
On Rigorous Design and Implementation of Fault Tolerant Ambient Systems

Alexei Iliasov, Alexander Romanovsky, Budi Arief
School of Computing Science, Newcastle University

Newcastle upon Tyne NE1 7RU, England
{Alexei.Iliasov, Alexander.Romanovsky, L.B.Arief}@newcastle.ac.uk

Linas Laibinis, Elena Troubitsyna
Department of Information Technologies, Aabo Akademi University

20520 Turku, Finland
{llaibini, etroubit}@abo.fi

Abstract

Developing fault tolerant ambient systems requires many
challenging factors to be considered due to the nature of
such systems, which tend to contain a lot of mobile elements
that change their behaviour depending on the surrounding
environment, as well as the possibility of their disconnection
and re-connection. It is therefore necessary to construct the
critical parts of fault tolerant ambient systems in a rigor-
ous manner. This can be achieved by deploying formal ap-
proach at the design stage, coupled with sound framework
and support at the implementation stage. In this paper, we
briefly describe a middleware that we developed to provide
system structuring through the concepts of roles, agents, lo-
cations and scopes, making it easier for the developers to
achieve fault tolerance. We then outline our experience in
developing an ambient lecture system using the combina-
tion of formal approach and our middleware.

1 Introduction

Ambient systems and applications are now used in vari-
ous critical domains, such as health, transport, emergency,
and production systems. Many of these systems will rely
on themobile agent paradigm, which supports structuring
systems using decentralised and distributed entities cooper-
ating to achieve their individual aims. These systems have
a number of characteristics complicating their development
and making it difficult for the developers to meet stringent
requirements. Firstly, a vast majority of emerging ambi-
ent systems and applications have mobile elements, such as
code, devices, data, services and users. Secondly, such sys-
tems need to be context-aware, so that the system activities
can be directly influenced by the information representing
their changing environment (due to the component mobil-

ity or to changing characteristics of the physical world in
which the systems are executed). Thirdly, these systems are
open, in a sense that components can appear and disappear
(e.g., become disconnected). Therefore, developers of such
systems need certain abstractions and middleware for sup-
porting component mobility, context-awareness, and system
openness. In addition to these, due to the large number of
components and the decentralised nature of these systems,
the developers need to ensure system flexibility and scala-
bility.

Fault tolerance is becoming a very important aspect of
these systems due to (i) their complexity and openness,
which make it impossible to avoid or remove faults alto-
gether; (ii) a high heterogeneity of components, modes of
operation and requirements, all of which can cause archi-
tectural mismatches; (iii) non-professional users; (iv) ahigh
level of reliance society puts on such systems, trusting them
to perform a wide range of everyday critical functions: these
systems are rapidly becoming business- and safety-critical;
and (v) the expected wide proliferation of these systems and
the impact this will have on our society.

Unfortunately, the existing frameworks for developing
mobile, context-aware and open ambient systems do not
provide adequate support for achieving fault tolerance. The
main difficulties here are due to component (agent) mobil-
ity and their autonomy. Mobility creates new challenges
for ensuring system fault tolerance [11] as – in addition to
all kinds of faults found in sequential, concurrent and dis-
tributed systems – mobile agents are susceptible to a num-
ber of unique faults and potentially-harmful situations due
to recurrent disconnections and re-connections. Agent au-
tonomy and anonymity, asynchronous communication, and
system openness also call for the development of novel
structuring mechanisms as the existing agent systems do not
support recursive system structuring using units of agent co-

10th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC'07), pp. 141-145 (2007)

operation, which can serve as units of error confinement and
system recovery.

Fault tolerance mechanisms for ambient systems can
be created at different levels: hardware, operating sys-
tem, middleware or application. In our work, we are fo-
cusing on both the middleware and the application lev-
els fault tolerance, supporting mainly forward error re-
covery through the systematic use of exception handling
[6]. Although there have been several mechanisms pro-
posed for general message-passing systems (such as [12]
and [13]), this area has not received enough attention in
the context of coordination-based systems even though it
can provide the most efficient and effective recovery from
a wide variety of errors and faults such as environmental
faults/deficiencies, component, architectural and organisa-
tional mismatches and system-level inconsistencies, poten-
tially damaging changes in components and environments,
and degradation of component services.

