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Abstract. Language Large Models (LLMs) are revolutionizing various
sectors by automating complex tasks, enhancing productivity, and foster-
ing innovation. From generating human-like text to facilitating advanced
research, LLMs are increasingly becoming integral to societal advance-
ments. However, the same capabilities that make LLMs so valuable also
pose significant cybersecurity threats. Malicious actors can exploit these
models to create sophisticated phishing emails, deceptive websites, and
malware, which could lead to substantial security breaches. In response to
these challenges, our paper introduces a comprehensive framework to as-
sess the robustness of six leading LLMs (Gemini API, Gemini Web, GPT-
4o API, GPT-4o Web, Llama 3 70B, and Mixtral 8x7B) against both
direct and elaborate malicious prompts to generate phishing and mal-
ware attacks. This framework not only measures the ability – or the lack
thereof – of LLMs to resist being manipulated into performing harmful
actions, but also provides insights into enhancing their security features
to safeguard against such prompt injection attempts. Our findings re-
veal that even direct prompt injections can successfully compel all tested
LLMs to generate phishing emails, websites, and malware. This issue be-
comes particularly pronounced with elaborate malicious prompts, which
achieve high rates of malicious compliance, especially in scenarios in-
volving phishing. Specifically, models such as Llama 3 70B, Gemini API,
and Gemini Web show high compliance in generating convincing phish-
ing content under elaborate instructions, while GPT-4o models (both
the API and Web versions) excel in creating phishing webpages even
when presented with direct prompts. Finally, local models demonstrate
nearly perfect compliance with malware generation prompts, underscor-
ing the critical need for sophisticated detection methods and enhanced
security protocols tailored to mitigate such elaborate threats. Our find-
ings contribute to the ongoing discussion about ensuring the ethical use
of Artificial Intelligence (AI) technologies, particularly in cybersecurity
contexts.
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1 Introduction

Generative Artificial Intelligence (AI) is changing our society by automating
various tasks, increasing productivity, and promoting innovation. For instance,



it can answer complex questions, generate realistic images and music, and even
write software, providing a wealth of new creative possibilities. Large Language
Models (LLMs), a type of generative AI, are especially impactful because they
can create text that sounds like generated by human, and they may help with
making decisions. From the coding aspect, LLMs’ impacts are particularly pro-
found. Not only can they automate routine coding tasks, but also they can assist
in testing software and fixing bugs, which can significantly speed up software de-
velopment cycles and enhance the quality of the final products. For example, in
the software development industry, LLM-based tools – such as GitHub Copi-
lot [1] and ChatGPT [2] – have been used to suggest code snippets and even
entire functions based on the context of the work, enabling developers to write
more accurate and efficient code faster.

LLMs are playing a crucial role in today’s advancements, productions and
automations, but they also pose various cybersecurity threats. To shed light on
potential security issues, the OWASP Top 10 for LLM Applications initiative is
introduced [3]. The initiative outlines the top 10 most critical security vulnera-
bilities and issues commonly found in LLM applications, detailing their potential
effects, ease of exploitation, and frequency in actual deployments. Through this
initiative, OWASP aims to educate the general public about the potential secu-
rity risks involved in deploying and managing LLMs, along with their potential
mitigation strategies. In the published list, prompt injection has been identi-
fied as the number one issue among other potential vulnerabilities. This type of
injection attack occurs when an attacker crafts a malicious prompt that tricks
the LLMs to generate harmful or unintended output. For example, in December
2023, Chevrolet’s ChatGPT-powered chatbot “sold” a car for $1 [4]. An attacker
injected a prompt which states that the chatbot must agree with “anything the
customer says”. After some training, the chatbot agreed to sell a 2024 Chevy
Tahoe for $1, saying “That’s a deal, and that’s a legally binding offer”.

In this study, we created a framework that includes prompts with different
scenarios and wording, which can be used to generate phishing websites and
emails, as well as malware (in the shape of keyloggers). Prompts was catego-
rized into direct and elaborate groups. Direct prompts directly request malicious
artifacts, such as phishing email text or malware code. In comparison, elaborate
prompts simulate real-life scenarios and carefully avoid any terminology that
might indicate malicious intent. Our study includes 7 direct and 6 elaborate
prompts for crafting phishing websites and emails, along with 6 direct and 5
elaborate prompts designed to generate malware (in this case, keyloggers). The
framework was deployed to evaluate six LLMs: Gemini API [5], Gemini Web [6],
GPT-4o API [7], GPT-4o Web [2], Llama 3 70B [8], and Mixtral 8x7B [9]. Eval-
uation was conducted by testing each prompt 10 times for each LLM.

Contributions. The main contributions of this study are summarized below:

– Our findings indicate that even direct prompt injections can successfully
target all the LLMs in our study to generate phishing emails, websites, and
malware. Moreover, high malicious request compliance rates of elaborate
malicious prompts underscore a significant risk of misuse, emphasizing the



need for developing sophisticated detection methods and security protocols
tailored to address complex threats effectively. Many models show greater
malicious compliance to elaborate malicious prompts, with this issue being
particularly pronounced in scenarios related to phishing emails and websites.

– Our study has found that LLMs such as Llama 3 70B, Gemini API, and
Gemini Web are highly effective at generating convincing phishing emails,
especially when given elaborate prompts.

