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Abstract. Ransomware is a type of malware which restricts access to a
victim’s computing resources and demands a ransom in order to restore
access. This is a continually growing and costly threat across the globe,
therefore efforts have been made both in academia and industry to de-
velop techniques that can help to detect and recover from ransomware at-
tacks. This paper aims to provide an overview of the current landscape of
Windows-based anti-ransomware tools and techniques, using a clear, sim-
ple and consistent terminology in terms of Data Sources, Processing and
Actions. We extensively analysed relevant literature so that, to the best
of our knowledge, we had at the time covered all approaches taken to de-
tect and recover from ransomware attacks. We grouped these techniques
according to their main features as a way to understand the landscape.
We then selected 15 existing anti-ransomware tools both to examine how
they fit into this landscape and to compare them by aggregating their
accuracy and overhead – two of the most important selection criteria of
these tools – as reported by the tools’ respective authors. We were able
to determine popular solutions and unexplored gaps that could lead to
promising areas of anti-ransomware development. From there, we pro-
pose two novel detection techniques, namely serial byte correlation and
edit distance. This paper serves as a much needed roadmap of knowledge
and ideas to systematise the current landscape of anti-ransomware tools.
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1 Introduction
Ransomware, a type of malware used to extort money from victims, has existed
in various forms since the 1980s [1] and has incorporated more sophisticated
features since 1996 when the idea of cryptoviral extortion was first introduced [2].
Throughout the years, there have been various types of ransomware including
device lockers and crypto-ransomware [3]. Device lockers restrict access to a
device by locking the screen (without encrypting any data) and displaying a
ransom note. On the other hand, crypto-ransomware encrypts the victim’s files
such that a corresponding decryption key is required to regain access. In all
cases, the victim is typically notified through the use of a ransom note often
accompanied by threatening demands and instructions on how to pay (usually
via cryptocurrency such as Bitcoin). The attacker will only release the decryption
key if the ransom is paid.

Unfortunately, individuals and organisations are still frequently hit by ran-
somware attacks that cause severe disruption and substantial costs. There has
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also been an increase recently in targeted attacks, i.e. large-scale ransomware
infections aimed at specific organisations, which effectively can bring businesses
to a halt [4]. As with other types of malware attacks, it has been repeatedly
shown that running up-to-date antivirus software is generally not enough to
prevent ransomware attacks. Offline backups are the only reliable security coun-
termeasure to mitigate a ransomware attack, but unfortunately they are still not
common, particularly in small and medium organisations.

Additionally, many cybercriminals simply make use of the code or ideas
from other relatively successful ransomware variants in order to make a quick
profit [5][6]. Also, the availability of Ransomware-as-a-Service (RaaS) [7] means
cybercriminals can go to the underground market to purchase ransomware kits,
such as Satan [8], allowing them to deploy their own ransomware variants with-
out needing in-depth technical knowledge.

Due to the significant damage and disruption that ransomware can cause [9],
there is an increasing demand for research in anti-ransomware tools and tech-
niques. For instance, the “No More Ransom” project maintains a collection of
defeated ransomware variants along with tools to help victims recover any lost
data [10]. Users are also often advised to follow best practices with regard to
backing up their data and dealing with unexpected links and email attachments
to help mitigate the risk of a ransomware infection [11].

However, this is not enough, so a number of techniques are in development
and being implemented to detect the presence of a ransomware infection quickly,
with the aim of stopping it before it causes any significant damage or data
loss. Similar approaches include attempting to recover any data the ransomware
did manage to encrypt, to ensure that the victim experiences minimal or no
disruption. We expand further on the techniques and their results in Section 5.

Contribution. First, we present a novel feature-based roadmap of the tech-
niques that are commonly used in anti-ransomware tools. This is constructed
based on the analysis of the state-of-the-art in anti-ransomware tools – open-
source, where possible – from academic research. Second, we propose two new
techniques to detect ransomware through serial byte correlation and edit dis-
tance. These are detailed in Section 4. We envision that our paper can help in
guiding future work in anti-ransomware research by providing researchers with
a single point of reference, allowing them to reason about new and existing
anti-ransomware techniques.