In our previous work, we introduced aContext-Aware
Mobile Agents(CAMA) system [2], which provides fault
tolerance in mobile agent applications through agent struc-
turing. This is achieved by using the concepts of roles and
scopes, explicit and consistent exception handling at scopes
level, and a specialised distributed middleware for detecting
disconnections and raising exceptions at the scope level.

The overall aim of our research is to propose and evalu-
ate a rigorous method for developing fault tolerant ambient
applications [15]. Introducing the CAMA abstractions and
the accompanying middleware is part of this work. In addi-
tion to this, we are working on applying formal methods and
tools in order to ensure a clean system design and an early
verification of the system models [8, 10]. The main reason
for this is that it is becoming clear for us that applying ad-
vanced fault tolerance mechanisms is itself a complex task
that often results in misuse and mistakes (see some support-
ing evidence in [3] and [14]). To help in avoiding them –
where possible – we investigate the use of formal fault toler-
ance methods focusing specifically on employing adequate
tool support and modelling fault tolerance patterns.

The rest of the paper is organised as follows. Section 2
outlines the CAMA system – including its main abstractions
and support for fault tolerance, and how agents can be con-
structed using the CAMA system. Section 3 briefly shows
how an ambient application can be built through the com-
bination of formal modelling and the CAMA system. We
are using an ambient campus lecture scenario [16], the de-
velopment of which is part of the IST RODIN project [15].
Section 4 concludes the paper and outlines our future work.

2 Context-Aware Mobile Agents (CAMA)

CAMA is both a framework and a middleware support-
ing the development and deployment of agent-based appli-

cations. As a framework, CAMA encourages disciplined
development of fault-tolerant mobile agent applications by
supporting a set of abstractions ensuring system structuring,
exception handling and openness. We have implemented
this framework as a middleware that can be used for sup-
porting effective and highly scalable mobile applications,
while guaranteeing agent compatibility and dependability.
This section provides a brief introduction to CAMA – a
more detailed description can be found in [2]. The full
implementation of the middleware and its adaptation layer
(calledjcama) are available at SourceForge [7].

2.1 CAMA Abstractions

The three basic concepts which CAMA offers for system
structuring areagent, platformandlocation. Agents repre-
sent the basic structuring unit in CAMA applications and
they are the active entities of a CAMA system. Each agent
is executed on a platform; several agents may reside on a
single platform. A platform provides an execution environ-
ment for agents, as well as an interface to the middleware.
A platform is typically run on a PDA, a smartphone, or a
laptop. A location is the core part of any CAMA system as
it acts as the middleware that provides a means for commu-
nication and coordination among agents which are situated
within the range of the location middleware (connections
are typically conducted over wireless networks, with wire-
less hotspots providing access to the location middleware).

A location is also a container forscopes. A scope struc-
tures the activity of agents in a specific location and pro-
vides an isolation of several communicating agents, thus
structuring the communication space. Scopes are dynami-
cally created when the entry conditions defined in the scope
specification are met. Agents can cooperate only when they
are participating in the same scope. Nested scopes are used
to structure large multi-agent applications into smaller parts
which do not require the participation of all agents. Such
structuring has a number of benefits. It isolates agents into
groups, thus enhancing security. Scope structuring is also
crucial for developing fault tolerant applications as it links
the coordination-space structuring with activity structuring,
which supports error confinement, localised error recovery
and scalability.

To deal with various functionalities that any individual
agent provides, CAMA introduces agentrole as a finer unit
of code structuring. Each agent has one or more roles asso-
ciated to it. A role is a specification of one particular func-
tionality of an agent. A composition of all agent roles forms
its specification. An agent participates in a scope by assum-
ing one of the roles available for that scope. The scope def-
initions include specifications of the roles from which the
scope is composed. The role specifications determine the
roles available in the scope, and the number of agents al-

lowed to take part under any given role in that scope. In
other words, a role is a structuring unit of an agent, and it is
an important part of the scoping mechanism. It allows a dy-
namic composition of multi-agent applications and ensures
agent interoperability by enforcing the developers of roles
and agents to conform to the role specifications.