– Interestingly, Mixtral 8x7B demonstrates consistently high compliance rates
with malicious prompts, reaching or approaching 100% across nearly all cat-
egories (phishing emails, phishing websites, and malware). Of all the LLMs
tested, it appears most inclined to fulfill harmful instructions, making it
particularly concerning if misused.

– Our findings indicate that when utilizing direct prompts, the selected mod-
els tended to generate high-quality phishing webpages. Notably, GPT-4o, in
both its API and web versions, consistently showed the highest rate of ma-
licious compliance in creating effective phishing webpages under both direct
and elaborate prompts.

– Lastly, local models (i.e. LLMs that can be downloaded to run locally rather
than on the LLM company’s server, such as Llama and Mixtral) are more
likely to fulfil the prompt’s request without much resistance.

The rest of this paper is structured as follows. Section 2 delves into related
prior work. Section 3 offers a detailed overview of the chosen LLMs and the
framework used in this study. Section 4 outlines the main results, while Sec-
tion 5 provides a discussion regarding the implication of these results, potential
countermeasures, and some directions for future research. Finally, Section 6 con-
cludes our paper.

2 Related Work

The potential misuse of LLMs has raised significant concerns within the cyberse-
curity community. This section categorizes the existing literature into two main
areas: (i) malware and social engineering attack generation, and (ii) LLM-based
security and reliability issues.

2.1 Malware and Social Engineering Attack Generation

Many recent studies have focused on creating basic cybercrime attack vectors
such as malware and phishing using commercial LLMs.

Recent research in this field reveals that the security measures in AI and
LLMs can be circumvented, leading to their misuse for different types of mal-
ware generation. Pa Pa et al. [10] evaluated the ability of ChatGPT and the
text-davinci-003 model to create various malware, including ransomware and
phishing tools, despite built-in safety features, highlighting how Auto-GPT could
bypass security mechanisms to generate functional malware. Similarly, Monje et



al. [11] demonstrated how ChatGPT’s content moderation safeguards can be
circumvented to assemble ransomware components through smaller, seemingly
innocent tasks, leading to a functional malware. Building on these findings, Beck-
erich et al. [12] explored how ChatGPT can act as a proxy for malware attacks,
allowing attackers to establish communication between command and control
servers and victim machines, thereby executing remote commands and creating
in-memory malware that evades detection. Chatzoglou et al. [13] further inves-
tigated the challenges faced by traditional and modern antivirus and endpoint
detection and response (EDR) systems in detecting obfuscated malware gen-
erated by ChatGPT. In a broader context, Ubavić et al. [14] underscored the
dangers of using ChatGPT for cyberattacks, noting that hackers have already
begun experimenting with the model to create malicious scripts for data theft
and brute force assaults. Complementing these studies, Fujima et al. [15] ana-
lyzed ransomware communications using ChatGPT, identifying linguistic pat-
terns that enhance the effectiveness of psychological blackmail in ransomware
attacks and advocating for the integration of language analysis techniques into
cybersecurity frameworks. Lastly, Shandilya et al. [16] highlighted the emerging
threat of GPT-based malware, where ChatGPT is used to create evasive mal-
ware (e.g., polymorphic code that continuously alters itself to bypass detection),
underscoring the escalating challenge of defending against AI-generated threats.

Moreover, the potential for LLMs to be abused in phishing and social en-
gineering attacks is one of the most worrying consequences of LLMs. Begou et
al. [17] demonstrated how ChatGPT can be exploited to automate the creation
of phishing kits, enabling tasks such as cloning websites, integrating credential-
stealing code, and obfuscating scripts despite OpenAI’s safeguards. Complement-
ing this analysis, Al-Hawawreh et al. [18] provided an overview of ChatGPT’s
applications in cybersecurity, discussing its roles in tasks such as vulnerability
scanning and phishing while also cautioning against its potential for misuse.
Similarly, Falade et al. [19] explored the broader use of generative AI models,
including ChatGPT, FraudGPT, and WormGPT, in social engineering attacks,
revealing how these models can craft convincing and personalized malicious con-
tent that exploits human cognitive biases. Extending this exploration, Grbic et
al. [20] focused on the practical aspects of using ChatGPT to prepare phishing
environments, highlighting how easily it can generate phishing templates, in-
cluding JavaScript for handling form data and HTML/CSS for fake login sites.
Building on these findings, Roy et al. [21] investigated the misuse of multiple
LLMs, such as ChatGPT, Google Bard, and Claude, to create phishing scams,
demonstrating how these models can generate phishing content that mimics le-
gitimate brands while evading detection by anti-phishing systems. Additionally,
Falade et al. [22] examined both the malicious and defensive potentials of Chat-
GPT, showing that while it can be exploited to generate phishing and social
engineering content, it also holds a promising potential for enhancing cyberse-
curity defenses through applications in threat detection.

There are relatively few studies that focus on both the generation of phishing
content and malware. In alignment with these findings, Charfeddine et al. [23]



explored the vulnerabilities within ChatGPT, specifically how jailbreak prompts
can bypass its safety measures to generate sophisticated malicious content, in-
cluding ransomware and phishing emails. Similarly, Qammar et al. [24] traced
the evolution of chatbots and their growing implications in cybersecurity, par-
ticularly highlighting how models like ChatGPT can be exploited to create mal-
ware, phishing emails, and even execute zero-day attacks. Additionally, Alotaibi
et al. [25] demonstrated the risks associated with prompt engineering, showing
how ChatGPT can be manipulated to generate harmful outputs such as phishing
emails, keylogger scripts, and backdoor attacks.