2 Related Work
There are two types of taxonomies covering the ransomware domain: Ransomware
and Anti-Ransomware. The former is quite common in the literature, whereas
to the best of our knowledge, only one occurrence of the latter exists. Al-rimy
et al. present a ransomware taxonomy based on three factors: Severity, Plat-
form and Target [12], each of which is further sub-categorised. Ahmadian et
al. present a high-level taxonomy of ransomware splitting it into two main
types: Non-Cryptographic Ransomware (NCR) and Cryptographic Ransomware
(CGR) [13]. CGR is further split into Private-Key Cryptosystem Ransomware
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(PrCR), Public-Key Cryptosystem Ransomware (PuCR) and Hybrid Cryptosys-
tem Ransomware (HCR).

In [14], Kharraz et al. analysed 1,359 ransomware samples across 15 dis-
tinct ransomware families to determine ransomware characteristics in order to
help propose detection strategies. Useful insights are given, including how ran-
somware accesses a victim’s files, how it changes the Master File Table (MFT)
and how ransom payment is implemented. However, not all aspects are consid-
ered such as infection vectors nor evasive techniques. They also propose the idea
of monitoring the filesystem for detecting ransomware, a technique used by many
anti-ransomware algorithms today, as shown in Table 1 later.

Scaife et al. discussed two additional characteristics: filesystem traversal pref-
erences and file format attack frequency [15]. Three types of traversal were
shown: depth-first with encryption starting at the leaves, depth-first with encryp-
tion starting at the root, and extension-based. The most targeted file types were
.pdf, .odt, .docx and .pptx, indicating that cybercriminals prioritise productivity-
related files rather than personal files (such as pictures and videos).

Gazet presented an analysis of 15 ransomware samples across four families,
providing insights into the structure of the ransomware code and the encryption
schemes used [16]. The study additionally examined the extortion schemes im-
plemented and their infection vectors, however concluded that the ransomware
that was analysed was not suitable for mass extortion.

To the best of our knowledge, Al-rimy et al. [12] is the first and only published
paper so far that presents an anti-ransomware taxonomy. They categorise ex-
isting research into two groups: Analysis research and Counteractions research.
Analysis research investigates the behaviour of the ransomware and tries to cat-
egorise it into families. It is usually conducted in a monitored environment –
mostly isolated in a research laboratory – either using static methods (a passive
approach in which the ransomware payload would be studied without running it)
or dynamic methods (where ransomware will be analysed during execution). The
focus of Counteractions research is on confronting the ransomware attacks in a
working environment. The authors outline three subcategories: Prevention, De-
tection and Prediction. Prevention relates to the procedures and policies aiming
to protect potential victims against ransomware attacks by preventing the dam-
age from being inflicted in the first place. Prevention is subdivided into Proactive
Prevention and Reactive Prevention. Proactive Prevention aims to prevent the
attack before it starts, while Reactive Prevention focuses on mitigating the effect
of the attack by restoring the encrypted data. The authors define Detection as
the process of distinguishing between malicious and benign samples. Prediction
is presented as an early detection which enables taking preventive actions on
time. These suggest that there are some inconsistencies which we feel necessary
to address. Through our initial study of this taxonomy, we noticed the exis-
tence of an overlap in the definitions of Prevention, Detection and Prediction.
There are works in the literature that might easily be classified under any of
these three definitions. A more robust anti-ransomware classification system is
therefore needed.
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3 Methodology

Learning from Al-rimy et al. [12], our motivation was to design a landscape
that avoids overlapping between categories and includes the individual anti-
ransomware techniques rather than just their type. We believe that this provides
a clearer and more complete overview of the methods used to defeat ransomware
at a glance. We also hope that this would help other researchers catch up with the
current state-of-the-art and encourage them to develop their own tools and tech-
niques. A robust and extendable anti-ransomware classification system should:

– Clearly define current anti-ransomware techniques
– List their data sources and/or system requirements
– Compare them where possible in terms of accuracy and overhead
– Map the current state-of-the-art onto the landscape

With these criteria in mind, we first defined the scope of our analysis. Re-
search into anti-ransomware tools and techniques has covered various platforms
so far including Windows, Linux and Android [17][18], but our survey revealed
that most of this work has targeted PC-based (specifically Windows) ransomware.
This is justifiable, as ransomware mainly targets the Windows platform [19][20].
We therefore set PC-based techniques as the main scope for our current analysis,
but we firmly believe this work could easily be expanded with techniques in use
on other platforms, such as Heldroid [21] for the Android platform, in the future.

