
New Tricks to Old Codes: Can AI Chatbots Replace Static Code
Analysis Tools?

Omer Said Ozturk
Sabanci University
İstanbul, Turkiye

Emre Ekmekcioglu
Sabanci University
İstanbul, Turkiye

Orcun Cetin
Sabanci University
İstanbul, Turkiye

Budi Arief
University of Kent

Canterbury, England

Julio Hernandez-Castro
University of Kent

Canterbury, England

ABSTRACT
The prevalence and significance of web services in our daily lives
make it imperative to ensure that they are – as much as possible –
free from vulnerabilities. However, developing a complex piece of
software free from any security vulnerabilities is hard, if not impos-
sible. One way to progress towards achieving this holy grail is by
using static code analysis tools to root out any common or known
vulnerabilities that may accidentally be introduced during the de-
velopment process. Static code analysis tools have significantly
contributed to addressing the problem above, but are imperfect.
It is conceivable that static code analysis can be improved by us-
ing AI-powered tools, which have recently increased in popularity.
However, there is still very little work in analysing both types of
tools’ effectiveness, and this is a research gap that our paper aims
to fill. We carried out a study involving 11 static code analysers,
and one AI-powered chatbot named ChatGPT, to assess their ef-
fectiveness in detecting 92 vulnerabilities representing the top 10
known vulnerability categories in web applications, as classified by
OWASP. We particularly focused on PHP vulnerabilities since it is
one of the most widely used languages in web applications. How-
ever, it has few security mechanisms to help its software developers.
We found that the success rate of ChatGPT in terms of finding se-
curity vulnerabilities in PHP is around 62-68%. At the same time,
the best traditional static code analyser tested has a success rate
of 32%. Even combining several traditional static code analysers
(with the best features on certain aspects of detection) would only
achieve a rate of 53%, which is still significantly lower than Chat-
GPT’s success rate. Nonetheless, ChatGPT has a very high false
positive rate of 91%. In comparison, the worst false positive rate of
any traditional static code analyser is 82%. These findings highlight
the promising potential of ChatGPT for improving the static code
analysis process but reveal certain caveats (especially regarding
accuracy) in its current state. Our findings suggest that one inter-
esting possibility to explore in future works would be to pick the
best of both worlds by combining traditional static code analysers
with ChatGPT to find security vulnerabilities more effectively.

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
ChatGPT · AI · Static code analysis · PHP vulnerabilities · Tools
evaluation · Vulnerability detection · AI in cyber security

1 INTRODUCTION
A vulnerability, in the context of software engineering, is a defect
in the implementation or design that opens a pathway for an at-
tacker with the right set of skills to exploit the weaknesses of the
targeted software systems [6]. Vulnerability remediation would
cost more after software is being deployed [6]. Even worse, some-
times fixing one vulnerability could cause other vulnerabilities to
be introduced [3].

For the reasons mentioned above, vulnerabilities must be identi-
fied and addressed in the early stages of software development life
cycle, which typically includes 5 important stages: (i) requirements;
(ii) design; (iii) implementation; (iv) testing; and (v) deployment.
Each stage yields its own security recommendations. Typically,
most of the vulnerabilities are found in the implementation stage of
the software development life-cycle. In the implementation stage,
developers frequently use static code analysers to evaluate their
codes’ security posture and identify security vulnerabilities.

Vulnerabilities exist in all types of software. As the world be-
comes more interconnected through the Internet, there is a growing
concern caused by vulnerabilities on websites and web-based appli-
cations. This is due to the increased reliance that our society has on
web services, which means any disruption or security compromise
on these can cause significant negative consequences. Additionally,
the “online” nature of these web services make them vulnerable
to remote attacks at any time, which opens up the attack surface
considerably. Many of these web services are generated by using
the PHP programming language [10].

A developer may implement and launch a perfectly working PHP
application like WordPress, but it is very likely that they would not
anticipate all the ways that attackers on the internet might try to
compromise their code.