2.2 Design for Fault Tolerance

The CAMA framework supports application-level fault
tolerance by providing a set of abstractions and a supporting
middleware that allow developers to design effective error
detection and recovery mechanisms. The main means for
implementing fault tolerance in CAMA is a novel exception
handling mechanism which associates scopes with the ex-
ception contexts. Scope nesting provides recursive system
structuring and error confinement, as information cannot be
passed outside such scopes. In effect, the execution of a
scope is atomic from an outside observer’s point of view.

Error recovery in CAMA systems is application-specific
by nature and is to be implemented by the role develop-
ers. Error recovery is typically conducted at the level of
individual scopes with an aim to recover the activity of this
scope, although it is possible to attach handlers to individ-
ual roles (we usually do not use this feature as it breaks the
abstraction levels). CAMA allows the developers to define
cooperative recovery involving some or all roles of a scope
when an error is detected in this scope. After detecting an
error, any role can initiate application-specific recoveryat
the scope level.

A rich set of predefined exceptions provided by CAMA
is useful for writing applications which react to abnormal
situations detected by the CAMA middleware (Fig. 1).
There are two types of abnormal situations: the ones which
are propagated to all scope roles which are subscribed to
them (including connection-disconnection exceptions, such
asCamaExceptionDisconnection) and the local ex-
ceptions propagated to an individual role when it tries to
execute an illegal action (e.g., violation of the scope con-
straints exceptions, such asCamaExceptionClosed).

Events Exceptions
NewScope CamaExceptionClosed
Destroy CamaExceptionInvalidReqs
Join CamaExceptionNoRights
Leave CamaExceptionInvalidRole
Disconnection CamaExceptionDisconnection

Figure 1. Some system events and prede-
fined exceptions

A number of predefined middleware events allow an
agent to track contextual changes, most importantly,

changes in the set of visible agents and scopes. This is es-
sential for initiating both cooperative and localised recov-
ery. For example, after discovering a disconnection of an-
other agent, an agent may initiate local recovery actions that
put it into a state from which it can continue without the dis-
connected agent.

It is our ongoing work to make the approach initially pre-
sented in [8] more suitable to developing fault tolerant open
multi-agent applications. Compared with the work outlined
in [8], our current framework imposes less restrictions on
the agents during exception handling, in particular, an agent
does not have to be involved in exception handling at all,
if this does not suit its aims. This makes exception han-
dling not only anonymous and asynchronous, but also vol-
untary, making it very different from the classical atomic
action schemes (such as that proposed in [4]).

Many researchers realise now that fault tolerance is be-
coming a software engineering concern which needs to be
addressed at various development steps. Finding the right
balance between using early and late development step tech-
niques is a difficult issue. This paper shows how formal
models can be used in conjunction with implementation
level techniques. Formal modelling and verification typi-
cally help in eliminating a number of errors that otherwise
would have to be addressed at the implementation stage.
As part of our work, we investigate (i) how error detection
and recovery can be integrated into formal development, (ii)
how formal models can be used by extracting from them in-
formation about undesirable behaviour to incorporate error
detection and recovery actions in the implementation, and
(iii) how recovery can be introduced at the level of agent
construction. When fault tolerance is integrated into formal
models, it becomes an integral part of the system, so that
fault tolerance properties are verified and satisfied during
system development. In order to use formal models for in-
corporating fault tolerance into system implementation, we
need to define the undesirable behaviour as an action or a
set of actions which break the model invariant or one of the
post-conditions. This helps a developer to include, at the
implementation step, an additional code for recovering from
the undesirable behaviour. The formal approach we are us-
ing defines a set of roles which are interoperable by con-
struction. During system implementation, agents are con-
structed as configurations of several roles. This approach
clearly requires agent-level error detection and recoveryto
be introduced during system implementation.

2.3 Agent Construction

A typical CAMA agent is composed of a number of sim-
ple building blocks. The overall structure of a CAMA agent
is shown in Fig. 2. The discovery part is responsible for
finding a location and connecting to it. Once an agent is

connected to a location, it decides which application scopes
to join or to create. An agent can havephysical mobility
(due to the physical movement of the hosting device) and
logical mobility(when it changes its hosting platform). Any
non-trivial agent has a monitor which oversees its context,
which changes during both physical and logical mobility.
The agent actions responsible for migration are put into a
separate part. There are also the implementations of agent
roles and the units for coordinating the roles.