We analysed the literature looking for the implementation details of vari-
ous anti-ransomware tools. Although these tools have largely similar goals (i.e.
detection, recovery, prevention or a combination of those), their implementa-
tions vastly differ. Our analysis highlighted that there are two major types of
anti-ransomware tools: those developed by the academic community and those
developed by antivirus vendors. Whilst it was our intention to ensure that this
work encompassed the anti-ransomware landscape as accurately as possible, var-
ious reasons led us to restrict the current analysis to techniques used in academic
and open source software. These reasons are discussed further in Section 5.3.

After finding a number of similarities between the various approaches and
techniques studied, we were able to identify areas of crossover that could be
used for grouping at a higher level. Initially, we split the landscape according to
functionality, i.e. what the anti-ransomware tools intend to achieve. These can
be largely grouped into detection and recovery strategies.

Within this high-level classification, we then looked at the individual tech-
niques used for detection and recovery. In order to achieve detection, some Data
Source is required along with the Processing of this data. The data source used
for a given detection technique may require access to Kernel Space (such as in
Data Aware Defense [22]), User Space (such as in RAPPER [23]) or both (such
as in UNVEIL [20]). Additionally, any results from the raw data sources or the
data processing steps could optionally be fed into Machine Learning algorithms
in order to detect subtle patterns in the data to build models to distinguish
between benign and malicious behaviour (as in ShieldFS [19]).

We take a similar approach to classify the strategies in ransomware recovery.
To recover from a ransomware attack, some Data Source is required, such as a
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Anti-Ransomware Techniques
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Fig. 1: An Overview of the Current Academic Anti-Ransomware Landscape

backup or access to API calls. Depending on the chosen data source, a Processing
step may be required before the tool is able to start the recovery process.

Our analysis of the literature also highlighted that there were several actions
to react to the detection of a ransomware attack. It is common to attempt to
kill or block the malicious process or thread, such as in Data Aware Defense.
This often requires user confirmation to minimise false positives, such as in
Redemption [24]. Recovery tools should help the user to get to a state where
the effects of the attack have been alleviated, i.e. they recover access to most
of the lost data. However, this does not always imply that all damage has been
mitigated, due to factors such as the cost to an organisation in lost business
during the downtime resulting from an attack [25].

4 Contribution
We created a roadmap of the current anti-ransomware landscape (Figure 1),
including examples of where anti-ransomware tools fit into this landscape (sum-
marised as Table 1 in Section 5). We also propose novel ransomware detection
techniques (serial byte correlation and edit distance) that have shown great po-
tential in our initial experiments.

4.1 Detection
Unlike other types of malware that may wish to remain hidden for a long time,
most ransomware strains usually perform encryption just after the initial infec-
tion. Once the encryption is done, it will then typically make itself known to
the victim, often via a ransom note [26]. Researchers have shown that this unso-
phisticated behaviour can be exploited to detect the ransomware infection in its
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early stages. For example, as shown by UNVEIL [20], crypto-ransomware almost
invariably results in obvious and repetitive I/O traces within the filesystem due
to bulk encryption (which results in write and/or delete operations). Similarly,
CryptoDrop [15] shows that by taking a ‘data-centric’ approach, i.e. focusing on
modifications to user data, ransomware can also be successfully detected.

The current state-of-the-art in anti-ransomware detection aims to analyse a
data source on the potential victim’s system and process it in some way to decide
whether or not they are under a ransomware attack. By using machine learning
or some other statistical technique over this data, a decision can be made and
an appropriate action taken.
Data Sources There are several ways to collect the data required for ran-
somware detection. Depending on the desired approach, the data source may
require access to kernel space, user space or both. In the former case, it is com-
mon to implement a Windows Filesystem Minifilter Driver [27]. This can provide
an unrestricted view of filesystem access requests - represented as I/O Request
Packets (IRPs). By registering a filesystem minifilter driver with the Windows
Filter Manager, it is possible to filter specific I/O requests such as reads or
writes. The IRP itself contains a lot of useful information regarding the request,
including IRP type and the user buffer for the operation. This in turn facilitates
processing of the user buffer, for example as used in UNVEIL [20], Redemp-
tion [24], ShieldFS [19] and Data Aware Defense [22].

