
Technical Report TR-731

Submitted to the 2nd International Workshop on Software Performance (WOSP 2000), September 2000

A UML Tool for an Automatic Generation of Simulation Programs

L.B. Arief and N.A. Speirs
Department Computing Science

University of Newcastle upon Tyne
Newcastle upon Tyne NE1 7RU

England
E-mail: {L.B. Arief, Neil.Speirs}@ncl.ac.uk

Abstract
For sometime now, Unified Modelling Language
(UML) has been accepted as a standard for designing
new systems. Its array of notations helps system
designers to capture their ideas in a way that is
expressive yet easy to understand. One thing that
UML lacks though, is a means for predicting the
system’s performance directly from its design.
Performance prediction is a desirable feature that
enables us to evaluate whether a particular design is
worth implementing or not. This prediction can
frequently be obtained by constructing a simulation
program that mimics the characteristics of the new
system. The information gathered from running the
simulation will then allow us to estimate the
performance. In this paper, we present a simulation
framework that can be used to generate simulation
programs straight from UML notations. We also
present a tool has been built to demonstrate the
feasibility of using this framework to perform such a
transformation automatically.

1. Introduction

Design is an important aspect of the software
industry: without a proper design, a software system
may fail to deliver its intended service and quite often
this can lead to some catastrophic consequences. It is
therefore necessary for the software developers to
undertake the design process thoroughly before
implementing the system. With the emergence of the
Unified Modelling Language (UML) [1-3] as an
industry standard, the problem of not understanding
other people’s design is reduced substantially. UML
provides a set of graphical notations for describing

new systems in a clear and non-ambiguous way.
There are also many tools available that support UML
design notations and some of them can even generate
a skeleton program from the design. What these tools
are lacking though, is a way to evaluate whether a
particular design will satisfy the requirements or not.
There is no point in implementing a design that
cannot meet the requirements and quite often the
requirements concern about the performance of the
system more than anything else. Yet we do not know
what kind of performance a particular design will
deliver until we built a prototype or a model based on
the real system. Simulation facilitates the later
approach and it is this kind of approach that we have
investigated. Since building a simulation program
requires a sound knowledge of some simulation
technique - which is not often possessed by the system
designers - it is desirable to have a tool that can
automatically generate simulation programs directly
from the design. We have identified some simulation
components that are applicable to many simulation
scenarios along with the actions that can be performed
by them. Based on these components and their
actions, we have developed a simulation framework
called Simulation Modelling Language (SimML) [4,
5] to bridge the transformation from design to
simulation program. A UML tool that supports this
framework has been constructed in the Java [6]
programming language using the JFC/Swing package
[7]. The simulation programs are generated in the
Java programming language using the JavaSim [8]
package developed at the University of Newcastle
upon Tyne. We decided to use the Extensible Markup
Language (XML) [9, 10] for storing the design and
the simulation data for two reasons. First, it allows us
to store the information in a structure that is specific
to our need by defining an appropriate Document

Type Definition (DTD). Second, an XML document
can be manipulated easily using some Java packages
such as the Simple API for XML (SAX) [11] through
IBM’s XML4J parser [12].

The rest of this paper is structured as follows:
Section 2 illustrates the design notations of UML that
are relevant for generating a simulation. Section 3
introduces our simulation framework, the Java
package we have constructed to support this
framework and the simulation environment used
(JavaSim package). Section 4 describes the process of
putting these all together and Section 5 explains how
we can use the XML notation to store the information
that is relevant to both UML and SimML. We then
provide a simple example in Section 6 to show the
feasibility of using our UML tool in designing a
system and predicting its performance through
simulation before we conclude our paper in Section 7.

2. Using UML for designing new systems

Unified Modelling Language (UML) is a
graphical language for visualising, specifying,
constructing, and documenting the artefacts of a
software-intensive system [3]. Our interest here lies
with the class diagram (which denotes the static
structure of a system i.e. its objects or classes) and the
interaction diagram (which depicts the interaction
pattern between the objects in the system). Of the two
types of interaction diagrams, sequence and
collaboration diagrams, have used the former for
capturing the system’s behaviour. The sequence
diagram arranges the interactions in time sequence
and this conforms neatly to the discrete-event process-
oriented simulation paradigm that we are going to use.