To alleviate the problem of vulnerable software, there are tools –
in particular, static analysis tools – that developers can use. There
are various static code analysers aimed to detect vulnerabilities
before deployment. However, remarkably little research has been
undertaken into the effectiveness of these static code analysers.

AI-powered tools like ChatGPT 1 also have the potential to play a
significant role in static code analysis for security. By using natural
language processing, these tools are able to understand and inter-
pret code written in programming languages like PHP and identify
potential vulnerabilities. This can allow developers to identify and
fix vulnerabilities in their code. Furthermore, by asking these tools

1https://openai.com/blog/chatgpt/

EICC 2023, June 14–15, 2023, Stavanger, Norway Omer Said Ozturk, Emre Ekmekcioglu, Orcun Cetin, Budi Arief, and Julio Hernandez-Castro

to provide the corresponding Common Weakness Enumeration 2

(CWE) number for each vulnerability found, developers can un-
derstand the type of vulnerability and the potential impact on the
application. Additionally, by asking for the patch of the identified
vulnerabilities, developers can apply the fixes without having to
manually search for a solution. Accordingly to the mentioned rea-
sons, we also wanted to evaluate the efficiency of the well-known
AI-powered tool ChatGPT for identifying and fixing vulnerabilities
in PHP code.

In this paper, we present an extensive study comparing the ef-
fectiveness (in terms of the ability to detect software vulnerability
correctly) of 11 different static code analysers and one AI-powered
tool ChatGPT. For this study, 92 OWASP Top 10 Web Application
Security Risks 3 were used to assess the vulnerability detection
capabilities of the static code analysers chosen for this study.

Contributions. The key contributions of our paper are:
• The creation of a PHP code dataset with known OWASP
Top 10 vulnerabilities, that we will share openly with the
academic community4 and could play the role of the ground
truth when assessing the effectiveness of different static code
analysers.

• A detailed study of the effectiveness of 11 of the most popular
free open-source static code analysers.

• A detailed study of the effectiveness of AI-powered tool
ChatGPT for static code analysis.

• The results of the scanning process both for free open-source
static code analysers and ChatGPT will share openly with
the academic community.

• A comparison between the capabilities of these analysers and
ChatGPT at finding different categories of vulnerabilities,
and a study of their combined coverage.

The rest of this paper is organised as follows. Section 2 outlines
our approach, including the background information about the
selection of the static code analysers, the process of scanning code
using ChatGPT, information about the procedure used, and the
technique used in evaluating the outputs. Section 3 provides the
key findings of our research, along with the statistical data leading
to the key insights obtained. Section 4 discusses the implications
of our findings. Section 5 presents related work and discusses how
our research complements them. Finally, Section 6 concludes our
paper and provides several ideas for future work.

2 METHODOLOGY
2.1 Vulnerability selection
Wewrote the vulnerable code samples with reference to the OWASP
Top 10 2021, including all 10 categories and prioritizing the more
common ones in web applications for greater measurement effi-
ciency. In total, they included 92 vulnerable codes by ensuring at
least one code from each category and arranging the code numbers
in their respective categories. To ensure accurate classification, we
matched each code in the database with its corresponding CWE
number from the MITRE CWE list. We verified the classification

2https://cwe.mitre.org/index.html
3https://owasp.org/www-project-top-ten/
4https://github.com/New-Tricks-to-Old-Codes/Replace-Static-Analysis-Tools

Table 1: Static code analysis tools considered in the study

Tool Name Version
Betterscan CE scanmycode3-ce
OWASP WAP v2.1
phpcs-security-audit (PHPcs) v3.7.1 (stable)
Pixy No version information.

Compiled from the source.
Progpilot v1.0.0
Psalm dev-master
RATS No version information.

Compiled from the source.
RIPS v0.55
SonarQube CE 9.8.0-community

(docker container)
Visual Code Grepper (VCG) v2.2.0
Horusec v2.8.0

of vulnerable codes by matching them with CWE numbers and
mapping them to their associated OWASP Top 10 categories. The
distribution of the number of shown vulnerabilities in the code
database is aligned with the most found vulnerabilities in web
applications on the internet [9].