However, developing a filesystem minifilter driver is non-trivial and could
take a very long time. One reason for this is that the code runs in the ker-
nel space, where seemingly minor bugs can result in system crashes leading to
lengthy development and debugging times. If a developer wishes to sacrifice some
flexibility but gain simplicity while monitoring kernel events, a primary alter-
native is Fibratus [28]. This is an open-source Python tool that allows the user
to capture, log and process kernel events including filesystem I/O, network ac-
tivity and registry activity. One example of sacrificed flexibility is that although
Fibratus can filter individual filesystem I/O requests, not all of the information
provided by a filesystem minifilter driver is available with Fibratus. Most no-
tably, access to the user buffer is not provided, making it difficult to perform
processing on individual filesystem writes.

The kernel space data sources include Network, Registry, Firmware and
Filesystem events. Monitoring network events may reveal connections to Com-
mand & Control Servers, intercepted network packets could leak information
such as encryption keys, and logs could reveal behaviour that is different to
baseline activity. As an example, [29] and [13] detect ransomware that uses do-
main generation algorithms (DGAs) by monitoring DNS traffic to apply Markov
Chains and behavioural-based detection features.

Monitoring changes to the registry could also be useful to detect any unex-
pected modifications by a malicious process such as disabling an anti-ransomware
solution at start-up. Sgandurra et al. [30] uses registry key operations (along with
API calls and filesystem events) as a feature for a machine learning-based ap-
proach to detect ransomware. Firmware modifications can also be used as a data
source, such as in [31]. Using firmware allows access to data that doesn’t exist
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in the operating system layer, for example whether or not filesystem writes are
made to the same block of memory. As seen consistently throughout the state-of-
the-art, monitoring filesystem events not only allows the analysis of I/O traces
but can also potentially enable access to the user buffer itself for data processing.
Finally, monitoring system events (for example process activity) could help to
uncover anomalous system behaviour.

Within user space, RAPPER uses Hardware Performance Counters (HPCs)
as a data source for detecting ransomware [23]. It recognises anomalous system
behaviour through System/API calls on Linux. Visual Output (i.e. changes to
the GUI of a system that are visible to the user) can also be used to aid in ran-
somware detection and classification. For example, UNVEIL uses this approach
by analysing screenshots of the ransom notice with OCR and image processing.

Another approach, as seen with ShieldFS, is to analyse a process’ memory
for cryptographic primitives and key-related material. The authors explain that
a key schedule is part of many symmetric encryption algorithms, and that this
is often pre-computed and stored in the process’ memory. The authors run the
key-schedule algorithm and check a process’ memory to see if the same values
are found. This also relates to exploiting ransomware by targeting the Crypto
System used to carry out encryption. Other examples of this are PayBreak [32]
and UShallNotPass [33], which target cryptographic libraries that ransomware
often uses. These tools implement hooking in order to intercept crypto-related
API calls as a data source for their anti-ransomware methods (see Section 5).
Processing In order to detect a ransomware attack, it is necessary to pro-
cess the raw data in some way. This step may be as simple as monitoring a
given data source or something more complex such as feature extraction before
machine learning. Hashing refers to taking a malicious binary and applying a
hashing algorithm to its contents, such as SHA-3. This approach is a common
strategy used by antivirus vendors in order to detect and classify malware in
general [34], although its usefulness in the context of ransomware is somewhat
limited, in part due to the copy-cat nature of ransomware and the existence of
RaaS. However, hashing has cleverly been used in the anti-ransomware domain
on numerous occasions. For example, PayBreak uses a 32-byte fuzzy function sig-
nature in order to identify the usage of statically-linked cryptographic libraries,
and CryptoDrop uses Similarity-Preserving hashes to quantify the difference
between a file and its (possibly) encrypted version.

