architect (group) responsible for
keeping the vision of the overall system [4].
Additionally, in order to support system evolution, while
avoiding architecture erosion and drift [5], the software
architecture must also be evolved accordingly, at times
requiring some major restructuring.

The issues addressed in this section have been
recognised within proprietary software development. In
the next section, we explore how software architectures
relate to OSS development.

1 Conversely, it is important to note here that organizational
structures have also been known to influence the creation of
software architectures, by having the latter reflect the areas of
expertise and availability of people in the former.

3 SOFTWARE ARCHITECTURES IN OPEN
SOURCE SOFTWARE VS. PROPRIETARY
SOFTWARE

With the emergence of Open Source Software (OSS)
development [6, 7] as an alternative approach in building
software systems, it is interesting to investigate whether
software architecture still plays as prominent a role in
the OSS development as in the traditional or proprietary
software development.

At its root, the popular OSS definition makes the
distinction between proprietary software development
and OSS as being a centralised vs. decentralised
software development argument, where the process of
carefully controlling the construction of software is
replaced by a rapid evolutionary process of voluntary
submissions from all over the world [7]. Although a
rapid, decentralised, and participative approach is not
unique to OSS development, it does pose fundamental
architectural considerations for the development of
software systems.

However, OSS also presents a different attitude towards
software development. By giving away the source code,
OSS lets anyone inspect and modify the code as they
please. There is also no explicit planning or project
management in the open source approach, which puts a
lot of strain on the architecture of the system.

Unlike most traditional software development, the
original interest and vision in OSS projects usually
emanates from the initiating projects owners [7]. Such
individuals often assume complete authority [8]. Even in
“shared-leadership” situations, such as the Apache web
server, investigations have established that the core-
developers still exercise the major influence over the
design and direction of OSS development [9].
Consequently, in contrast to traditional software
approaches, OSS project managers seem to possess
greater power to determine the architectural direction of
the software product. In this respect, even in the
(supposedly) decentralised OSS process, the traditional
architect role still appears to be a prerequisite for
preserving the conceptual integrity of software [4].
However there are views expressed that OSS leaders
may abuse this power to protect their own position by
concealing the software architecture [10]. In doing so,
they risk removing the blueprint that is vital for detailed
understanding. Nevertheless, even in the absence of an
explicit architectural blueprint, it may still be possible
that the OSS development process can overcome the
traditional software development barrier (c.f. Section 2)
by narrowing the conceptual gap between requirements
and implementation. The reasons being:
• Many of the users of OSS software are also

contributing developers [11],
• Creating programs for oneself has long been

considered less demanding than developing
software for others [12],

• The rapid releases and early feedback allow a
greater level of incremental development in the
OSS process [7, 13].

Finally, initial OSS releases may be lacking in code
refinement and contain many residual faults [7].
Nevertheless, it has been recognised that for OSS
projects to be successfully initiated, evolved, and
maintained, the architecture must be modularised to
promote code comprehension and concurrent
collaboration [14].

An indication of the importance of architectural
coherence in OSS was provided by Eric Raymond’s
interpretation of why the controversial release of
Netscape’s Mozilla source-code did not fulfil initial
expectations [7:p 77]:

“…going ‘open’ will not necessarily save an
existing project that suffers from ill-defined goals
or spaghetti code, or any of the software
engineering’s other chronic ills.”

It should also be noted that most OSS endeavours are
undertaken in fairly stable domains. This characteristic
can help explain why major architectural restructuring is
hardly ever witnessed.

4 FUTURE DIRECTIONS
In recognition of both traditional and OSS architectural
issues (see Sections 2 and 3), a number of points can be
tentatively stated for future discussion and research:

1. Analyse how the OSS organisational structures affect

their software architectures.
2. Investigate how OSS approach may harmonise the

two extremes of the centralised and decentralised
software development.

3. Compare how the gap between requirements and
implementation is handled within OSS vs.
proprietary software development.

4. Explore the role of software architectures in OSS
development.

5. On the issue of software architecture decay:
a) Assess whether architectural decay happens in

OSS. If so, how quickly does it occur, and how is
it dealt with?

b) Try to get some insight on architectural drift and
erosion by studying OSS projects that failed.

6. Leveraging the benefits offered by interdisciplinary
research in order to determine:
a) which OSS characteristics are suitable for

adoption within other software development
processes,

b) what implications the OSS characteristics may
have, for example on “time-to-market”,

c) the communication patterns in OSS, both in terms
of communication mode and quality of content.

ACKNOWLEDGEMENT
This paper has been funded by the UK EPSRC project
on Dependable Interdisciplinary Research Collaboration
(DIRC – http://www.dirc.org.uk/). We would
like to thank Denis Besnard, Michael Jackson, and Cliff
Jones for various fruitful discussions contributing
towards this paper.

REFERENCES
[1] L. Bass, P. Clements, and R. Kazman, Software

Architecture in Practice: Addison-Wesley,
1998.

[2] W. Royce, Software Project Management: A
Unified Framework: Addison Wesley, 1998.

[3] D. Garlan, Software Architecture: a Roadmap,
in The Future of Software Engineering, A.
Finkelstein, Ed.: ACM Press, pp. 93-101, 2000.

[4] F. P. Brooks, The Mythical Man Month: Essays
on Software Engineering: Addison-Wesley,
1995.

[5] D. E. Perry and A. L. Wolf, “Foundations for
the Study of Software Architecture,” ACM
Software Engineering Notes, 4, vol. 17, pp. 40-
52, October 1992.

[6] The Open Source Initiative online at
http://www.opensource.org.

[7] E. S. Raymond, The Cathedral and the Bazaar:
Musings on Linux and Open Source by an
Accidental Revolutionary: O’Reilly &
Associates, 1999.

[8] M. Maclachlan, “Panelists Describe Open
Source Dictatorships,” in TechWeb News, 12
August 1999, online at
http://www.techweb.com/.

[9] A. Mockus, R. T. Fielding, and J. Herbsleb, “A
Case Study of Open Source Software
Development: The Apache Server,” presented
at 22nd International Conference on Software
Engineering, Limerick, Ireland, pp. 263-272,
2000.

[10] N. Bezroukov, “A Second Look at the
Cathedral and the Bazaar,” in First Monday, 9
December 1999, online at
http://www.firstmonday.dk/issues/issue4_12/bez
roukov/.

[11] K. Johnson, “Towards a Descriptive Process for
Open-Source Software Development,”
Submission for the 2nd Workshop on software
Engineering over the Internet, online at
http://www.cpsc.ucalgary.ca/~johnsonk/SENG/
SENG691/towards.htm.

[12] G. M. Weinberg, The Psychology of Computer
Programming: Dorset House, 1971.

[13] R. C. Pavlicek, Embracing Insanity: Open
Source Software Development: SAMS
Publishing, 2000.

[14] T. Bollinger, R. Nelson, K. M. Self, and S. J.
Turnbull, “Open-Source Methods: Peering
Through the Clutter,” IEEE Software,
July/August, pp. 8-11, 1999.