2.2 ChatGPT
ChatGPT is an AI-powered chatbot created by the OpenAI organi-
zation. It was first opened to the public in 2022 and Jan 9 Version
is the latest release of the tool when this paper is written. As its
popularity is increasing day by day, the community started using
the tool to write code and bug fixing. It should be also noted that
the official page of the tool gives a bug-fixing example as its first dia-
logue sample. In this study, we evaluated the vulnerability detection
performance of the ChatGPT to see its advantages and disadvan-
tages over static code analysis tools. A detailed explanation of the
methodology that was followed during the scanning of the codes
via ChatGPT is explained in the Study procedure section.

2.3 PHP Static Code analysers
In this study, we focused on the vulnerability detection performance
of PHP-supporting open-source and free static code analysers. Our
references for the selection process were the lists “Source Code
Analysis Tools” by OWASP 5 and “Source Code Security Analysers”
by NIST 6. All free and open-source static code analysers supporting
PHP have been chosen from the mentioned lists. Another criteria
for the selection is the working environment, we chose the static
code analysers which can be used locally, and we excluded the ones
which need to upload the source code to a cloud environment or
a repository-sharing platform such as Github. In total, we have
evaluated 11 tools. The complete list of tools with their version
number are given in Table 1.

5https://owasp.org/www-community/Source_Code_Analysis_Tools
6https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-
analyzers

New Tricks to Old Codes: Can AI Chatbots Replace Static Code Analysis Tools? EICC 2023, June 14–15, 2023, Stavanger, Norway

2.4 Study procedure
This section includes a detailed explanation of the study procedure
that we followed. The preparation of the PHP code database consists
of developing vulnerable and secure codes, and manual testing for
exploitation. The development and test phases were carried out in
a Linux environment running Ubuntu (20.04) with PHP version 7.4,
Apache2 (2.4.25), and MySQL (10.3.37-MariaDB). PHP 7.4 has been
chosen because according to W3Techs, it is the most frequently
used version of PHP [11]. Before running and testing processes, the
manual testing phasewas carried out. Every piece of codewas tested
manually. Each one of these vulnerable codes was exploited. On the
other hand, compliant codes were tested by the same individuals
and given to a penetration testing company 7 for validation. None
of these compliant codes was exploited during this procedure.

During the study, for AI-based scanning, we used ChatGPT Jan
9 Version and the process consisted of two steps:

(1) Finding security flaws:We asked ChatGPT to identify any
security flaws in the given PHP code and to provide the corre-
sponding Common Weakness Enumeration (CWE) number
for each flaw. The question pattern was “Think yourself as
a cybersecurity specialist. Are there any security flaws in
the following PHP code? If there are vulnerabilities, can you
give the corresponding CWE number for each of them.” The
reason for asking ChatGPT to “Think yourself as a cyberse-
curity specialist” is that this question intends to make the
AI have comprehensive knowledge of the domain and to be
able to identify potential vulnerabilities in the PHP code.

(2) Providing patches:We asked ChatGPT to fix the identified
vulnerabilities by providing a patch for the given code. The
question pattern was “Can you fix these vulnerabilities?”.
We asked this question because some static code analysers
have the ability to fix vulnerable code. Even though the
vulnerability-fixing capabilities of the analysers were not
considered while making comparisons, this feature is worth
mentioning with its own advantages.

It should be mentioned that some vulnerabilities required multi-
ple files, which were provided together with the question, as they
were necessary to be given together to understand the vulnerabil-
ity and fix it. We conducted scans for each vulnerability regularly
and used the same version of the tool throughout the study. The
questions and answers were logged on a file along with the scan
date and time. Another thing to mention is the static code analy-
sers are deterministic in nature, producing consistent results with
each run. Conversely, the results generated by ChatGPT are non-
deterministic and can vary with each execution. To address this
issue, the scanning process is repeated and every single code is
submitted to ChatGPT twice. This approach is taken in an effort to
present a more comprehensive and robust set of findings.