Another approach is to implement a score that represents the overall ‘malice’
of a given process, for example as implemented in Redemption and CryptoDrop.
The idea here is that some indicators of ransomware behaviour can be well
defined (for example how a process changes file extensions after encryption), and
then applications can be monitored for occurrences of these indicators. When
one such event happens, the malice score for the process is incremented until a
pre-computed threshold is reached. At this point, the system would report that
the process is likely to be ransomware and act accordingly.

Another fairly popular approach to detecting ransomware is to make use of
statistical tests. The rationale is that properly implemented crypto-ransomware
should write (encrypted) data that is effectively random. It is therefore possible
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to make use of lightweight, tried-and-tested statistical tests to detect the presence
of randomness, and by extension, ransomware. There are several occurrences in
the literature of anti-ransomware tools making use of entropy computations to
help in detecting ransomware. This is often calculated over the user buffer of
write requests, such as in ShieldFS. However, and as stated in [22], one weakness
of the entropy test in this context is that it has difficulties distinguishing between
encrypted and highly compressed data, possibly leading to many false positives
if a user compresses their data or deals with compressed formats such as mp3
or jpeg. To address this issue, Data Aware Defense uses a Chi-Square test for
randomness, which can distinguish between encryption and compression better.

Machine Learning Both the raw data sources and any output computed by
the processing techniques can be used as training and testing data for machine
learning algorithms. A very relevant example of the use of machine learning to
detect ransomware is ShieldFS. It uses a Random Forest algorithm to distinguish
between malicious and benign system behaviour from a filesystem perspective.
Examples of the features used to train this classifier include the number of files
written and read and the average entropy of filesystem writes, all within a given
interval. These features are derived from logs of billions of IRPs.

Another machine learning approach is the use of a neural network to classify
ransomware behaviour. Whilst this often results in longer training times and
produces a classifier that is difficult for humans to interpret [35], it may lead to
a higher accuracy which could be crucial for end-point ransomware protection.

Actions In order to develop a tool capable of stopping a ransomware attack,
some action needs to be taken after it is decided such an attack is in progress. The
most common approach is to attempt to Kill or Block the Process or Thread that
has been classified as malicious, such as with Data Aware Defense [22]. Another
potential approach could be to place it under Surveillance. The idea is that all
processes could be monitored with quite general indicators of ransomware. If a
process’ behaviour begins to look malicious, the process could be placed under
surveillance, i.e. more indicators of ransomware are used and more resources are
devoted to its analysis. This provides the benefit of accurate decision making
based on an increasing number of indicators, without the overhead of every
indicator being used on every process. A similar technique is used in RAPPER.

Additionally, it is common to include some sort of User Notification to ensure
that the decision cast by the anti-ransomware tool is sensible in a given context.
For example, a user may intentionally encrypt their data, at which point some
of these tools may incorrectly classify this behaviour as malicious. A notification
would allow the user to continue the benign operation, or confirm the killing of
a ransomware related process.

4.2 Recovery
Our analysis has shown that anti-ransomware techniques have focused on detec-
tion rather than recovery. Still, researchers are developing clever ways of recov-
ering from ransomware attacks. Ideally, this enables the victim to revert their
system to a point in time before the ransomware attack happened, mitigating
the effects of the attack.
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We take a similar approach in classifying recovery techniques. That is, we
notice that some Data Source is required in order to begin recovery. This data
could be, for example, some kind of backup, or access to API calls. Depending
on the data source in use, some processing may be required before recovery
is possible. After that the recovery actions can take place, typically via file
restoration as in ShieldFS, or decryption as in PayBreak.

Data Sources A logical way of recovering from a ransomware attack involves
the use of some kind of backup. In the context of anti-ransomware tools, the
meaning of a backup is slightly different. In the literature, anti-ransomware tools
that use a backup tend to implement their own ‘short-term’ approach.

For example, ShieldFS implements a copy-on-write system that essentially
creates a short-term backup of a file whenever it is written to or deleted by a
process for the first time. This is achieved using the I/O Interception capabil-
ities of Windows Filesystem Minifilter Drivers mentioned in Section 4.1. If the
process is eventually classified as ransomware, the copied version of the file can
be recovered. Otherwise, if sufficient time passes, the backup can be cleared.