To illustrate how the UML can be used to design a
system which may be simulated, let us consider a
simple queuing system where jobs arrive into the
system randomly with some probability distribution
every certain interval. The jobs are then placed into a
queue before being processed by a server. The server
takes a certain time to process each job before the job

is completed. The performance data consists of the
time taken for a job to be completed. By keeping
track of how many jobs are completed and the total
time spent by these jobs in the system, we can work
out the average response time. This problem can be
represented as a simulation diagram in Figure 1.

2.1. Static Structure: Class Diagram

We use the class diagram to model the static
properties of a system. As we plan to transform the
design into simulation, the classes defined in the class
diagram serve as the simulation entities that we are
going to model.

In our view, the aspects of the class diagram that
are relevant to simulation include the class name
(which is used to differentiate one simulation entity
from another) and the class attributes (which are used
to store the information that are necessary for
predicting the performance). Therefore, the static
characteristics of the queueing system shown in
Figure 1 can be captured as UML class diagrams seen
in Figure 2.

This queueing system consists of three processes
(Arrival, Job and Server), and each process can be
represented as a class diagram in UML. The Arrival
class has two attributes: a randomly generated inter
arrival time (which determines when a new Job
should be created) and a statistics variable to keep
track of the number of Jobs created. The Job class
only needs to know its arrival time, which is used
later by the Server class to work out the time taken to
serve all of the completed jobs. The counter for
completed jobs is updated by the Server class as soon
as it finishes processing a job, which depends on its
randomly generated delay time.

The plus sign (‘+’) indicates a public visibility of

Figure 1: Simulation diagram of a simple queuing
system

Figure 2: A Class diagram notation for a simple
queueing system

Server

+procTime: double
+totalDone: int
+totalTime: double

Arrival

+interArr: double
+totalJobs: int

Job

+arrTime: double

Arrival Server
Job

Queue

the corresponding attribute. Private visibility is
denoted by a minus sign (‘-’) while protected
visibility is indicated by a hash (‘#’).

The behavioural properties of this system will be
depicted as a sequence diagram in the following
section.

2.2 Dynamic Structure: Sequence Diagram

UML provides an interaction diagram to model
the dynamic aspects of a system. It consists of objects
and their relationships, including the messages that
might be sent from one object to another. An
interaction diagram is also useful for constructing an
executable system through forward engineering,
which is exactly what we want to achieve with regard
to automatic simulation generation.

A sequence diagram is one kind of interaction
diagram that puts an emphasis on the time ordering of
the message. This provides a clear visual perspective
to the flow of control over time which is why the
sequence diagram is suitable to model a discrete-
event process-based simulation.

The dynamic properties of the simple queueing
system mentioned before can be transformed into a
sequence diagram which is shown as Figure 3.

In Figure 3, the objects that participate in the
interaction are identified at the top of the sequence

diagram. The arrows indicate the direction of the
messages which are drawn in order of increasing time
from top to bottom. An arrow that points to itself
represents a message that does not involve any other
object. Each object has a name and must be of a
specified type. For example, object “a” is an instance
of an Arrival process which creates a new job, records
the arrival time of the job and activates the job. It also
updates “totalJobs” - a statistics variable that is used
to keep track of how many jobs have been created. As
the next job arrival happens at a random time, the
Arrival process must wait for the inter arrival time
(which is modelled to a particular distribution
function) before it creates another job.

Before we can translate the notations employed by
the class and sequence diagrams into a simulation
program, we must first investigate how to construct a
simulation program in a generic way. The following
section will discuss the work done in order to attain
this goal.

3. Simulation Framework

In order to assist the construction of simulation
programs, a generic simulation framework has been
specified. This framework enables us to perform the
automatic transformation from design to simulation.

Section 3.1 introduces the simulation framework
that has been developed during our research. This
framework is then implemented as a Java package
(Section 3.2) to allow simulation programs to be
written in Java programming language. Section 3.3
gives an insight into the simulation environment that
we are going to use, namely the JavaSim simulation
package [8].

3.1. Simulation Modelling Language (SimML)

We have developed a framework called SimML
(Simulation Modelling Language [4, 5]) which
identifies generic simulation components that can be
used for constructing process-based event-oriented
simulation programs.