In the process of scanning the codes via static code analysers,
we used the mentioned environment. For each of the static code
analysers, the provided options were reviewed and the appropriate
option for vulnerability analysis was used in scanning. To avoid
any wrong configuration of the aforementioned tools, all of the
researchers configured them separately before the process.

7https://vanderlog.com/

2.5 Output evaluation
In the initial output evaluation, the codes were divided into two
categories: vulnerable and secure. The vulnerable codes were fur-
ther divided into three sub-categories: Found, Partially Found, and
Not Found. For the secure codes, there were two sub-categories:
Correct and False Positive.

The criteria for labelling outputs of vulnerable codes according to
the three subcategories were agreed upon after a thorough review
of all outputs and they are as follows: If the tool has the ability of
categorisation, in order for its output to be considered as “Found”, it
must correctly categorise and identify the vulnerability in the code,
then point to the relevant part of the code (e.g. the relevant function,
variable, or the entire relevant line in the code). Otherwise, if the
tool does not have the categorisation ability, it must point to the
function, variable, or vulnerable line, in order for its output to be
considered as “Found”.

The output that does not contain any correct categorisation or
contains half-right categorisation (for example, having a relation-
ship “ParentOf”, “ChildOf”, “CanPrecede” with the correct CWE
category) and indicating the function, variable or corresponding
line from which the vulnerability originated are labelled “Partially
found”. In addition, since some of the vulnerabilities originate from
the same function they can be miscategorised by the tools, in this
case, we look for the function that makes the code vulnerable and
we expect the tool for highlighting the corresponding function. An
example of the mentioned case can be seen in SSRF and Local file
inclusion vulnerabilities. Both of the vulnerabilities can be origi-
nated from the “file_get_contents()” function in PHP, it is not an
unexpected situation to categorise them wrong, thus we considered
these cases as “Partially Found”. The output that does not com-
ply with the mentioned criteria, that does not correctly categorise,
and/or does not show the function, variable, or line, where the
vulnerability originates, is labelled as “Could not find”.

The evaluation of the output of the secure code was done by
respecting the mentioned two sub-categories which are “Correct”
and “False positive”. For being labelled as “False positive” the tool
needs to detect a vulnerability that doesn’t actually exist in the
code. Otherwise, if the tool does not mention any vulnerability its
output was evaluated as “Correct”.

3 RESULTS
In this section, we present the vulnerability detection results of
each of these tools. First, we looked at their performance when they
were used on their own. Second, we investigated the performance
of combining two or more of static code analysers, to see if an
improved performance could be achieved by having these tools
complement each other, and then we compared the results of the
collaborations with the results of ChatGPT.

3.1 Vulnerability detection efficacy of ChatGPT
As it is mentioned in section 2.4, unlike static code analysers, the
output of ChatGPT is not deterministic. Hence each run may have
different output and evaluation performance. For that reason, in
this part we will give the results from two distinct ChatGPT scans
on the same version. Even though the results are not exactly the
same, they are quite similar.

EICC 2023, June 14–15, 2023, Stavanger, Norway Omer Said Ozturk, Emre Ekmekcioglu, Orcun Cetin, Budi Arief, and Julio Hernandez-Castro

Figure 1: The tools’ vulnerability detection performance (left)
and compliant code performance (right)

At the first scan, the AI-powered tool detected 63 of the 92 vulner-
able codes correctly (a 68% success rate). There are 7 vulnerabilities
that the tool partially detected, and the remaining 22 vulnerabilities
could not be caught by the tool. By considering these numbers, the
tool can say that there is an issue in the relevant part of the code
in terms of security with a rate of 8%, but it fails at a rate of 24% in
detecting the vulnerabilities. The tool gave 10 “False positive” out
of 11 secure codes. The statistics have shown that the tool reported
91% of the given codes are vulnerable, even if they are secure.

At the second scan, the AI-powered tool detected 57 of the 92
vulnerabilities correctly (a 62% success rate). There are 12 vulnera-
bilities that the tool partially detects, and the remaining 23 vulnera-
bilities could not be caught by the tool. By considering the obtained
numbers, the tool can say that there is an issue in the relevant part
of the code in terms of security with a rate of 13%, but it fails at
a rate of 25% in detecting the vulnerabilities. Similarly to the first
scan, the tool gave 10 “False positive” out of 11 secure codes.