In conclusion, our study goes beyond prior work by systematically evaluat-
ing six distinct LLMs (spanning both commercial and open-source platforms)
against two categories of malicious prompts—direct and elaborate—to generate
phishing and malware content. Unlike previous research that largely focuses on
specific models (most often ChatGPT) or narrow attack scenarios, our framework
provides a holistic and comparative perspective on how different architectures
and deployment methods (API vs. web, local vs. hosted) respond to adversarial
instructions.

2.2 Security and Reliability Issues

The challenges of ensuring the reliability and safety of AI-driven tools, partic-
ularly in the context of cybersecurity, have been highlighted by several recent
studies. Furthering the discourse on AI misuse, Cho et al. [26] focused on the
forensic challenges posed by conversational AI services, including ChatGPT, in
illegal activities, emphasizing the importance of understanding data artifacts
and conversation logs for effective investigations. Majeed et al. [27] examined
the reliability issues associated with ChatGPT, identifying concerns such as pri-
vacy breaches, misuse of personal data, generation of malicious code, and the
spread of misinformation. Expanding on these reliability concerns, Han et al. [28]
assessed the safety of ChatGPT when exposed to malicious prompt injections.
Their research revealed vulnerabilities in ChatGPT’s defenses, particularly its
susceptibility to adversarial inputs that produce harmful, biased, or unethical
outputs. The study emphasized the need for interdisciplinary collaboration, real-
time monitoring, and advanced adversarial training to improve AI’s resistance
to such attacks. Building on these concerns, Iqbal et al. [29] explored the dual-
edged nature of ChatGPT, highlighting its potential to improve cybersecurity
efforts—such as threat identification and vulnerability assessments—while also
acknowledging its capacity to facilitate cyberattacks. Wang et al. [30] conducted
a survey on AI-generated content (AIGC), exploring the security, privacy, and
ethical challenges associated with LLMs. The study highlighted the risks of data
poisoning, model theft, privacy violations, and the misuse of AIGC for malicious
purposes. Finally, adding to the growing concerns, Weiss et al. [31] revealed
a new side-channel attack targeting ChatGPT, where the length of tokens in
encrypted AI responses can be exploited to infer sensitive information.



3 Methodology

This section delves into the specific prompts used, the selection of models, the
data collection process, and the evaluation methodology employed to assess the
robustness of LLMs against malicious prompts.

3.1 Prompt Selection for Evaluation

To evaluate the ethical safeguards of the selected LLMs thoroughly, we employed
a variety of strategies aimed at bypassing their content moderation filters. These
strategies were designed to test the limits of the models’ ethical boundaries by
presenting malicious requests in ways that could potentially slip through ethi-
cal restrictions. The strategies can be mainly grouped into direct and elaborate.
Direct approaches involve straightforward methods of requesting malicious con-
tent, often by explicitly naming the content desired. For instance, a simple direct
strategy involves openly naming the desired output, such as asking, “Generate a
phishing email.” Another method directly reequest a phishing material under the
guise of a legitimate training and reserach initiative. Similarly, malicious content
can be sought by claiming to replicate a brand, where the user requests content
styled after a well-known company. Other variations focus on closely mimicking
or emulating recognized brands, either through using imitation keywords to dis-
guise the request. In each case, the goal is to produce malicious outputs through
straightforward and explicit prompts.

Elaborate approaches rely on carefully obscuring malicious intent behind de-
tailed plausible or urgent requests, often leveraging workplace tasks or emotional
triggers. For phishing, attackers might use detailed dramatic appeals (claiming
job loss is imminent) or frame the request as critical for design or development
purposes, effectively normalizing the demand for malicous content. They may
also present it as a needed security test, an investigation into a compromised
account, part of a UI study, or an HR survey—each scenario cloaking the true
goal of generating malicious content. Meanwhile, malware prompts follow simi-
larly deceptive strategies, such as insisting the malware (e.g., a keylogger) is re-
quired to complete a developer’s project or a security professional’s task, asking
for step-by-step guidance under the guise of learning or training, or requesting
demonstrations to supposedly highlight vulnerabilities. By aligning their requests
with detailed legitimate-looking scenarios, prompts aims to lower suspicion and
increase the likelihood of unwitting compliance.

3.2 Selection of LLMs and Malicious Content Types

For this study, we selected six LLMs based on their popularity, deployment
environments, and providers to evaluate their responses to ethically challenging
prompts designed to generate malware and phishing content. The chosen models
and their providers are:



1. Web-Interacted Models: GPT-4o Web by OpenAI and Gemini Web by
Google were chosen to assess the capabilities and restrictions imposed by
models that interact through a web interface. These models typically incor-
porate additional layers of moderation and control, making them an essential
part of our evaluation to see how web interfaces handle malicious requests.

2. API Models: GPT-4o API by OpenAI and Gemini API by Google repre-
sent models accessible via API, offering more flexibility and potentially fewer
constraints compared to their web counterparts. These models were selected
to investigate whether direct API access provides less stringent content mod-
eration, thereby increasing the risk of generating harmful content.

3. Local Models: Mixtral 8x7b by Mistral AI and LLaMA 3 70B by Meta were
included as locally-hosted models, which typically lack the content modera-
tion layers present in cloud-based models. These models are crucial for eval-
uating the risk when the user has full control over the model’s deployment
and potential for misuse.

3.3 Evaluation Criteria

The evaluation of the LLMs’ responses was conducted using two primary criteria:
ethical considerations and capability considerations.

