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ABSTRACT
The threat of ransomware on severely constrained industrial In-
ternet of Things (IoT) deployments is real and difficult to defend
against, especially because resource-constrained devices can be
compromised and used to propagate malicious payloads with min-
imal observability. To support the development of ransomware
detection and prevention countermeasures, this paper proposes a
lightweight micro-auditing mechanism that captures diagnostic
metrics derived from process scheduling, as well as from resource
and network utilization patterns. The proposed mechanism mini-
mizes computational, memory, and energy overhead through adap-
tive metric sampling, ensuring resource-efficient operation. We
have developed this micro-auditing mechanism using the Contiki-
NG operating system for IoT devices, and we use our implementa-
tion to derive memory and code footprint statistics as evidence of
its lightweight nature. Using the Cooja simulator and an existing
ransomware prototype, we examine the feasibility of our micro-
auditing mechanism through a host of experiments on topologies
of different densities, to quantify the speed and subtle nature of ran-
somware propagation. Our results highlight the fact that, due to its
subtlety, this threat can elude traditional traffic- and power-based
anomaly detectors. Themicro-auditingmechanism not only enables
device-level security auditing but also underpins our ongoing work
on the development of countermeasures using a scalable framework
for integrating machine learning classifiers, which could further
refine threat discrimination and reduce false positives.

CCS CONCEPTS
• Security and privacy → Embedded systems security; Mal-
ware and its mitigation; Mobile and wireless security.

KEYWORDS
Industrial IoT, ransomware, auditing, constrained devices

1 INTRODUCTION
Wireless sensor networks (WSNs) serve as a foundational compo-
nent of the Internet of Things (IoT), enabling critical applications
such as environmental monitoring and industrial automation. How-
ever, the inherent resource limitations and decentralized architec-
tures make WSNs potentially vulnerable to sophisticated attacks.

Ransomware, once confined to personal computers (PCs) and
enterprise systems, has increasingly targeted IoT ecosystems, em-
ploying lightweight cryptographic payloads and peer-to-peer prop-
agation to disrupt sensor networks. Traditional defense mecha-
nisms, such as signature-based detection or centralized monitoring,
are often inadequate in IoT environments due to their high over-
head and inability to adapt to the dynamic and distributed network
topologies. The stealthy propagation and persistent impact of ran-
somware in IoT systems underscore the urgent demand for novel
approaches tailored to the unique constraints of these networks,
ensuring robustness against both known and evolving threats.

In order to maintain high levels of digital security, it is prudent to
test technology and its robustness to threats. In order to test security
measures for this type of ransomware, in our previous work [6] we
used Contiki-NG [9] to implement a prototype that demonstrated
that the development of a ransomware of this nature is feasible,
and we evaluated it to better understand the threat. This proto-
type leverages the inherent characteristics of microcontrollers and
wireless communication protocols to propagate ransomware code
across devices autonomously. Key features include: (1) machine-
to-machine transmission during runtime, enabling self-replication
without user interaction; (2) minimal resource footprint, ensuring
compatibility with low-power devices; and (3) operational stealth, as
it avoids triggering noticeable changes in network traffic or device
power consumption. By embodying these features, this prototype
reveals critical challenges in detecting subtle, resource-efficient
ransomware in IoT networks.

It is worth noting that conventional anomaly detection systems –
which prioritize abrupt volumetric traffic anomalies or bulk power-
consumption deviations – are fundamentally ill-suited to identify
protocol-compliant attacks that exploit fine-grained behavioral
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Table 1: Existing Log and Audit Techniques for IoT Network

Technique Record data
Security
trace Data size

Record
frequency Storage

On device
processing Platform

Microcontroller unit
(MCU) Log [2]

State, debugging
snapshots

No Configurable High External Flash Yes MCU

Syslog [12] System services,
kernel snapshots

No Moderate Event-driven Local file system Yes Linux-based

Auditd [11] System calls, file/net-
work events

Yes Large Event-driven Local file system Yes Linux-based

AWS IoT Device De-
fender [4]

Device behavior
metrics

Yes Moderate Minutes
interval

Upload to cloud No MCU + server

Azure IoT [3] Diagnostics messages Yes Moderate Seconds
Interval

Upload to
application

No MCU + PC

patterns. This deficiency is compounded by the decentralized ar-
chitecture of IoT ecosystems, which hinders real-time monitoring
and response mechanisms.