When designing this framework, we first
identified some components which are commonly
found in simulation programs:

• PROCESS
 This is the most important component since we
are using a process-oriented approach for our

Figure 3: A sequence diagram notation for a simple
queuing system

q: Queue s: Servera: Arrival j: Job

create()

wait(interArr)

update(totalJobs)

record(arrTime)

activate()
enqueue()

sleep() check()

dequeue(j)
wait(procTime)

update(totalDone)

activate()

end()

X

activate()

update(totalTime)

simulation. A PROCESS is used to represent
an active object in the simulated system and
different PROCESS’S are characterised by
different names, attributes and operations.
These static characteristics can be drawn out
from the UML class diagram. A PROCESS
can also interact with other PROCESSes
during the simulation, and for that purpose, we
have specified some actions (see later) that can
be performed by a PROCESS. The UML
sequence diagram can be used to convey these
actions along with the PROCESSes involved.

• DATA
 It is a simplified version of the PROCESS
component which does not need to be an
active object (hence it takes less resources
during the simulation). It can be used to
represent passive simulation objects (i.e. just a
data structure) and it can be derived from the
UML class diagram.

• QUEUE
 A queuing mechanism is a very important
concept in simulation and hence a way of
specifying queues (for different types of
object) must be provided. Here, a QUEUE
component can be specified in the UML
sequence diagram, usually next to PROCESS
component which manipulates the queue.

• OBJECT
 An OBJECT is an instance of either a
PROCESS, a DATA or a QUEUE component.
In UML term, it corresponds to the name of
the object specified on top of the sequence
diagram, i.e. the instance name of a class. The
OBJECT components therefore allow us to
specify the objects that are involved in a
particular interaction among the simulation
components.

• RANDOMS
 Simulation programs need random numbers to
model the notion of “time” according to a
particular statistical distribution. Several
distribution functions are supported by the
SimML framework, such as the exponential,
normal, uniform, hyper-exponential and erlang
distributions.

• STATISTICS
The STATISTICS component enables us to
collect the information that is relevant to the
performance of the simulated system, such as

the average service time, number of processed
jobs, number of jobs lost, etc.

• CONTROLLER
This component is always required to be
present in a JavaSim simulation. It acts as the
main thread that initialises the simulation, sets
up the simulation parameters and summarises
the simulation results. Since the functionality
of this component is always the same for every
simulation, it was decided to make it as a
template component.

• MAIN PROGRAM
The MAIN PROGRAM is another template
component that creates the CONTROLLER to
start the simulation.

The components listed above represent the static
properties of the simulation. On top of that, instances
of the PROCESS component (i.e. the OBJECT
components) may interact with each other and this
interaction can be used to model the dynamic aspects
of the simulation. These interactions are termed as
actions that can be performed by the PROCESS
components. There are several actions provided:

1. create: declares a new instance of DATA or
PROCESS component.

2. wait: reschedules the current process to be
activated later after a given time.

3. activate: activates another process.
4. sleep: passivates the current process.
5. enqueue: places an object (either of a DATA

or PROCESS type) onto a queue.
6. dequeue: removes an object from the head of a

queue.
7. check: passivates the process from which this

action is invoked if there are no more items on
the queue.

8. record: sets the value of an objects member
variable to the current time or a specified
value.

9. update: updates the value of a statistics
variable (used in conjunction with the
STATISTICS component).

10. generate: produces a number randomly, using
a particular random number generator (as
specified in the RANDOMS component).

11. end: terminates the execution of the current
process. A terminated process will no further
take part in the simulation.

There are two special actions that determine the
flow of the interactions by allowing some conditions

to be specified in order for a particular action to be
executed:

12. if: specifies a condition that must be satisfied
before an action can be performed. It is
complemented by elsif and else actions.

13. while: allows a loop to repeat the same
action(s) until certain condition is satisfied.

Most of these actions require parameters and may
involve other OBJECTs.

The SimML framework has been used to build a
parser that can transform a textual representation of
UML into JavaSim or C++SIM [13, 14] code. Further
details about this framework, especially on the
parameters of the actions can be found in [4, 5].

We have constructed a GUI tool that can do the
transformation directly from the UML graphical
notation to JavaSim simulation code. This required
the tool to provide some drawing or graphics support
customised to the shapes required by the relevant
UML notation. To achieve this, we used the Java
programming language since it comes with a
JFC/Swing package which reduces the effort needed
for constructing a GUI tool by providing standard re-
useable GUI components. Since Java programs are
portable on virtually any computer architecture, our
tool is not platform dependent.

The SimML framework can then be implemented
as a Java package as explained in the next section.