Ethical Considerations: Under ethical considerations, we assessed whether
the LLM complied with the malicious request, including whether the model
generated the requested content or refused to do so. We also evaluated whether
the LLM provided any warnings about the ethical or legal implications of the
requested content, including both explicit warnings and subtle cues about the
potential dangers of the content being requested.

Capability Considerations: For capability considerations, we utilized four
different metrics to evaluate the phishing email templates generated by the
models. The framework examines the presence of a generic greeting, redirec-
tion through a clickable link button, urgent language, and the exploitation of
the recipient’s fear of loss. For phishing webpages, we asked key questions about
the type of output provided when the malicious request was accepted, including
frontend code, backend code, or guidance on creating the webpage, and the pro-
vided frontend codes’ quality. For malware and keylogger requests, we focused on
the type of output provided when the malicious request was accepted, including
the programming language used or guidance on creating the keylogger and which
components or features, such as keystroke gathering, logging, and Command and
Control (CnC) connection capabilities, were included by the model.

3.4 Data collection

As detailed in previous sections, we utilized six different LLMs for our study.
These models were tested with 13 prompts aimed at generating phishing emails
and webpages and 11 prompts focused on malware (specifically, keylogger) gener-
ation. Each LLM underwent 10 iterations of testing with all the prompts outlined
in our framework. The testing occurred during the first week of August 2024,



with evaluations conducted the following week. The output from the LLMs was
assessed by two reviewers, with any disagreements resolved by consulting a third
and fourth expert. In all, we analyzed 1,560 responses for the phishing email and
webpage metrics and 660 responses for the keylogger metrics.

4 Results

In the previous sections, we detailed the methodology and procedures employed
in our study. We now present the results of our investigation, focusing on the
capability of LLMs to generate malicious content, including phishing webpages,
phishing emails, and a keylogger malware component.

4.1 Statistics of overall malicious compliance and warning

In this section, we will analyze the overall responses of LLMs to malicious
prompts intended to generate phishing emails, phishing websites, and keylog-
gers. Table 1 provides a detailed overview of how six different LLMs respond
to malicious prompts, with a focus on both direct and elaborate threats. Each
LLM’s performance is evaluated based on the percentage of successful prompt
fulfillment given to malicious prompts. Most models exhibit greater suscepti-
bility to elaborate prompts, particularly evident in phishing email and website
scenarios. This indicates that as the prompt becomes more detailed and com-
plex, effectively concealing its primary intent, the likelihood of these models
complying with potentially harmful instructions rises, underscoring the misuse
potential of LLMs. Moreover, web interfaces consistently show higher rates in
fulfilling malicious prompts compared to the APIs. This might suggest that the
web interfaces have broader access to models with fewer restrictions or different
configurations, potentially due to a lack of appropriate security settings.

Lastly, we compared the performance of local models to private models’ web
and API versions. Our comparison shows that local models (Llama 3 70B and
Mixtral 8x7B) exhibit a disturbingly high malicious compliance rate, often reach-
ing or nearing 100% success across both direct and elaborate prompts, under-
scoring a profound susceptibility towards malicious prompts. Specifically, Mix-
tral 8x7B attains a perfect 100% compliance rate in responding to malicious
elaborate prompts across all categories, suggesting that while it may be more
secure in a controlled environment, local models remain highly susceptible to
manipulation if not adequately safeguarded.

Table 2 shows the ethical and legal warning rates issued by LLMs in re-
sponse to malicious prompts, indicating that typically direct prompts might trig-
ger more warnings. Notably, the Gemini API displayed moderate effectiveness
against direct phishing prompts (50%) but failed to maintain this performance
with elaborate prompts, particularly in phishing web (0%) and keylogger (0%).
Conversely, the GPT-4o models exhibited robust defenses, especially against
keylogger prompts, where the GPT-4o API achieved a detection rate of 78%
for direct prompts and 96% for elaborate prompts. The GPT-4o Web model



Table 1. Summary statistics on LLMs’ tendency to fulfill harmful instructions embed-
ded within malicious prompts

LLMs Phishing Email Phishing Website Malware (Keylogger)
Direct (70) Elaborate (60) Direct (70) Elaborate (60) Direct (60) Elaborate (50)

Gemini API 10 (14%) 58 (97%) 43 (61%) 10 (17%) 0 (0%) 0 (0%)
Gemini Web 40 (57%) 60 (100%) 47 (67%) 60 (100%) 37 (62%) 27 (54%)
GPT-4o API 50 (71%) 60 (100%) 44 (63%) 60 (100%) 33 (55%) 49 (98%)
GPT-4o Web 55 (79%) 60 (100%) 58 (83%) 60 (100%) 51 (85%) 50 (100%)
Llama 3 70B 60 (86%) 52 (87%) 60 (86%) 60 (100%) 60 (100%) 50 (100%)
Mixtral 8x7B 70 (100%) 60 (100%) 65 (93%) 60 (100%) 59 (98%) 50 (100%)

Table 2. Summary statistics on ethical and legal warnings given by LLMs to malicious
prompts

LLMs Phishing Email Phishing Website Malware (Keylogger)
Direct (70) Elaborate (60) Direct (70) Elaborate (60) Direct (60) Elaborate (50)