To address these systemic vulnerabilities, this paper proposes a
resource-aware, on-device auditing framework that operates within
the stringent energy and memory constraints of IoT devices. This
novel micro-audit paradigm dynamically tracks security-relevant
program behaviors through a combination of lightweight diagnostic
metrics and adaptive sampling strategies. By modulating sampling
rates, the system maintains optimal detection sensitivity while pre-
serving resource efficiency, thereby enabling scalable deployment
in large-scale IoT environments.

Contributions. The key contributions of this work include:
• Ransomware infection evaluation: we develop a ransomware

prototype on the network test bench and quantify its propa-
gation speed across networks of varying density, as well as
its stealthy resource footprint in terms of central processing
unit (CPU) utilization, radio activity, and traffic throughput.

• Micro-audit mechanism development: we introduce a light-
weight auditing mechanism that captures diagnostic met-
rics and dynamically adjusts its sampling frequency to bal-
ance detection responsiveness with minimal computation
and energy overhead.

• Evaluation of detection effectiveness: we demonstrate that
ourmicro-audit approach reliably distinguishes ransomware
infections from normal operation using only subtle metric
deviations, while maintaining a small resource footprint
suitable for resource-constrained IoT devices.

2 RELATEDWORK
2.1 Embedded Logging System on

Microcontrollers
Existing logging mechanisms on resource-constrained IoT devices
generally record system events, states, and interactions to facil-
itate debugging and enhance operational visibility. These mech-
anisms employ a hierarchical severity model, comprising debug,
info, warning, error, and critical, to filter and prioritize operational
data, which can be batch-recorded locally. However, existing micro-
controller logging techniques are inadequate for the lightweight

security tracing required to detect anomalous intrusions in real
time, as summarized in Table 1.

Redundant log records – primarily used for troubleshooting
and offering limited utility in monitoring critical system security –
generate data volumes that often exceed on-chip storage capacity,
necessitating frequent offloading to external storage. However, fre-
quently storing logging data to large-capacity external flash mem-
ory cards significantly shortens the battery’s lifespan [2]. While
some studies have sought to reduce energy consumption by trig-
gering logging via external events and peripherals, they have failed
to continuously monitor system behaviors at the security level,
potentially overlooking abnormal intrusions [10].

2.2 Auditing Systems Implementation on
Multi-Platform

WSN audit systems require a hierarchical three-layer architec-
ture—application, edge, and sensing—to align framework structure
with data reporting from remote to local levels.

2.2.1 Application Layer. At the highest layer, cloud platforms host
resource-intensive security services, such as Amazon Web Services
(AWS) IoT Device Defender, that leverage a centralized processing
model to analyze aggregated network traffic and sensor data from
distributed WSN nodes [4]. These services rely on continuous data
uploads to perform system-level anomaly detection, identifying
patterns indicative of large-scale data exfiltration and coordinated
denial-of-service attacks [1].

The typical Azure IoT solution enables efficient resourcemonitor-
ing across heterogeneous systems by leveraging OS-native logging
tools, thereby minimizing performance overhead [3]. However, its
reliance on a computer-based collection node limits applicability
in IoT scenarios, as many embedded systems lack native logging
capabilities for dataset collection [7]. Cloud-based auditing intro-
duces latency due to data transmission dependencies and may fail
to detect localized, time-sensitive threats before escalation.