3.2. Java package for SimML

Java supports modularity by grouping related

classes into one package. A package is a compilation
unit that encapsulates several classes, interfaces and
sub-packages into one file with an aim to improve the
organisation of the program. It also helps to resolve
naming problems and promotes software reuse.

The components and actions of the SimML
framework can be represented as Java classes and
grouped into one Java package. We call this package
ncl.SML.Components; the structure of this
package is represented as a UML class diagram in
Figure 4. Some of these components act as a container
for other components. The SMLData may contain
some SMLAttr, while SMLProcess (which
inherits from SMLData) may also contain some
SMLAction. The SMLRandComp instances are
contained by one SMLRandom component, just like
the SMLStatComps by one SMLStatistics.

Simulation information (which is derivable from
the UML diagrams - see Section 4) can be loaded into
the SimML framework before being transformed into
a more suitable form. In our case, this would be a
simulation program, and a function can be written to
transform the simulation data into a simulation
program for a particular environment, such as
JavaSim (shown as generateJavaSim() function
in Figure 4). In other words, the SimML framework
acts as a bridge that enables an automatic generation
of simulation programs from a UML design notation.

This framework can also be used to build
simulation programs from a more formal (textual)
notation such as XML. How this is achieved is
discussed in Section 5.3. We now discuss the

Figure 4: The class diagram for the SimML Components

SMLComponent
1*

SMLController

SMLQueueSMLObject SMLMain

SMLProcess

SMLData

SMLStatComp

SMLStatistics

1

*

SMLRandom

SMLRandComp

1

*

SMLAction

1

*

SMLAttr

1 *

SMLStructure

+dataComp: Vector<SMLData>
+procComp: Vector<SMLProcess>
+queComp: Vector<SMLQueue>
+objComp: Vector<SMLObject>
+randComp: SMLRandom
+statComp: SMLStatistics
+controller: SMLController
+mainProg: SMLMainProg

+generateJavaSim()

simulation environment that we used.

3.3. Simulation Environment: JavaSim

JavaSim is a Java implementation of the original
C++SIM simulation toolkit [13, 14], which supports
the discrete-event process-based simulation where
each simulation entity can be considered as a separate
process [8]. The simulation entities are therefore
represented by process objects, which are actually
Java objects that possess an independent thread of
control associated with them when they are created.
These “active objects” then interact with each other
through message passing and other simulation
primitives in order to realise the operation path of the
simulation.

A scheduler manages the simulation processes
(i.e. the active objects) and places these processes on
a scheduler queue (the event list). Processes are
executed in a pseudo-parallel mode: only one process
is executed at any instance of real time, but many
processes may be executed concurrently at any
instance of simulation time. Only when all processes
that are scheduled for a particular simulation time
have been executed, can the simulation clock be
advanced.

There is a Process base class, from which all
process objects inherits their process functionality.
This class defines all of the necessary operations to
control the simulation and to allow the process
objects to interact with each other. More details on
the JavaSim processes can be found in [8].

In most cases, a simulation program needs to
model the aspects of the real system to correspond to
various distribution functions. JavaSim provides
random number generators that follow five common
distribution functions:

1. Uniform distribution
2. Exponential distribution
3. Erlang distribution
4. Hyper Exponential distribution
5. Normal distribution
These random generators, along with the

simulation processes, constitute the core of JavaSim
package. By using the JavaSim package, the effort
required to construct a process-oriented simulation
program in Java is substantially reduced.

4. Incorporating Simulation Framework
into UML

In the previous sections, we have laid out the
foundation required in order to provide a mechanism
that can automatically transform a UML design into a
simulation program. A tool that can perform such a
transformation has been built and this section will
illustrate how this tool was constructed. The overall
task can be split into several stages:

• investigation of possible solutions,
• building a Graphical User Interface (GUI) tool

for UML, and
• generating simulation program.
When these stages are completed, the resulting

tool can be used to assist the software designer to
predict the performance from a UML design, which is
the main issue of this paper.

4.1. Formulating a solution

There were several trails investigated before we
came to one solution. In our previous work, we have
built a parser that can transform a textual form of
UML (using the SimML framework) into C++SIM
simulation programs [4, 5]. We could therefore have
adapted one of the UML tools available (such as the
Rational Rose tool [15] or Argo/UML [16]) by
extracting the UML information into a suitable textual
format, which can then be parsed using our tool to
generate a simulation program.