Statistics show that ChatGPT has a high vulnerability detection
rate, but also gives a high rate of “False positive” responses. The
statistics of the first and the second scans are kind of proof of the
non-deterministic nature mentioned above but it should also be

considered that there is no huge deviation between the scan results.
The advantages and drawbacks of the findings will be included in
the Discussion section.

3.2 Vulnerability detection efficacy of Static
Code Analysers

Due to the rule-based deterministic structure of static code analy-
sers, the output of the tool does not change between run iterations
and is strongly related to their rule set. Belong-side their rule set,
there may be other factors that affect the performance of the static
code analyser. For example, in this study, we realised that in some
of the codes, Pixy static code analyser was giving syntax errors
for our code and was not giving any output other than the syntax
error. As mentioned before, we manually tested each vulnerability
and they were running without any problems. For that reason, the
results of Figure 1 are not adding up to 100% for Pixy.

3.2.1 Vulnerability detection efficacy of a single tool. First, we
would like to determine the vulnerability detection efficacy of each
static code analysis tool when being used individually. Figure 1
shows a general overview of the efficacy of the tools. As shown in
Figure 1 (left), no single tool managed to detect all or the majority
of the vulnerabilities.

There is no single static code analysis tool that could detect all the
vulnerabilities. In fact, the most successful ones only managed to
detect 32% of the vulnerable codes. Meanwhile, the least successful
tool could only detect 2% of them. While the overall performance of
Progpilot and Psalm is the best, other tools may perform better in
individual categories. This can be seen in Table 2. For example, the
overall efficacy of SonarQube CE is 24%, but it is the best-performing
tool for the category of cryptographic failures.

3.2.2 Vulnerability detection efficacy of a combination of multiple
tools. As mentioned before, different static code analysers may
have different categories of which they are the best. Hence, using
them in combination may increase the overall found vulnerability
coverage. Each two-combination of all 11 static code analysers has
been analysed. The best performing five pairs are given in Table 3.
According to that table, instead of using a single tool, if we use two
tools together, we can find more than 50% of the vulnerabilities.

3.3 Efficacy of AI vs Static code analyser
If we compare the individual performance of each static code anal-
yser and ChatGPT, we see a big difference between the found vul-
nerability percentages. As mentioned before, the best-performing
static code analysis tools are able to find 32% of the vulnerabilities
while both ChatGPT iterations roughly double this identification.
Even if two static code analysers are used in combination, they are
outperformed by ChatGPT as can be seen in Table 3. The only sta-
tistical advantage of static analysis tools emerges when we consider
compliant codes. For example, if we consider the ChatGPT scan
2 and compare it with RIPS and SonarQube CE combination, we
see 36% less “False positive” with a trade-off of 10% less vulnerable
code identification. In addition to overall performance, if a category-
wise comparison is made between the performance of ChatGPT and
static code analysis tools, we see none of the static code analysers is
performing better than ChatGPT in each category. Furthermore, we

New Tricks to Old Codes: Can AI Chatbots Replace Static Code Analysis Tools? EICC 2023, June 14–15, 2023, Stavanger, Norway