2.2.2 Edge Layer. At the intermediate layer, gateway routers de-
ploy lightweight audit systems to analyze regional network traffic
and sensor data over WSNs. These systems operate at the edge, re-
ducing reliance on cloud connectivity by preprocessing data locally.
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Figure 1: Network test bench with varied density levels. The sub-figures show: (a) target density ≈ 0.1, actual density = 0.0952;
(b) target density ≈ 0.2, actual density = 0.2143; (c) target density ≈ 0.5, actual density = 0.5000; (d) target density ≈ 0.9, actual
density = 0.9571.

For example, the audited Linux subsystem provides an adaptive safe-
guarding framework to detect malicious events, support incident
response, and perform forensic investigations [11].

However, similar techniques can introduce severe performance
overhead, slow down workflow, generate redundant events, and
rapidly increase log file sizes [12]. Furthermore, its dependence on
external energy meters or side channel sensors limits its feasibility
in embedded systems without such an infrastructure [8].

2.2.3 Sensing Layer. At the lowest layer ofWSNs, ultra-lightweight
audit systems are deployed directly on resource-constrained sen-
sor nodes to validate readings in real time with minimal overhead.
One example of such an approach analyzes the microcontroller’s
instantaneous power-consumption waveform to extract discrimi-
native features and identify malfunctions. Although effective for
gross anomalies, this power-analysis method struggles to detect
faults that induce only subtle changes in consumption, as minor
fluctuations often fall within the device’s normal operating range
and thus evade detection [5].

An alternative strategy leverages temperature “fingerprints” in-
herent tomicrocontrollers’ thermal profiles for intrusion detection –
benefiting from universality across heterogeneous Industrial IoT de-
ployments – yet remains highly susceptible to ambient temperature
fluctuations and incapable of identifying malicious code that leaves
the thermal signature largely unchanged [13]. Moreover, the severe
power, computation, and memory constraints of in-node MCUs
impose strict limits on the complexity of any anomaly-detection
algorithm, necessitating a careful balance between detection capa-
bility and resource consumption.

3 MOTIVATION FOR AN AUDITING SYSTEM
3.1 Ransomware Prototype in Network
To help increase robustness against these threats, we used our ran-
somware proof-of-concept [6] to create autonomously-propagating
code that can infect devices throughout a deployment in a manner
that is difficult to detect. Once activated, infected devices exhibit
behavioral anomalies intended to coerce users into paying ransom.

Assuming an initial compromise via physical access, our ran-
somware prototype dynamically injects malicious code upon receipt

and redirects program flow using a function-pointer hijack. The ran-
somware payload then executes seamlessly at runtime, overriding
normal operations and propagating itself to neighboring devices.
Throughout this process, each device remains fully functional and
appears inactive. Once the ransomware has self-propagated to a
predetermined number of nodes, it activates its attack mode by
deploying its payload (including the ransom note). To ensure persis-
tence, the ransomware overwrites the device’s flash at the original
process-function address with its malicious routine, guaranteeing
survival across reboots and sustained control.

The prototype exhibits two key characteristics: spreading ca-
pability and stealth. It propagates through machine-to-machine
communication, infecting without producing noticeable changes
in network traffic or device power consumption, thereby making
detection difficult.

3.2 Simulated Network Testbed
The testbed uses the Cooja simulator to model a 21-node data collec-
tion IEEE 802.15.4 network of devices arranged in a tree topology:
one node acts as data sink and 20 nodes are configured as periodic
traffic sources. Each node is configured with a 50-meter radio range
and runs the time slotted channel hopping (TSCH) media access
control (MAC) protocol over IPv6 Low-Power Wireless Personal
Area Network (6LoWPAN), carrying user datagram protocol (UDP)
datagrams end-to-end. Upward routing is handled by classic IPv6
routing protocol for low-power and lossy networks (RPL) in non-
storing mode, establishing a single destination oriented directed
acyclic graph (DODAG) rooted at the traffic source. Each source
generates a 40-byte sensory packet that traverses the RPL DAG
towards the sink. Data packets are generated at 1Hz to emulate
routine monitoring traffic. This setup allows for an evaluation of
protocol performance under realistic low-power, lossy channel con-
ditions while preserving timing and link-layer behaviors inherent
to IEEE 802.15.4 TSCH. These are summarized in Table 2.