In the end, we decided to construct our own UML
tool using Java’s JFC/Swing package [7]. One of the
reasons for taking this approach is because we need a
tool that knows about simulation characteristics, and

Figure 5: The use case diagram for our UML tool

UMLTool

SimML
Parser

Simulation
Program

Textual
notation

«uses»

«generates»

«generates»

«uses»

none of the tools mentioned above meets this demand.
It is also more difficult to augment an existing tool,
especially if this tool is very complex and extensive.
By constructing our own tool, we aim to support the
necessary design notations, and at the same time
allowing the simulation characteristics of a system to
be captured.

Figure 5 shows the possible paths that can be
taken to generate a simulation program form a design
notation. Later, we specified a formal textual notation
that enables the necessary information to be
interchanged among the components of our tool (see
Section 5).

4.2. Building a UML Tool

A GUI tool that brings together the UML design
and the SimML framework has been created. It
currently supports only the relevant UML diagrams
(the class and sequence diagrams) and it allows
simulation specific information to be identified in an
easy and generic way. Four views are therefore
supported:

1. Class Diagram view
 This view allows the user to draw class

diagrams, specify their names and add the
attributes and operations for each class (if
any).

2. Sequence Diagram view
 The sequence diagram identifies the objects

that are involved in the interaction and the
messages that are sent between them. Only the
SimML messages (i.e. those which are listed as
SimML actions in Section 3.1) are treated in a
special manner here. These SimML messages
are used to construct the interactions between
the objects (which represent simulation
processes) hence they can be used to capture
the dynamic aspects of the simulation.

3. Random Variables view
 The random variable names are automatically

inferred from the WAIT and GENERATE
messages of the sequence diagram. Each
random variable is assigned to one of the five
random distribution functions (see Section
3.3), and each distribution needs certain
parameter(s) to be supplied, such as its mean
and standard deviation. The random variables
view allows the user to see all of the random
variables used and to edit any of them to have

the correct distribution function with the
appropriate parameter(s).

4. Statistics Variables view
 The statistics variable names are created by the

UPDATE messages of the sequence diagram.
A statistics variable’s type is either an integer
or a double and the operations allowed are
either simple (increment or decrement) or
calculation. A parameter relevant to the
statistics operation must also be defined, for
example, the parameter for an integer-
increment-by-one operation is “+1”. As with
the random variables view, the user is allowed
to see all of the statistics variables and to edit
them.

Our UML tool is composed of several Java
classes, with a core class called UMLEditor. This
class is supported by several Java classes, which can
be divided into two categories according to their
functionality:

• The classes that provide GUI facilities.
 These classes allow the user to draw the class

and sequence diagram notations and to select
one of the four supported views mentioned
above.

• The classes that support the SimML
framework.

 Included in this category are the classes that
store the information of the class and sequence
diagrams (with their messages), as well as
those for obtaining the random and statistics
data for the simulation. The UMLEditor
class has a member variable called
smlStruct (which is an instance of the
SMLStructure class) for storing this set of
information.

The organisation of the classes used can be seen
as a UML class diagram in Figure 6. By using the
SMLStructure class for storing the information
conveyed by the four views above, we are able to
generate a simulation program automatically from a
design notation, as explained in the next section.

4.3. Generating JavaSim code

The SimML framework enables a direct
transformation from UML design notations into
simulation programs. Section 3.2 outlines the
implementation of the SimML framework as a
package in the Java programming language. The

SimML components and actions are represented as
Java classes that inherit from a parent class called
SMLComponent (Figure 4). The difference is, the
SimML components act as containers within which
the SimML actions can be defined.

Both the SimML component classes and the
SimML action classes are referred to as the
components of the ncl.SML.Components
package. Each component of the
ncl.SML.Components package provides a
mapping to transform the information stored in it into
a (segment of) JavaSim program. The container
components (i.e. those which represent the SimML
components) have a write() member function to
perform this transformation. The write() functions
of all container components are then invoked by the
generateJavaSim() function (of the
SMLStructure class) to obtain the complete
JavaSim program.

These write() functions can be adapted to
generate simulation programs in other simulation
environments, such as C++SIM or SIMULA. The
modifications that need to be made are limited to the
language specific syntax as the SimML framework is
generic to almost all process-based simulation

requirements.