Redemption implements a similar approach in that a write or delete will
result in a copy of the file, but subsequent I/O requests to the original file will
be redirected to the copy. Changes to this file are periodically written to disk
unless the process is classified as ransomware. Additionally, it may be possible
to implement some kind of Cache or Buffer where potential changes to the
filesystem are stored until a final decision has been made as to whether or not
the changes are malicious.

Another strategy that can aid with recovery, as explored by PayBreak, is
API Hooking. This consists of function hooks to crypto-related libraries. Pay-
Break uses this technique to gather information regarding the encryption used
by the ransomware, for example its symmetric key, initialisation vector and ci-
pher mode. This is implemented using Microsoft’s Detours package [36]. This
information is aggregated and stored in an append-only vault, protected with
administrator privileges. After a ransomware infection completes, the user is then
able to activate the PayBreak recovery process at which point the collected en-
cryption algorithm information is used with every encrypted file until successful
decryption is achieved.

Processing Processing may or may not be required, depending on the data
source used for recovery. PayBreak presents an example of processing: The raw
information collected from API hooking requires aggregating and storing, known
as a Key Escrow mechanism, before being used to decrypt the files. Other exam-
ples of data processing include SSD-Insider’s use of Delayed Deletion in order to
prevent ransomware modifications being written to disk [31], and ShieldFS’s use
of an IRP transaction log in order to identify exactly which files were affected
by a ransomware attack and need to be restored [19].

Actions One of two major actions can be taken in order to complete the re-
covery process: Restoration or Decryption. As shown above, PayBreak takes the
decryption approach, i.e. the damage caused by ransomware is reversed via the
decryption of the files affected. ShieldFS and Redemption, on the other hand,
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Fig. 2: Using Serial Byte Correlation for Ransomware Detection

achieve recovery using restoration, i.e. the damage is reversed by restoring the
unmodified versions of the affected files.

4.3 Novel Detection Techniques
Below we propose two novel indicators that show potential in detecting ran-
somware that – to the best of our knowledge – have not been used this way. We
leave further implementation and testing of these techniques as future work.

Serial Byte Correlation Coefficient The first is the use of the serial cor-
relation coefficient, a lightweight statistical test that looks at the relationship
between consecutive numbers. We look at the correlation between bytes written
to a file, expecting a low value for encrypted files.

Figure 2 shows the results of experiments relating to serial byte correlation.
In Figure 2a, the serial byte correlation coefficients of 979 files from the Govdocs
corpus [37] were calculated before and after encryption. A clear trend towards
zero is shown for the encrypted versions of the files. Figure 2b shows values of
chi-square calculated alongside byte correlation over the same data, highlighting
a cluster representing random data (in this case, encrypted data) when these
indicators are combined.

Edit Distance of File Paths We also propose the use of the edit distance
of the file path interacted with by a process. As shown by the literature [15],
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ransomware performs bulk encryption iteratively across files so for a given di-
rectory, we would expect to see several consecutive writes whose file paths have
minimal edit distance. This is because the only part of the path that should
change is the file name (and extension) itself – the bulk of the path should re-
main the same until another directory is accessed. We would therefore expect
ransomware to make several writes whose file paths have a very low edit distance
with intermittent occurrences of high edit distances.

Figure 3 shows the differences in Levenshtein distance of file paths generated
by iterative (3a) and random (3b) filesystem accesses. This quantifies the differ-
ence between given strings, or in this context, the number of edits required to get
from one string to another. In order to represent the filesystem traversal of ran-
somware as generally as possible, we generated filesystem access requests based
on the three main types of ransomware traversal reported in [15], namely depth-
first with encryption starting at leaves, depth-first with encryption starting at
the root, and extension-based.

Figure 3a shows the results of depth-first traversal with encryption starting
at the leaves. The other behaviours generated similar patterns, although they
were slightly less noticeable in the case of extension-based traversal, as there
is often no guarantee that a directory will contain multiple files of the same
type. Figure 3b was generated by randomising access requests to represent the
unpredictability of humans, although we plan to improve this by collecting data
based on real human activity.

5 Analysis and Evaluation
We mapped existing anti-ransomware tools onto our proposed roadmap, accom-
panied by relevant data sets and information regarding each tool’s accuracy as
reported by the tool’s authors.