Table 2: Number of found vulnerabilities by OWASP Top 10 category

Br
ok

en
Ac

ce
ss

Co
nt
ro
l

Cr
yp

to
gr
ap
hi
c

Fa
ilu

re
s

In
je
ct
io
n

In
se
cu
re

D
es
ig
n

Se
cu
rit
y

M
isc

on
fig

ur
at
io
n

Vu
ln
er
ab
le

an
d
O
ut
da
te
d

Co
m
po

ne
nt
s

Id
en
tifi

ca
tio

n
an
d

Au
th
en
tic

at
io
n

Fa
ilu

re
s

So
ftw

ar
e
an
d

D
at
a
In
te
gr
ity

Fa
ilu

re
s

Se
cu
rit
y
Lo

gg
in
g

an
d
M
on

ito
rin

g
Fa
ilu

re
s

SS
RF

Total Count 12 22 31 8 2 1 6 2 3 5
ChatGPT (1) 9 (75%) 16 (73%) 23 (74%) 6 (75%) 2 (100%) 0 (0%) 2 (33%) 1 (50%) 3 (100%) 1 (20%)
ChatGPT (2) 7 (58%) 12 (55%) 21 (68%) 6 (75%) 2 (100%) 1 (100%) 4 (67%) 2 (100%) 1 (33%) 1 (20%)
Betterscan CE 1 (8%) 0 (0%) 3 (10%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Horusec 0 (0%) 1 (5%) 9 (29%) 1 (12%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
OWASP WAP 3 (25%) 0 (0%) 17 (55%) 3 (38%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
PHPcs 3 (25%) 1 (5%) 16 (52%) 3 (38%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Pixy 0 (0%) 0 (0%) 12 (39%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Progpilot 6 (50%) 0 (0%) 21 (68%) 0 (0%) 0 (0%) 0 (0%) 2 (33%) 0 (0%) 0 (0%) 0 (0%)
Psalm 6 (50%) 0 (0%) 21 (68%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (50%) 0 (0%) 1 (20%)
RATS 0 (0%) 0 (0%) 2 (6%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
RIPS 6 (50%) 0 (0%) 18 (58%) 3 (38%) 0 (0%) 0 (0%) 0 (0%) 1 (50%) 0 (0%) 0 (0%)
SonarQube CE 0 (0%) 16 (73%) 2 (6%) 0 (0%) 1 (50%) 1 (100%) 2 (33%) 0 (0%) 0 (0%) 0 (0%)
VCG 2 (17%) 0 (0%) 20 (65%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Table 3: Combination of tools

Found Partially
found

Could not
find False positive

n=92 n=11
ChatGPT (1) 63 (68%) 7 (8%) 22 (24%) 10 (91%)
ChatGPT (2) 57 (62%) 12 (13%) 23 (25%) 10 (91%)
Combination
Psalm and
SonarQube CE 49 (53%) 11 (12%) 32 (35%) 6 (55%)

RIPS and
SonarQube CE 48 (52%) 13 (14%) 31 (34%) 5 (45%)

Progpilot and
SonarQube CE 47 (51%) 12 (13%) 33 (36%) 5 (45%)

OWASP WAP and
SonarQube CE 43 (47%) 10 (11%) 39 (42%) 4 (36%)

VCG and
SonarQube CE 42 (46%) 12 (13%) 38 (41%) 10 (91%)

observed that using ChatGPT with a static code analyser like VCG
could enhance vulnerability detection performance at the expense
of more false positives. Despite achieving high overall vulnerability
coverage (75%) of vulnerable code, the approach also identifies all
the compliant code as vulnerable.

4 DISCUSSION
It is obvious that ChatGPT has a much better rate of vulnerability
detection than static code analysers when each of the tools is used
alone. Even if ChatGPT’s false positive rate is much higher than
those of the traditional static code analysers, ChatGPT’s high true
positive rate shows that there is a great potential for using it for

static code analysis. In fact, as it is mentioned in Section 3.3, even
the ones with the best success rate among the 2 combinations of
static code analysers could not reach the success rate of ChatGPT
in vulnerability detection.

However, in real life, the usage of ChatGPT for static code anal-
ysis has some drawbacks that developers should pay attention to:

(1) Privacy of sensitive code:We have concerns about the privacy
of the submitted code to the tool, we do not know what
ChatGPT does with the submitted data thus, sensitive codes
should not be given. What we suggest to developers when
they need to scan their sensitive code is dividing the code
into code snippets and only giving the necessary part to the
tool, but it should be also noted that this approach may lead
to some missing detection if the given code snippets were
not selected carefully.

(2) Non-deterministic nature of ChatGPT: Another issue is the
non-deterministic nature of ChatGPT, as it is mentioned
in the previous sections the answers of the tool can vary
in different executions. We suggest developers scan their
code multiple times to get more accurate answers. It is also
important to say that it is a good practice to test the patched
codes manually.