5. Data Interchange

The information conveyed in the UML diagrams
needs to be stored into a file so that it can be retrieved
again later. As demonstrated in Section 3 and Section
4, this information can be kept in a structured way by
using the SimML framework. A widely used
technique for filing a structured document is through
the Extensible Markup Language (XML). This section
discusses the applicability of XML for storing UML
and SimML related information, which can then be
used to supplement our UML tool.

5.1. Extensible Markup Language (XML)

The Extensible Markup Language (XML) is
designed to make it easy to interchange structured
documents over different application programs [10].

XML is based on the idea that a structured
document is made of a series of entities where each
entity can contain one or more logical elements. Each
element is distinguished by its name, and may have a

Figure 6: The structure of our UML tool

UMLEditor

+smlStruct: SMLStructure
UMLRandomDisplay

11

UMLStatDisplay
11

UMLMenuBar
1

1

UMLView

1

1

UMLToolBar

UMLToolBarClass

UMLToolBarSequence

UMLToolBarRandom

UMLToolBarStat

1 4

UMLDisplay

UMLObject

UMLObjectConnectorUMLObjectSequenceUMLObjectClass

UMLObjectJoint

1

2

1 *

1

*

1

2

1

*

content and/or a list of attributes. XML clearly marks
the start and the end of each element by a pair of tags.
The start tag is composed of the element name
followed by its attribute list (if any), enclosed in a
pair of angle brackets (<…>). The end tag is similar
but the name is preceded by a forward slash character
(‘/’) and it does not include the attribute list. The
content of the element is defined in between these two
tags, and it is possible for an element to have an
empty content.

XML does not have a predefined set of tags;
instead, it is up to the user to define their own tags set
in a formal model known as the Document Type
Definition (DTD). Since the XML tags are based on
the logical structure (not presentational style) of the
document, it is easier for a computer application to
understand and to process them.

5.2. DTD for SimML

In order to define a set of tags that can be used to
capture the SimML structure, we must create a DTD
that formally identifies the relationships between the
various components of the SimML framework. These
SimML component are therefore regarded as XML
elements and some of these can be seen in Figure 7.
The complete SimML DTD is available at [17].

Note that the element names are case sensitive. An
element is declared using the <!ELEMENT...>
construct that specifies the name of the element and
its content. The content of an element is either some
other elements or a plain text (indicated as
#PCDATA). If an element needs to have some
attributes, it must have an attribute list declared using
the <!ATTLIST...> syntax.

The SimML DTD dictates that a valid XML
document must start with a <SPEC> tag (and
consequently end with a </SPEC> tag). A
specification is composed of DATA, PROCESS,
QUEUE, OBJECT, RANDOM and STATISTICS
elements, which in turn are composed of smaller
elements. XML provides a method to indicate the
multiplicities of each element. Element that may be
present zero or more times are marked by a star sign
(‘*’), while a plus sign (‘+’) indicates those that can
occur for one or more times. Optional elements are
indicated by a question mark (‘?’).

5.3. XML Parser for SimML using SAX

A suitable parser is required to read the
information stored in an XML document. For that
purpose, we have built an application program that
parses an XML document written to follow the
SimML DTD. This program was written as a Java
package (ncl.SML.Parser) to allow other
application programs (such as the UML tool
described in Section 4) to re-use its parsing features.

There is an Application Programming Interface
(API) called SAX (Simple API for XML) [11], which
is essentially another Java package that provides a
skeleton for parsing any XML document. SAX is an
event-based API, which means that it reports parsing
events (such as the start and end of elements) directly
to the application. The application must therefore
implement a handler to deal with different events;
three of the most important ones are listed here:

• startElement event
 This event is raised by the parser when it

detects the beginning of every element in an
XML document. The application handler
must then obtain the element’s name and if
any, the list of its attribute. For SimML
handler, the information gathered from this
event is used to initialise the appropriate
components of the SimML structure.

• endElement event.
 When the end of an element is reached, the

handler must update the named element,
which for SimML handler means updating the
right component of the SimML structure.

• character data event
 In between the startElement and the

endElement events, the parser returns all
character data as a single chunk of

<!ELEMENT SPEC (DATA*, PROCESS+, QUEUE+,
 OBJECT+, RANDOMS, STATISTICS)>
<!ELEMENT DATA (ATTR*)>
<!ATTLIST DATA name CDATA #REQUIRED>
<!ELEMENT PROCESS (ATTR*, ACTION)>
<!ATTLIST PROCESS name CDATA #REQUIRED
 span (ONCE | FOREVER)
 "FOREVER">
<!ELEMENT ATTR (#PCDATA)>
<!ATTLIST ATTR visibility (public |
 private | protected) "public"
 type CDATA #REQUIRED>
<!ELEMENT ACTION (CREATE | WAIT
 | ACTIVATE | SLEEP | ENQUEUE | DEQUEUE
 | CHECK | RECORD | UPDATE | GENERATE
 | END | IF | ELSIF | ELSE | WHILE)*>

...