Gemini API 35 (50%) 7 (12%) 35 (50%) 0 (0%) 0 (0%) 0 (0%)
Gemini Web 3 (4%) 0 (0%) 15 (21%) 2 (3%) 33 (55%) 26 (52%)
GPT-4o API 16 (23%) 0 (0%) 23 (33%) 3 (5%) 47 (78%) 48 (96%)
GPT-4o Web 20 (29%) 0 (0%) 26 (37%) 0 (0%) 59 (98%) 34 (68%)
Llama 3 70B 7 (10%) 0 (0%) 2 (3%) 7 (12%) 14 (23%) 15 (30%)
Mixtral 8x7B 4 (6%) 0 (0%) 22 (31%) 0 (0%) 59 (98%) 28 (56%)

similarly showed high effectiveness, particularly with direct keylogger prompts
(98%). However, both versions of GPT-4o struggled with elaborate phishing
prompts. The Llama 3 70B and Mixtral 8x7B models showed limited capability
overall, with Mixtral 8x7B performing well only in keylogger detection (98% for
direct, 56% for elaborate). These findings underscore the challenges LLMs face
in detecting sophisticated malicious content and highlight the need for further
advancements to ensure comprehensive security across all prompt types.

4.2 Efficacy of phishing email generation

To assess the quality of LLM generated email responses, we examine several key
indicators: (i) the presence of redirection links or buttons; (ii) the use of generic
greetings; (iii) text designed to trigger a fear of loss; (iv) expressions of urgency.

Table 3 presents phishing components generated from both direct and elab-
orate prompts. For direct prompts, models such as the Llama 3 70B and Gemini
API performed remarkably well, frequently including all four critical elements.
For instance, the Gemini API consistently included redirection links and fear-
based content in every instance.

When given elaborate prompts, models generally showed higher malicious
compliance, e.g., the Gemini Web model successfully included redirection links in
every email it generated with elaborate prompts. Similarly, the GPT-4o API and
Llama 3 70B models showed improvements more frequently involving elements
of urgency and fear of loss when provided with more detailed instructions.

Overall, our findings indicate that these LLMs are highly proficient in gen-
erating phishing emails that encompass all key components, particularly when
given more specific prompts. This suggests that malicious users could exploit



Table 3. Summary statistics on LLM generated email content components evaluation

Approach LLMs Compliance Generic
Greeting Redirection Fear of

Loss Urgency

Direct Gemini API 10/70 0 (0%) 10 (100%) 10 (100%) 10 (100%)
Direct Gemini Web 40/70 13 (33%) 31 (78%) 8 (20%) 14 (35%)
Direct GPT-4o API 50/70 0 (0%) 14 (28%) 0 (0%) 0 (0%)
Direct GPT-4o Web 55/70 12 (22%) 54 (98%) 21 (38%) 32 (58%)
Direct Llama 3 70B 60/70 21 (35%) 54 (90%) 28 (47%) 31 (52%)
Direct Mixtral 8x7B 70/70 26 (37%) 49 (70%) 22 (31%) 24 (34%)
Direct Total 285/420 72 (25%) 212 (74%) 89 (31%) 111 (39%)
Elaborate Gemini API 58/60 14 (24%) 58 (100%) 8 (14%) 35 (60%)
Elaborate Gemini Web 60/60 43 (72%) 58 (97%) 0 (0%) 31 (52%)
Elaborate GPT-4o API 60/60 39 (65%) 60 (100%) 19 (32%) 15 (25%)
Elaborate GPT-4o Web 60/60 9 (15%) 60 (100%) 10 (17%) 38 (63%)
Elaborate Llama 3 70B 52/60 12 (23%) 51 (98%) 7 (13%) 30 (58%)
Elaborate Mixtral 8x7B 60/60 20 (33%) 60 (100%) 0 (0%) 30 (50%)
Elaborate Total 350/360 137 (39%) 347 (99%) 44 (13%) 179 (51%)
General Total 635/780 209 (33%) 559 (88%) 133 (21%) 290 (46%)

Table 4. Distribution of LLM Response Compliance Across Website Components for
Direct and Elaborate Malicious Prompts

Approach LLMs Compliance Backend Frontend Guidance
Direct Gemini API 43/70 0 (0.00%) 43 (100.00%) 0 (0.00%)
Direct Gemini Web 47/70 8 (17.02%) 41 (87.23%) 6 (12.77%)
Direct GPT-4o API 44/70 0 (0.00%) 44 (100.00%) 0 (0.00%)
Direct GPT-4o Web 58/70 2 (3.45%) 48 (82.76%) 3 (5.17%)
Direct Llama 3 70B 60/70 11 (18.33%) 44 (73.33%) 6 (10.00%)
Direct Mixtral 8x7B 65/70 10 (15.38%) 45 (69.23%) 10 (15.38%)
Direct Total 317/420 31 (9.78%) 265 (83.60%) 25 (7.89%)
Elaborate Gemini API 10/60 0 (0.00%) 9 (90.00%) 1 (10.00%)
Elaborate Gemini Web 60/60 1 (1.67%) 60 (100.00%) 0 (0.00%)
Elaborate GPT-4o API 60/60 0 (0.00%) 60 (100.00%) 0 (0.00%)
Elaborate GPT-4o Web 60/60 0 (0.00%) 60 (100.00%) 0 (0.00%)
Elaborate Llama 3 70B 60/60 0 (0.00%) 60 (100.00%) 0 (0.00%)
Elaborate Mixtral 8x7B 60/60 0 (0.00%) 51 (85.00%) 0 (0.00%)
Elaborate Total 310/360 1 (0.32%) 300 (96.77%) 1 (0.32%)
General Total 627/780 32 (5.10%) 565 (90.11%) 26 (4.15%)

these models to create highly convincing phishing emails with relative ease. Re-
markably, the Mixtral 8x7B model exhibited a significant improvement in its
ability to include fear of loss, increasing from 24% with direct prompts to 78%
with elaborate prompts. This demonstrates that Mixtral 8x7B, in particular,
benefits from more detailed instructions, becoming substantially more effective
at leveraging psychological triggers.