We believe that ChatGPT has the potential to be breaking new
ground in code analysis but according to our findings using a code
analyser as a complementary measure would be the best practice.

5 RELATEDWORK
Even though there are studies about using NLPmodels for detecting
vulnerabilities and the effectiveness of static code analysers indi-
vidually, we could not manage to find any related work covering
both artificial intelligence (AI) and static code analysers.

EICC 2023, June 14–15, 2023, Stavanger, Norway Omer Said Ozturk, Emre Ekmekcioglu, Orcun Cetin, Budi Arief, and Julio Hernandez-Castro

5.1 Related work for AI to find vulnerabilities
in code

There is no study in the literature in which ChatGPT was used
in static code analysis. Relatedly, there are studies in which static
code analysis is done using NLP models. Ziems et al., used natural
language processing models BERT and LSTM in their study. Similar
to our study they created a database containing software vulnera-
bilities written in C/C++, and they designed deep learning models
to detect and classify them. According to their results, their best
model had 93% accuracy in vulnerability detection [13].

5.2 Related work for static code vulnerability
analysis tools

Several researchers investigated how the effectiveness of static code
analysers in finding vulnerabilities in PHP code.

Da Fonseca et al. analysed 35 WordPress plugins for security
vulnerabilities by using RIPS and phpSAFE. Although they were
able to detect vulnerabilities in the plugins, the performance still
needs to be improved in terms of vulnerability coverage and false
positive removal [4].

Baset et al., after testing IDE security plugins for various lan-
guages, concluded that these tools lack information about the
checks they perform on the codes [2]. Schuckert et al. mentioned a
number of SQLi code patterns that are difficult for the code analy-
sers to observe and would go undetected in the analysis, resulting
in false negatives or false positives in the report [8]. Amankwah et
al. concluded that no static analysis tool is perfect, some are able to
detect a few vulnerabilities but they should all complement each
other in order to create better results [1].

Various other studies have also looked into the effectiveness of
static code analysers for other languages. Most notably, Zhioua et
al. evaluated several static code analysis techniques and tools for
C language and concluded that the tools were unable to identify
most of the security vulnerabilities. Furthermore, even if they could
detect a vulnerability, they would be unable to identify the security
properties that might be affected by the vulnerability [12].

In another study, Perhinschi focused on vulnerability assessment
in Java and C/C++ code samples using three different static code
analysers. His results were quite similar to our findings. His study
showed that the performance of static code analysers is highly
correlated with the vulnerability type, and all three static code
analysers missed many CWEs. He concluded that the static code
analysers could not give adequate results despite their claims [7].

Lebanidze compared the generations of static code analysers and
pointed out the reasons behind the low number of vulnerability
detection, independent of programming language. Lebanidze drew
a picture of how next-generation static code analysers should be
constructed in order to detect problems that current-generation
static code analysers are unable to find [5].

6 CONCLUSION
This paper presents a study in measuring the effectiveness of PHP-
based static code analysers and the AI-powered tool ChatGPT. In
this study, we carefully created a dataset of vulnerable PHP code
with 92 PHP vulnerabilities based on OWASP Top 10 web applica-
tion vulnerabilities. We used this dataset to assess the effectiveness

of 11 popular free open-source static code analysers for PHP, as
well as the effectiveness of ChatGPT in finding these vulnerabilities.

As AI is becoming more intertwined with our daily lives, AI-
powered tools such as ChatGPT have increased in popularity. In-
stead of just searching for information or using ChatGPT as a simple
chatbot, people started to use it to do software development work,
such as writing code and fixing bugs. Nevertheless, there are cur-
rently not much information and very little knowledge about such
usage. This led us to include ChatGPT in this study, to evaluate
ChatGPT’s effectiveness in detecting and fixing security bugs in
software written in an old language like PHP, and to see if we can
use ChatGPT efficiently and correctly in software development.

Our study sheds some light on the potential use of ChatGPT for
finding software vulnerabilities. Based on our results, developers
can use ChatGPT as a static code analysis tool, but with some
precautionary measures mentioned in Section 4.