Ransomware spreads across the network more quickly as density
increases. To capture this, we assess performance under four distinct
density levels, as depicted in Fig. 1. For all experiments, we keep the
same tree structure, node count and wireless channel configuration.
For each experiment, we modify node density by changing the
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Table 2: Network Simulation Configuration

Nodes 21 Cooja nodes
(1 sink, 20 sources)

Transmission range 50 meters

Routing RPL classic

Transport layer UDP

Network layer 6LoWPAN

MAC layer TSCH

Physical layer IEEE 802.15.4

Sensory data packet size 40 bytes

Sensory data report frequency 1 Hz

physical distance between nodes such that communication links are
created or removed. Nodes, and the presence (or the lack thereof)
of pairwise links (edges in the network graph) remain constant
throughout each respective experiment. The network density (ND)
for each network instance corresponds to the total number of edges
over the maximum number of edges possible in the graph. This is
subsequently determined via Eq. 1:

𝑁𝐷 =
|𝐸 |

|𝑉 | ( |𝑉 |−1)
2

=
2|𝐸 |

|𝑉 | ( |𝑉 | − 1) (1)

where |𝐸 | represents the number of edges and |𝑉 | denotes the
number of nodes in the network.

Wemodel four different densities: Very high (𝑁𝐷 ≈ 0.9), medium,
low and very low (0.5, 0.2 and 0.1 respectively). Due to the number
of nodes in the graph, the above values represent density rounded
to a single decimal point.

3.3 Infection Spreading over Network
To evaluate the spread speed of the ransomware across different
network structures, scripts in the Cooja simulator were used to
ensure that the initial node launching the malicious code was iden-
tical across all cases, with propagation commencing simultaneously.
The infection time of each node was recorded until all 20 nodes in
the network were infected.

As shown in Fig. 2, networks with lower density took longer to
become fully infected, while denser network structures facilitate
faster ransomware propagation. In this experiment, propagation
in denser networks was nearly simultaneous due to the greater
number of edges. However, regardless of the network density, the
proposed ransomware successfully propagated and infected entire
network through the communication links among devices.

3.4 Resource Utilization for Infection
Traditional detection techniques often rely on spotting abrupt
changes in resource consumption. To evaluate resource utiliza-
tion on device nodes during ransomware infection, we measured
(1) CPU load for basic program execution, (2) radio-module activ-
ity required for wireless communication, and (3) aggregate data
throughput across the IoT network.

CPU utilization was computed as the fraction of time the mi-
crocontroller spent in active mode, where power draw is highest,
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Figure 2: Infection speed comparison for different densities.
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Figure 3: Resource utilization: before & after infection.

relative to the time spent in sleep or deep sleep states. In Contiki-NG,
radio usage is tracked separately and follows the TSCH schedule,
which precisely controls when the radio turns on for transmission
or reception. After joining all nodes to the TSCH network, we quan-
tified radio-usage ratio for each node by counting the number of
occupied TSCH slot.

Across networks with varying densities, the average CPU and
radio-usage metrics before versus after infection showed only mar-
ginal differences, as depicted in Fig. 3. Moreover, the ransomware’s
compact code footprint produced no discernible change in network
throughput. Consequently, conventional anomaly detectors, which
are designed to detect spikes in resource consumption or traffic
patterns, are unlikely to detect this stealthy threat.

4 MICRO-AUDIT DESIGN AND EVALUATION
Given the limitations of existing detection methods, we devel-
oped a lightweight micro-audit mechanism tailored for resource-
constrained devices to monitor security-relevant program activities
and surface anomalies during ransomware infection.
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Figure 4: Micro audit statistics on microcontrollers.