4.3 Efficacy of phishing webpage generation

In this section, we investigated selected LLMs’ ability to create phishing web
pages. Our investigation involves evaluating how realistic web pages produced
from LLMs’ responses are . In addition, we also check the responses for the
backend code, the frontend code, and combined frontend and backend codes.

Table 4 presents the responses of different LLMs when prompted with both
direct and elaborate prompts to generate phishing webpages. In our prompts,



Table 5. Summary statistics on LLM generated phishing websites

Approach LLMs High
Quality

Medium
Quality

Low
Quality

Direct Gemini API 26 (60.47%) 15 (34.88%) 2 (4.65%)
Direct Gemini Web 12 (25.53%) 27 (57.45%) 2 (4.26%)
Direct GPT-4o API 37 (84.09%) 7 (15.91%) 1 (2.27%)
Direct GPT-4o Web 41 (70.69%) 14 (24.14%) 0 (0.00%)
Direct Llama 3 70B 16 (26.67%) 21 (35.00%) 7 (11.67%)
Direct Mixtral 8x7B 20 (30.77%) 14 (21.54%) 11 (16.92%)
Direct Total 152 (47.95%) 98 (30.91%) 23 (7.26%)
Elaborate Gemini API 0 (0.00%) 9 (90.00%) 0 (0.00%)
Elaborate Gemini Web 5 (8.33%) 47 (78.33%) 8 (13.33%)
Elaborate GPT-4o API 32 (53.33%) 28 (46.67%) 0 (0.00%)
Elaborate GPT-4o Web 25 (41.67%) 35 (58.33%) 0 (0.00%)
Elaborate Llama 3 70B 10 (16.67%) 50 (83.33%) 0 (0.00%)
Elaborate Mixtral 8x7B 14 (23.33%) 28 (46.67%) 9 (15.00%)
Elaborate Total 86 (27.74%) 197 (63.55%) 17 (5.48%)
General Total 238 (37.96%) 295 (47.05%) 40 (6.38%)

we did not specifically demand any backend code. Interestingly, direct prompts
performance in generating backend code is higher than elaborate approach. In
only one case of elaborate approach, Gemini web provided backend code as well
as frontend code. On the frontend side, all LLMs achieved higher compliance
rates to malicious prompts to generate phishing websites. For example, GPT-
4o API generated 48 instances of frontend code, the highest among all models
tested. In contrast, Gemini Web provided a substantial contribution of 60 cases
for elaborate prompts. These results suggest that while LLMs are competent in
generating frontend code, they tend to struggle with adding backend code.

Table 5 provides a summary of the evaluation we carried out regarding the
quality of webpages produced by the LLMs. Pages that contained numerous
errors and only slightly resembled the intended real website were deemed low
quality. On the other hand, pages that were generally accurate but had errors
primarily in images were classified as medium quality. A webpage was consid-
ered high quality if the LLM’s response was nearly ready to be used as a phish-
ing webpage, requiring minimal further modification. Our results illustrate that
there’s a noticeable drop in the quality of the pages when moving from direct
prompts to elaborate prompts. LLMs were generally more successful in gener-
ating high-quality phishing webpages from direct prompts. For instance, while
LLMs generated a total of 152 high-quality phishing pages with direct prompts,
they could only manage 86 high-quality phishing pages with elaborate prompts.
This indicates even direct prompts are capable of generating realistic phishing
threats using current LLM models.

4.4 Efficacy of malware (keylogger) generation

Our results revealed significant disparities in generation rates in both direct
and elaborate prompts. These observations are drawn from total instances of
keylogger code generation, given code quality ratings and its capabilities.



In some cases, LLM models return errors and do not provide a response. For
instance, in one scenario, Gemini solely returned an error when we utilized its
API interface, as depicted in Figure 1.

While testing the malware (keylogger) generation aspect of our research,
we utilized 11 unique prompts for 6 models with 10 iterations. In total, 660
responses were analyzed, and 70.45% of them responded positively, 2% of them
had instructions, and 98% of them had codes, as summarized in Table 6.

In direct configurations, we used 60 prompts for each model and get 66.66%
compliance rate, 5% of them are instructions about how to create a keylogger. In
detail. Llama 3 and Mixtral show the highest incidence of keylogger generation,
with Llama 3 peaking at 60 instances and Mixtral at 59 in the API interface.
Conversely, Gemini exhibits zero activity in API platform in direct prompt con-
figurations, potentially indicating either a robust defense mechanism or a lack
of capability in generating keylogger functionality.

On the other hand, with elaborate prompt configurations, we used 50 prompts
with a 75% compliance rate, and there are no instructions, unlike direct configu-
rations. Mixtral and Llama’s performance was preserved between configurations
at the 100% malicious compliance rate. GPT-4o shows a marked increase in
activity across both interfaces, with the API and web with elaborate prompt
configurations registering 48 and 50 instances, respectively.