Discovery Scoping Migration

CAMA middleware

...

Role 1

Role k

Role coordination logic

Figure 2. Agent subcomponents

The bulk of the services provided by the middleware is
implemented as calls to the location service. Hence, the first
action of an agent is to associate itself with one or more lo-
cations. There are two mechanisms for this: the automated
location discovery based on UDP multicasting and the use
of a fixed location address. The middleware also provides
a simple connection method which takes a location service
address as its argument. This way of connecting is not very
useful in dynamic environments, for example when an agent
physically moves with a PDA owner. During the lifetime of
an agent, a set of available locations changes and there may
be no way of determining their addresses. To overcome
this problem, the middleware provides a multicast-based
discovery mechanism. The mechanism supports local-area
networks such as LAN, WLAN and BluetoothPAN.

3 Ambient Campus Lecture Scenario

We picked the ambient campus lecture scenario de-
scribed in [16] for showing how formal method can be used
in combination with the CAMA system for developing ro-
bust and dependable ambient applications.

We use B [1] to carry out the formal modelling of the am-
bient campus lecture application. The B method supports
the top-down development paradigm. In the development
process, the abstract specification is transformed into a sys-
tem implementation via a number of correctness-preserving
steps calledrefinements. Refinements allow us to gradu-
ally incorporate concrete implementation details, while at
the same time preserving the previously stated properties of

Figure 3. Screenshots of the student agent

the system. The correctness of each refinement step is val-
idated by proofs. As a result, we get an executable system
that is correct by construction.

The tools support available for B – for example, Ate-
lier B [5] – provides some assistance to the entire develop-
ment process. Atelier B has facilities for automatic verifica-
tion and code generation, as well as documentation, project
management and prototyping.

We started with an abstract specification of the ambi-
ent lecture system, and through the refinement process, we
incorporated implementation details concerning concrete
functionality, communication and fault tolerance aspectsof
the involved agents. More detailed discussion on our formal
modelling work can be seen in [9].

In this scenario, we assume that each classroom is a loca-
tion with wireless support, in which a lecture can be given.
Our aim is to develop a system supporting a number of func-
tionalities to be conducted by the teacher and the students
during a lecture. The teacher software is run on a desktop
PC available in the classroom, while the student software is
run on a mobile device such as PDA or smartphone. During
the lecture, the students can be involved in a group work
where the teacher – through the application’s graphical user
interface – puts the students into several groups. The groups
are mutually exclusive, i.e., a student cannot belong to more
than one group. Within each group, the students work col-
laboratively on a given task. As an example shown in this
paper, the students are asked to develop C programs. An
important part of this application is a subsystem that sup-
portsshared editing, allowing multiple students to modify
the same piece of C code in a consistent manner within a
distributed setting.

We implemented the whole case study application in
Java using the features provided byjcama. The applica-
tion was deployed on two PDAs, one smartphone, and two
desktop PCs. One of the PCs was used for hosting the loca-
tion middleware whereas the other was used by the teacher

agent. Students can move about during the lecture, capital-
ising on the wireless connectivity of their devices.

Fig. 3 shows the screenshots of the student agent. The
left screenshot shows the shared editor, running on a PDA.
Only one student is allowed to modify the C code contained
in the shared editor at any one time. The right screenshot is
taken from a smartphone and it shows the result of execut-
ing the C program through the student agent.

The PCs run linux-2.6 and JDK-1.5. The PDAs run Win-
dows Mobile 2003 SE and IBM J9 Java machine, connected
to the location middleware using a wireless LAN infras-
tructure. The smartphone is a SonyEricsson M600i running
Symbian 9.1 with ad-hoc Bluetooth networking.

4 Conclusions and Future Work

The main contribution of this paper is in introducing a
novel approach for developing fault tolerant ambient appli-
cations by using a combination of a formal method aug-
mented with specialised development patterns and a set of
design abstractions supported by a dedicated middleware.
This approach has been successfully applied in developing
the lecture scenario part of a larger ambient campus system.

We found formal methods to be very useful in allowing
us to clearly define and rigorously develop in a stepwise
fashion the most critical part of the application. Our expe-
rience suggests that it is useful to combine formal methods
with the more commonly-used ways of building systems. In
our work of developing the lecture scenario, we have identi-
fied and applied several ways of using them in combination.