4.1 Micro Audit Design
Fundamentally, the micro-auditing system collects resource uti-
lization statistics and stores them for the purposes of analysis.
The Contiki-NG OS schedules execution via processes and events
calling; accordingly, our micro-audit system recorded per-process
event-handling statistics over configurable time windows, estab-
lishing a baseline of normal execution patterns. Deviations from
these baselines, such as unexpected event sequences or frequencies,
were flagged as potential anomalies.

We collect process-scheduler statistics around processes and
counts of events of each different type, as illustrated in Fig. 4. To
persist across reboot cycles, the ransomware prototype attempts to
save itself onto the infected device’s internal flash. Flash erase/write
operations could indicate anomalous activity, therefore statistics
around those are also monitored by the micro-auditing system. Au-
diting statistics recorded the power consumption including the CPU
core and radio activities. Contiki-NG already features capability of
collecting very rich network-related statistics at all layers of the
network stack, and the micro-auditing system is designed such that
it can leverage this pre-existing capability.

Given that the proposedmicro-audit mechanism targets resource-
constrained IoT devices, two key criteria were emphasized: (i) main-
taining a lightweight footprint to minimize deployment overhead,
and (ii) ensuring detection efficacy by capturing distinctive metrics
that reliably reveal the proposed ransomware.

4.2 Resource Overhead Assessment
The device resource overhead grew with network density in the
earlier experiments. Consequently, we selected the network with a
density of 0.9, representing the highest resource load, as our bench-
mark. Measurement were conducted with and without the audit
mechanism enabled, capturing: (1) power consumption, (2) average
and peak stack usage during program execution, and (3) firmware
footprint after compilation, including the size of the executable code
segment in ROM (.text) and the allocation for uninitialized globals
and statics (.bss). These comparisons quantified the computational
and memory overhead imposed by our micro-audit mechanism.

The micro-audit system features a dynamically adjustable audit-
ing frequency. With auditing enabled, we evaluated three distinct

Table 3: Evaluation of resource overhead for network density
0.9 under varying audit conditions.

Evaluation metrics Without
audit

With audit
per 60s per 10s per 1s

Average current
consumption (mA)

9.8 10.2 10.8 12.3

Average stack usage
(bytes)

136 144 145 149

Max stack usage
(bytes)

508 512 524 548

Firmware
footprint (KB)

.text 95.43 96.35 — —

.bss 12.99 13.31 — —

Density 0.1 Density 0.2 Density 0.5 Density 0.9

Network Categories

0

5

10

15

20

25

30

35

D
iff

er
en

ce
 P

er
ce

nt
ag

e 
(%

)

12.5%

16.7%

21.2%

26.0%

4.5%

10.3%

23.3%

18.4%
20.0%

17.7%

13.3%

16.2%

23.5%
24.3%

31.6%

34.2%

16.7% 16.7% 16.7% 16.7%

Heap Usage
Radio Poll Events Num 
TSCH Synch Events Num 
Callback Poll Events Num
Flash Write times

Figure 5: Noticeable resource usage increase after infection.

recording intervals: a low-frequency mode suitable for daily moni-
toring to minimize power draw, and progressively higher frequen-
cies triggered upon threat indications to collect richer diagnostic
data for anomaly analysis.

As summarized in Table 3, increasing the audit frequency yields
a corresponding rise in runtime overhead. Nevertheless, the addi-
tional resource consumption remains modest and acceptable com-
pared to an unaudited baseline. This finding demonstrates that
deploying the micro-audit mechanism does not significantly in-
crease the resource usage on devices, confirming its lightweight
nature and suitability for resource-constrained environments.

4.3 Micro-Audit–Driven Ransomware Detection
As part of our ongoing research, to be documented in a future
output, we are working on leveraging micro-auditing data for the
purposes of developing detection and prevention countermeasures.