In Table 7, we analyzed the keyloggers based on their components. 95% of
the complied responses include keystroke gathering features, components that
can capture pressed keys on the victimized machines, which also means that 3%
of complied ones did not provide any useful component. 9% has an exfiltration
component, and most of them are utilizing SMTP for extracting logs. Finally,
85% of complied cases include components for storing captured keys, which also
states that 10% of the captured keys did not log into the persistent file.

We also investigated the quality of the LLM-provided code by using Pylint [32].
Pylint evaluates Python code against a set of rules to measure its quality, which
includes aspects like coding standards, error detection, refactoring help, and
more. Pylint ratings range from 0 to 10, with higher scores indicating better
code quality. Table 7 also shows Pylint rating statistics of the LLM provided
code. Our results demonstrated that GPT-4o consistently delivers higher aver-
age Pylint scores for malicious code generation under the elaborate prompting
strategy compared to the direct approach. This pattern suggests that more de-
tailed prompts enable GPT-4o to produce code with fewer style and structural
issues, resulting in relatively better adherence to Python standards, even though
the code remains malicious by design. Moreover, Llama 3 70B and Mixtral 8x7B

Fig. 1. Gemini API error for keylogger prompt



Table 6. Summary of LLM responses to prompts for generating keyloggers, categorized
as follows: ’Code’ represents outputs providing Python code, while ’Instruction’ denotes
responses that offer instructions for creating a keylogger

Approach LLMs Compliance Code Instructions
Direct Gemini API 0/60 0/0 (0%) 0/0 (0%)
Direct Gemini Web 37/60 27/37 (73%) 10/37 (27%)
Direct GPT-4o API 33/60 32/33 (97%) 1/33 (3%)
Direct GPT-4o Web 51/60 51/51 (100%) 0/51 (0%)
Direct Llama 3 70B 60/60 60/60 (100%) 0/60 (0%)
Direct Mixtral 8x7B 59/60 59/59 (100%) 0/59 (0%)
Direct Total 240/360 229 (95%) 11 (5%)
Elaborate Gemini API 0/50 0/0 (0%) 0/0 (0%)
Elaborate Gemini Web 27/50 27/27 (100%) 0/27 (0%)
Elaborate GPT-4o API 49/50 49/49 (100%) 0/49 (0%)
Elaborate GPT-4o Web 50/50 50/50 (100%) 0/50 (0%)
Elaborate Llama 3 70B 50/50 50/50 (100%) 0/50 (0%)
Elaborate Mixtral 8x7B 50/50 50/50 (100%) 0/50 (0%)
Elaborate Total 226/300 226 (100%) 0 (0%)
General Total 466/660 455 (98%) 11 (2%)

Table 7. Summary statistics on code quality metrics, based on keyloggers’ components

Approach LLMs Compliance Keystroke
Gathering

CnC
Connection

Storing
Strings

#Code
Blocks

Average
Quality

Direct Gemini API 0/60 0/0 (0.00%) 0/0 (0.00%) 0/0 (0.00%) 0 0.00
Direct Gemini Web 37/60 27/37 (72.97%) 2/37 (5.41%) 23/37 (62.16%) 27 1.41
Direct GPT-4o API 33/60 32/33 (96.97%) 1/33 (3.03%) 32/33 (96.97%) 26 1.66
Direct GPT-4o Web 51/60 51/51 (100.00%) 0/51 (0.00%) 49/51 (96.08%) 37 0.80
Direct Llama 3 70B 60/60 60/60 (100.00%) 2/60 (3.33%) 50/60 (83.33%) 34 0.54
Direct Mixtral 8x7B 59/60 55/59 (93.22%) 0/59 (0.00%) 45/59 (76.27%) 57 1.05
Direct Total 240/360 225 (93.75%) 5 (2.08%) 199 (82.92%) 191 0.98
Elaborate Gemini API 0/50 0/0 (0.00%) 0/0 (0.00%) 0/0 (0.00%) 0 0.00
Elaborate Gemini Web 27/50 27/27 (100.00%) 0/27 (0.00%) 27/27 (100.00%) 26 0.69
Elaborate GPT-4o API 49/50 48/49 (97.96%) 10/49 (20.41%) 47/49 (95.92%) 37 3.07
Elaborate GPT-4o Web 50/50 50/50 (100.00%) 10/50 (20.00%) 50/50 (100.00%) 48 2.47
Elaborate Llama 3 70B 50/50 50/50 (100.00%) 10/50 (20.00%) 41/50 (82.00%) 30 0.69
Elaborate Mixtral 8x7B 50/50 40/50 (80.00%) 10/50 (20.00%) 31/50 (62.00%) 60 1.65
Elaborate Total 226/300 215 (95.13%) 40 (17.70%) 196 (86.73%) 201 1.83
General Total 466/660 440 (94.42%) 45 (9.66%) 395 (84.76%) 392 1.41

show modest increases when given more extensive instructions but still fall short
of GPT-4o’s best performances. Despite the inherently illicit nature of these re-
quests, GPT-4o demonstrates more refined keylogger outputs under elaborate
prompts than any other LLM or approach in the study.