ACKNOWLEDGMENTS
This work was partly supported by the European Commission
under the Horizon 2020 Programme (H2020), as part of the HEROES
project (https://heroes-fct.eu/, Grant Agreement no. 101021801).

REFERENCES
[1] Richard Amankwah, Patrick Kwaku Kudjo, and Samuel Yeboah Antwi. 2017.

Evaluation of software vulnerability detection methods and tools: a review. In-
ternational Journal of Computer Applications 169, 8 (2017), 22–27.

[2] Aniqua Z Baset and Tamara Denning. 2017. Ide plugins for detecting input-
validation vulnerabilities. In 2017 IEEE Security and Privacy Workshops (SPW).
IEEE, 143–146.

[3] Frederick P Brooks Jr. 1995. The mythical man-month: essays on software engi-
neering. Pearson Education.

[4] José Carlos Coelho Martins da Fonseca and Marco Paulo Amorim Vieira. 2014. A
practical experience on the impact of plugins in web security. In 2014 IEEE 33rd
International Symposium on Reliable Distributed Systems. IEEE, 21–30.

[5] Evgeny Lebanidze. 2008. The Need for Fourth Generation Static Analysis Tools
for Security–From Bugs to Flaws. In Application Security Conference.

[6] Mark S Merkow and Lakshmikanth Raghavan. 2010. Secure and resilient software
development. CRC Press.

[7] Andrei M Perhinschi. 2015. Static Code Analysis: On Detection of Security Vulner-
abilities and Classification of Warning Messages. West Virginia University.

[8] Felix Schuckert, Basel Katt, and Hanno Langweg. 2020. Diffcult SQLi Code
Patterns for Static Code Analysis Tools. In Norsk IKT-konferanse for forskning og
utdanning.

[9] Veracode. 2020. Volume 11 the State of Software Security: Flaw Frequency
by Language. https://www.veracode.com/sites/default/files/pdf/resources/
infosheets/state-of-software-security-volume-11-government-and-education-
veracode-infosheet.pdf. Last access on April 8th, 2023.

[10] W3Techs. 2023. Usage statistics of PHP for websites. https://w3techs.com/
technologies/details/pl-php. Last access on April 8th, 2023.

[11] W3Techs. 2023. Usage statistics of PHP version 7 for websites. https://w3techs.
com/technologies/details/pl-php/7. Last access on April 8th, 2023.

[12] Zeineb Zhioua, Stuart Short, and Yves Roudier. 2014. Static code analysis for soft-
ware security verification: Problems and approaches. In IEEE 38th Int’l Computer
Software and Applications Conference Workshops. IEEE, 102–109.

[13] Noah Ziems and Shaoen Wu. 2021. Security vulnerability detection using deep
learning natural language processing. In IEEE INFOCOM 2021-IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 1–6.

https://heroes-fct.eu/
https://www.veracode.com/sites/default/files/pdf/resources/infosheets/state-of-software-security-volume-11-government-and-education-veracode-infosheet.pdf
https://www.veracode.com/sites/default/files/pdf/resources/infosheets/state-of-software-security-volume-11-government-and-education-veracode-infosheet.pdf
https://www.veracode.com/sites/default/files/pdf/resources/infosheets/state-of-software-security-volume-11-government-and-education-veracode-infosheet.pdf
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php/7
https://w3techs.com/technologies/details/pl-php/7

	Abstract
	1 Introduction
	2 Methodology
	2.1 Vulnerability selection
	2.2 ChatGPT
	2.3 PHP Static Code analysers
	2.4 Study procedure
	2.5 Output evaluation

	3 Results
	3.1 Vulnerability detection efficacy of ChatGPT
	3.2 Vulnerability detection efficacy of Static Code Analysers
	3.3 Efficacy of AI vs Static code analyser

	4 Discussion
	5 Related work
	5.1 Related work for AI to find vulnerabilities in code
	5.2 Related work for static code vulnerability analysis tools

	6 Conclusion
	Acknowledgments
	References