Using the micro-audit method, ransomware activity is assessed
by detecting significant deviations in monitored metrics. As ex-
pected, higher auditing frequencies provide more detailed mea-
surements. Under routine, low-frequency auditing, we quantified
the magnitude of change in key metrics before and after infection.
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Across networks with varying density, our detection indicators
(leveraging the auditing statistics, heap usage, radio activity, TSCH
synchronization events, callback-event counts, and flash writing)
exhibited clear shifts that can reliably signal ransomware infection.

Since Cooja does not model real-device stack behavior, heap
memory was used for dynamically allocating and freeing tempo-
rary variable buffers, thereby reflecting RAM activity on the device.
As shown in Fig. 5, a corresponding increase in heap usage was
observed after the infection. It is assumed that the attacker would
install a reserved callback function as a backdoor, redirecting nor-
mal system processes to execute the injected payload. This hijack
behavior manifested as a surge in callback-event counts.

Owing to the (typical) self-propagating nature of ransomware,
infected nodes multicast payloads to neighboring nodes, driving
up physical-layer radio-poll events and MAC-layer TSCH synchro-
nization events. Additionally, attempts to make the ransomware
persistent – by writing it to the flash memory, for instance – result
in a higher number of write operations to critical memory regions.

5 LIMITATIONS AND ONGOINGWORK
The micro-auditing mechanism produces pronounced shifts in de-
tection indicators following a ransomware infection. However, le-
gitimate activities, such as firmware over-the-air (OTA) updates,
can induce similar metric fluctuations (e.g., flash erase/write oper-
ations) and trigger false alarms. To address this, we are currently
in the process of developing audit-driven detection algorithms us-
ing machine learning models to discriminate benign updates from
malicious anomalies, and thus improve detection accuracy.

We are targeting to deploy the ransomware detectionmechanism
on the device itself to enable real-time alerts and autonomous self-
defense, while periodically forwarding audit data to a central server
for deeper analysis. To balance responsiveness and overhead, the
design adaptively adjusts the audit-data transmission rate: baseline
reporting has a low transmission rate, but the rate escalates when
on-device indicators suggest a potential attack. Investigation of the
accuracy, precision and recall of centralized detection mechanisms
under conditions of varying auditing data volume is also part of
our ongoing work.

As audit data from leaf nodes traverse intermediate routers en
route to the sink, forwarding nodes expend energy to handle the
extra traffic. We therefore plan to evaluate the trade-off between
detection efficacy and communication burden to ensure that the
added audit transmissions do not excessively tax network resources.

Once infected, it is reasonable to assume that an attacker may
wish to tamper auditing mechanisms. Disabling auditing would
likely lead to an easy detection, therefore a more stealthy approach
would be to tamper auditing statistics such that they reflect normal,
before infection operating conditions. Our ongoing work is inves-
tigating the accuracy of centralized detection under conditions of
uncertainty about auditing data trustworthiness.

6 CONCLUSION
With focus on enhancing the security of digital solutions, in this pa-
per we have introduced a novel, lightweight micro-auditing mecha-
nism tailored for resource-constrained IoT devices to detect stealthy

ransomware infections. The ransomware was demonstrated to prop-
agate rapidly and remains covert across networks of varying densi-
ties, effectively evading traditional traffic- or power-based anomaly
detectors. The proposed auditing approach adaptively identifies
malicious activities by monitoring diagnostically significant statis-
tical metrics, including heap dynamics, TSCH/radio patterns, and
flash access anomalies, at optimized sampling frequencies. This
approach minimizes computational and energy overhead while
ensuring timely detection of stealthy attacks.

By dynamically adjusting audit granularity in response to net-
work conditions and threat severity, the mechanism achieves a crit-
ical balance between detection efficacy and resource preservation.
This methodology not only complements conventional anomaly
detection techniques but also lays a foundation for a scalable frame-
work with the potential to integrate machine learning classifiers,
thereby further refining threat discrimination and reducing false
positives in future implementations.
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