5.1 Observations

We believe that our roadmap provides a classification scheme and a clear map of
the current ways ransomware is being fought, which is also expandable to cover
strategies targeted at other platforms such as Android. It also highlights gaps in
existing techniques that could lead to new ideas and techniques.

Table 1 provides a global view of how the anti-ransomware tools we have
analysed fit into the landscape. The values shown in the blue row represent
the popularity of individual techniques within the literature, whereas the values
in the blue column represent how many individual features a given tool in the
literature actually makes use of. Immediately noticeable is the obvious preference
for detection techniques compared to recovery techniques. There is also a clear
preference towards some form of monitoring, for example of the filesystem. As
well as this, it is interesting to see that some reportedly promising approaches –
e.g. the use of a malice score – have not received much attention in the literature.

5.2 Accuracy

Table 2 provides a comparison of current anti-ransomware tools in terms of
their accuracy (i.e. their ability to successfully detect ransomware). We would
like to stress that the figures presented here are as reported by the respective
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Table 1: Matrix of Anti-Ransomware Tools in the Landscape
Detection Recovery
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UNVEIL [20] FS VO 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

CryptoDrop [15] FS - 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 8

2entFOX [29]
R
FS

AC
CS
CE 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

Connection
Monitor [13] - N 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4

EldeRan [30]
R
FS AC 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

PayBreak [32] - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 3
Data Aware

Defense [22] FS - 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4

ShieldFS [19] FS
M
CS 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 11

Redemption [24] FS - 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 9

UShallNotPass [33] - CS 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 5

RAPPER [23] - AC 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 5

R-Killer [38] FS N 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 6

SSD-Insider [31] F - 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 8

R-Locker [39] - HT 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 4

Honeypot [40] - HT 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 5

Total 1 1 1 2 1 1 2 12 7 0 2 7 2 3 9 2 3 1 1 1 1 3 1

authors of the tools. We did not have access to most of these tools, meaning we
were unable to perform a fair comparison using a consistent and well designed
dataset. Therefore, we leave judgment of the capabilities of the current landscape
to the reader.

Table 2: Reported Anti-Ransomware Results
Source Code Runnable Dataset Ransomware Reported Results

Anti-Ransomware Tool Available Free Paid Available Families Samples Detection Rate False Positive

UNVEIL [20] 7 7 7 7 N/A 3156 93.3% 0%
CryptoDrop [15] 7 7 3 7 14 492 100% N/A

2entFOX [29] 7 7 7 7 N/A 8 87.5% N/A
Connection-Monitor

& Connection-Breaker [13] 7 7 7 7 N/A 20 100% N/A
EldeRan [30] 7 7 7 7 11 582 96.34± 2.1% 1.61± 0.8%
PayBreak [32] 3 7 7 7 20 107 N/A N/A

Data Aware Defense [22] 7 3 7 3 20+ 798 99.37% 0.05%
ShieldFS [19] 7 7 3 3 5 383 99.74− 100% 0− 0.208%

Redemption [24] 7 7 7 7 29 1174 100% 0.5%
UShallNotPass [33] 7 7 7 7 N/A 524 94% N/A

RAPPER [23] 7 7 7 7 1 1 100% ≈ 0%
R-Killer [38] 7 7 7 7 13 50 96% N/A

SSD-Insider [31] 7 7 7 7 2 2 100% 5%
R-Locker [39] 7 7 7 7 2 2 100% N/A

Honeypot [40] 7 7 7 7 N/A N/A N/A N/A
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We also notice the reportedly high detection rates across all tools implement-
ing filesystem activity monitoring. One such case is Redemption, purportedly
achieving a detection rate of 100% and a false positive rate of 0.5% over 1,174
samples across 29 families. These results are clearly very promising. We believe
that, for the task of defeating ransomware, maximising true positive rate is more
important than minimising false positive rate. From the perspective of a user, a
false positive (i.e. a benign process incorrectly classified as malicious) is arguably
an annoyance, whereas a false negative (i.e. ransomware remaining undetected)
could have catastrophic results. However, we do not disregard the importance of
a low false positive rate because a user who is constantly confronted with false
positives is likely to give up on using the tool or not take appropriate action
when notified about a real attack.