Our ongoing and future work focuses on: (i) finalising
the set of abstractions and the functionality of the middle-
ware; (ii) building the complete development method sup-
porting – in addition to the B refinement – verification (by
model checking) of system properties with a specific fo-
cus on the fault tolerance properties; (iii) extending the
exception handling mechanism with an ability to involve
several scopes, to explicitly state and dynamically mod-
ify the exception propagation policies and to use excep-
tional events (reactions) to further separate normal system
behaviour from the abnormal one.

5 Acknowledgements

This work is supported by the IST RODIN Project [15].
A. Iliasov is partially supported by the ORS award (UK).

References

[1] J. R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 2005.

[2] B. Arief, A. Iliasov, and A. Romanovsky. On Using the
CAMA Framework for Developing Open Mobile Fault Toler-
ant Agent Systems. InProceedings of Software Engineering
for Large-Scale Multi-Agent Systems (SELMAS) Workshop at
ICSE 2006, pages 29–36, 2006.

[3] M. Bruntink, A. van Deursen, and T. Tourwé. Discovering
Faults in Idiom-Based Exception Handling. InProceedings
of ICSE 2006. 20-28 May 2006. Shanghai, China, pages 242–
251. ACM Press, 2006.

[4] R. Campbell and B. Randell. Error Recovery in Asyn-
chronous Systems.IEEE Transactions on Software Engineer-
ing, 12(8):811–826, 1986.

[5] ClearSy. Atelier B: The industrial tool to efficiently deploy
the B method.http://www.atelierb.societe.com/indexuk.htm,
Last accessed: 24 Nov 2006.

[6] F. Cristian. Exception Handling. In T. Anderson, editor, De-
pendability of Resilient Computers, pages 68–97. Blackwell
Scientific Publications, 1989.

[7] A. Iliasov. Implementation of Cama Middleware.
http://sourceforge.net/projects/cama, Last accessed: 24
Nov 2006.

[8] A. Iliasov and A. Romanovsky. Structured Coordination
Spaces for Fault Tolerant Mobile Agents. In C. Dony, J. L.
Knudsen, A. Romanovsky, and A. Tripathi, editors,Advanced
Topics in Exception Handling Techniques, pages 182–201.
LNCS-4119, 2006.

[9] A. Iliasov, A. Romanovsky, B. Arief, L. Laibinis, and
E. Troubitsyna. On Rigorous Design and Implementation
of Fault Tolerant Ambient Systems. Technical report, CS-
TR-993, School of Computing Science, Newcastle Univer-
sity, UK. October, 2006.

[10] L. Laibinis, A. Iliasov, E. Troubitsyna, and A. Romanovsky.
Formal Approach to Ensuring Interoperability of Mobile
Agents. Technical report, CS-TR-989, School of Computing
Science, Newcastle University, UK. October, 2006.

[11] G. D. Marzo and A. Romanovsky. Designing Fault-Tolerant
Mobile Systems. In N. Guelfi, E. Astesiano, and G. Reg-
gio, editors,Scientific Engineering for Distributed Java Ap-
plications International Workshop, FIDJI 2002, Luxembourg,
LNCS 2604, pages 185–201. Springer, 2003.

[12] R. Miller and A. R. Tripathi. The guardian model and prim-
itives for exception handling in distributed systems.IEEE
Trans. Software Eng., 30(12):1008–1022, 2004.

[13] S. Pears, J. Xu, and C. Boldyreff. Mobile agent fault tol-
erance for information retrieval applications: An exception
handling approach. InISADS, pages 115–122. IEEE Com-
puter Society, 2003.

[14] D. Reimer and H. Srinivasan. Analyzing Exception Us-
age in Large Java Applications. InProceedings of ECOOP
2003 Workshop on Exception Handling in Object-Oriented
Systems, 2003.

[15] Rodin. Rigorous Open Development Environment
for Complex Systems. IST FP6 STREP project,
http://rodin.cs.ncl.ac.uk/, Last accessed: 24 Nov 2006.

[16] E. Troubitsyna, editor.Rodin Deliverable D18: Intermedi-
ate Report on Case Study Development. Project IST-511599,
School of Computing Science, Newcastle University, UK,
2006.