5 Discussion

Key Implication. Our study demonstrates that LLMs can comply with both
direct and elaborate malicious prompts, often generating harmful content like
phishing emails and malware effectively. This high rate of compliance across
models, such as Gemini API, Gemini Web, GPT-4o, Llama 3 70B, and Mixtral
8x7B, indicates significant security vulnerabilities. Moreover, our results found
that different models exhibit varied susceptibilities to specific types of malicious
tasks. For instance, GPT-4o models are particularly adept at generating phishing



webpages, whereas Llama 3 70B excels in creating convincing phishing emails.
These discrepancies may stem from differences in their training datasets or in-
herent model architectures, suggesting that each model may require tailored
security approaches to mitigate its unique vulnerabilities. Elaborate prompts
that incorporate complex instructions or emotional triggers are more effective at
manipulating LLMs to produce convincing and manipulative content.

Potential Countermeasures. Developing effective strategies to detect and
counteract the misuse of LLMs presents significant challenges. Current detection
mechanisms often fail to intercept elaborate malicious prompts before harmful
content is generated. Moreover, there is a pressing ethical responsibility for de-
velopers and deploying companies to ensure that their AI products are not only
effective but also secure from exploitation. Our findings indicate that even basic
prompts containing hints of malicious intent can produce results that may be
directly utilized for attacks. To thwart these direct attacks, one might consider
implementing blacklists that block output when specific keywords are detected.
However, this strategy is not effective in addressing the issue, as attackers can
easily manipulate or substitute text to generate malicious outcomes. Instead,
LLMs might use other LLMs which are specifically trained to detect malicious
prompts. Employing an LLM trained specifically to recognize malicious prompts
offers a more sophisticated approach to safeguarding against misuse. This spe-
cialized LLM could analyze patterns of speech and context that typical detection
systems might overlook, thereby identifying subtler forms of malicious content.
Nonetheless, this method also introduces complexities related to the continuous
training and updating of the model to adapt to new threats as attackers evolve
their strategies. Additionally, there is a need for comprehensive oversight mecha-
nisms that monitor and audit the outputs of LLMs. These systems could provide
an additional layer of security by dynamically adjusting to emerging threats and
refining detection algorithms based on real-time data. Implementing robust log-
ging and tracking of AI interactions can also help trace back any issues to their
source, enhancing accountability and facilitating better responses to breaches.
However, using another LLM to filter malicious queries can only be used with
private models. Local models should deploy more strict filters as they cannot
be changed when a new threat is found. Additionally, training data might not
contain any material that might be used to create advanced payloads or mal-
ware. Phishing emails or website generation attempts might not be so prevented.
However, LLMs might refuse to create emails or websites when phishing features
are detected.

Currently, we have no reliable method to quantify how many attackers are
using LLMs to develop their attack tools. This lack of visibility into the actual
use of LLMs for malicious purposes poses a significant challenge in cybersecurity
defense. Without concrete data, it becomes difficult to develop targeted strate-
gies that effectively mitigate the risks associated with LLM misuse. To address
this gap, there is a critical need for research into methodologies that can detect
and track the utilization of LLMs in the creation of malicious tools and content.



This could involve the development of specialized forensic tools that analyze the
linguistic patterns and metadata of digital content to identify signatures typical
of LLM-generated text. Moreover, collaborating with cybersecurity firms and
academic institutions to share knowledge and resources could enhance the effec-
tiveness of these detection methods. One potential method for detection could
involve requiring LLMs to embed seemingly benign code or text snippets that
assist in identifying the source of generation. This could be randomized to avoid
detection by the attackers.

Furthermore, policymakers and regulatory bodies must also play a role by
establishing clear guidelines and standards for the ethical use of LLMs. Im-
plementing stringent compliance requirements and penalties for misuse could
deter malicious use while encouraging responsible practices among developers
and users of LLM technologies.

Future Work. Future research should focus on enhancing the resistance of
LLMs to malicious prompts, possibly through methods like adversarial training
or context-aware algorithms that understand the underlying intent of inputs.
There is also a continuous need for innovation in AI security technologies, such
as developing AI-driven cybersecurity defenses that can predict and neutralize
potential AI-related threats before they manifest in the real world.

6 Conclusions

The advanced capabilities that give LLMs their value also present significant cy-
bersecurity challenges. Specifically, our study shows that LLMs can comply with
both direct and elaborate malicious prompts, often generating harmful contents –
including phishing emails and malware, such as keyloggers – as a result. The high
rate of compliance across all of the models tested (Gemini API, Gemini Web,
GPT-4o API, GPT-4o Web, Llama 3 70B, and Mixtral 8x7B) indicates signif-
icant security challenges. Our findings suggest that current security measures
are insufficient to fully prevent these models from being exploited for malicious
purposes, highlighting an urgent need for enhanced protective mechanisms.

The models displayed varying efficacy with different types of malicious con-
tents, suggesting specific vulnerabilities, and highlighting the need for model-
specific security enhancements. For instance, the effectiveness of Llama 3 70B,
Gemini API, and Gemini Web in generating convincing phishing contents under
complex instructions, and the proficiency of GPT-4o models in creating phishing
webpages, underline the urgent need for developing advanced detection meth-
ods. These methods must be capable of discerning the intent behind prompts
and responding appropriately to mitigate the risk of misuse.

Moreover, our results emphasize the critical importance of ongoing efforts to
secure LLMs against exploitation. Ensuring the ethical use of AI, particularly in
cybersecurity, is imperative. As we advance, it is crucial that the development of
LLMs include robust security protocols that are continuously updated to address
new and emerging threats. This will ensure that these powerful technologies



contribute positively to society without becoming tools for cybercrime. Finally,
our study contributes to the broader discussion on AI ethics, urging a balanced
approach to harnessing the benefits of LLMs while safeguarding against their
potential misuse.
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