The authors of Data Aware Defense shift their focus to minimising system
overhead, and report success in doing so (“by a factor of a few hundreds” com-
pared with the overhead of other anti-ransomware tools [22]). However, they
caution that this comparison was made without knowing the testing procedure
of other tools. This shows great promise, particularly when coupled with the
tool’s high detection rate (99.37% over 798 samples, across more than 20 fam-
ilies). We believe that system overhead is a frequently forgotten but critical
feature of these anti-ransomware solutions that deserves much more attention.
For a user to happily use one of these tools, not only must it successfully achieve
its goal of protecting them from a ransomware attack, but also their normal
interactions with the system should not be significantly impacted.

The approach taken by Palisse et al. [22] in conducting a benchmarking
exercise using standard third party tools is a step in the right direction. The
tools that they used are CrystalDiskMark (https://crystalmark.info/en/
software/crystaldiskmark/), Geekbench 4 (https://www.geekbench.com),
and PCMark 8 (https://benchmarks.ul.com/pcmark8). This allows researchers
to evaluate their solutions against others using the same criteria. In Section 5.3,
we discuss how a universal testing platform could be created for evaluating anti-
ransomware tools, both in terms of their accuracy and system overhead. We
expect that – as ransomware detection and recovery tools become more refined
– there will be a shift towards overhead minimisation. In turn, it will result in
tools that are faster and more suitable for real-time end-point protection.

5.3 Limitations and Future Work

The main limitation with our analysis is our focus on PC-based anti-ransomware
techniques developed by the academic and open-source community, despite the
existence of tools such as Heldroid. Antivirus vendors also develop anti-ransom-
ware tools [41][42], but we found academic and open-source tools to be more
accessible, for example due to the provision of implementation details. Future
work may be to expand this overview with both antivirus vendor tools and
non-PC based tools to give a better overview of the anti-ransomware landscape.
We are particularly interested to see any commonalities between academic and
antivirus vendor techniques provide greater insight into popular and underdevel-
oped areas. We believe it would also be interesting to see how techniques from

https://crystalmark.info/en/software/crystaldiskmark/
https://crystalmark.info/en/software/crystaldiskmark/
https://www.geekbench.com
https://benchmarks.ul.com/pcmark8
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both communities evolve over time. It would be fascinating to see how advances
from one community inspire further advances in the other, leading to a cycle of
continuous improvement in anti-ransomware techniques.

As mentioned in Section 5.2, we note that the performance and overhead
statistics we have provided are as self-reported by the authors of the respec-
tive tools themselves. Therefore we do not believe it possible to conduct a fair
comparison of the effectiveness of each technique. Another area of future work
would be to develop a universal testing platform such that each of the tools can
be evaluated in isolation using the same data sets and be fairly and transparently
evaluated on the same criteria. It could be possible to develop such a platform
using virtual machines (VMs). Snapshots could be taken of VMs in their fresh
states (i.e. a clean installation of the target OS) and then the VMs could be con-
figured with the anti-ransomware tool to test. Additionally, it could be possible
to automate the entire process, taking inspiration from the automated malware
analysis platform developed by the authors of [22].

6 Conclusion
In this work, we have presented a clear and simple roadmap of the current aca-
demic and open-source anti-ransomware landscape. This encompasses the cur-
rent techniques being used to detect and recover from ransomware attacks, from
the point of view of Data Sources, Processing and Actions. We used these clas-
sifications to provide both a consistent terminology for researchers in the area,
as well as the ability to accommodate new techniques in the future. On top of
that, we proposed, implemented and tested two new techniques for ransomware
detection, using serial byte correlation and edit distance.

We also examined how existing anti-ransomware tools (including our pro-
posed techniques) fit into the landscape, noticing a current preference towards
filesystem activity monitoring for detection. We also provided a single point of
reference comparing reported results of current anti-ransomware tools as well as
their dataset sizes. We hope this information provides useful insights into current
and future trends in fighting ransomware. We also believe that a clear roadmap
of the landscape, along with a consistent terminology, will help to simplify and
organise the development of improved future anti-ransomware techniques.

This work has been carried out to the best of our ability with limited access to
the anti-ransomware tools themselves. In the interests of scientific reproducibil-
ity, we are happy to provide all of the material required to repeat the experiments
discussed in this work.
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