Figure 7: A snapshot of the SimML DTD

information. This chunk actually represents
the content of the element, therefore it must
be stored by the corresponding SimML
component.

An application program based on the SAX
approach has been built to read any XML notation
that conforms to the SimML DTD. The information
read is then stored as a SimML structure, which is
transformable into a JavaSim simulation program.

We have also augmented our UML tool to support
the same feature by implementing a class called the
XMLReader. This class is incorporated into our
UMLEditor tool and it allows the user of our tool to
read a SimML XML file and display the information
as class and sequence diagrams. The random
variables and statistics information is also loaded into
the appropriate views of this tool.

6. Simple Example and Results

The static characteristics of the simple queueing
system problem mentioned in Section 2 can be
represented as a class diagram as seen in Figure 2.
Here, we show how we represent the dynamic aspect
of the same system (as a sequence diagram) using our
UML tool (Figure 8).

The random variables and statistics information
views are displayed in Figure 9 and Figure 10; the
later also shows the File Menu of our UML tool for
reading/writing the data from/into an XML file and
for generating a JavaSim program. An XML
representation of this queuing system can be seen in
Figure 11.

The random variables set up for this system
indicate that the inter arrival time is exponentially
distributed with mean 5, while the Server’s processing
delay is exponentially distributed with mean 6. Later,
the processing delay is reduced to 4 in order to
compare the results and to analyse the performance of
the system. Each simulation is run for a length of
10,000, which generates 1929 jobs. The results
obtained from the two simulations are compared in
Table 1.

Table 1: Simulation results

processing
delay

total proc.
time

total jobs
completed

avg. proc.
time

6 1364886.5 1613 846.2
4 7995.9 1928 4.1

Figure 8: The UMLEditor’s sequence diagram
view of a simple queuing system

Figure 9: The Random Variable view

Figure 10: The statistics variable view and the
UMLEditor’s File menu

The results show that the system performs badly if
the Server takes too long to process each job. When
the processing delay is 6 (which is greater than the
inter arrival time of 5), the queue grows quite rapidly
and the jobs spend most of the time waiting in the

queue. This is shown by the high number of
uncompleted jobs and the high average processing
time. On the other hand, when the processing delay is
4 (i.e. it is less than the inter arrival time), virtually all
of the jobs is completed and the average response
time is very close to the expected value (4.1).

This simple example demonstrates the feasibility
of using our UML tool to design a system and to
derive its performance prediction automatically
through a simulation.

7. Conclusions and Further Work

The work presented in this paper enables us to
evaluate whether a particular system design will
deliver its performance requirement or not. The tool
that has been constructed allows the system developer
to design a new system using the UML Class and
Sequence diagram notations. These diagrams, along
with some random and statistics information, can then
be used to generate a simulation program to mimic the
execution of the proposed system. From the
simulation run, we can predict the kind of
performance that the system will deliver, and hence
we can decide whether it is worth it or not to
implement this design.

Other work that has been conducted in this area
includes the Parmabase project [18], which puts the
emphasise on the UML Deployment and Component
diagrams to derive a model of the system. Work by
Pooley and King [19] argues that the UML sequence
diagram is more suitable as a display format rather
than for detailing the behaviour of a system. Although
this is true to some extent, we have shown that it is
possible to use the sequence diagram to specify the
behavioural characteristics of a simulated system with
an aid of the SimML framework.

The UML tool that we have constructed can be
improved in several ways. First, the class diagram can
be utilised more to allow the random properties of the
static objects to be specified. This can be achieved by
attaching a “note” to the appropriate class. The
associations between the classes can also be used to
indicate the multiplicity of the objects involved in the
system. This is useful, for example, to evaluate the
effect of adding another server to process a queue.
We are currently investigating the use of this tool in
more complex situations.

<?xml version=’1.0’ standalone=’no’?>
<!DOCTYPE SPEC SYSTEM "http://www.cs.ncl.ac.uk/
 people/l.b.arief/home.formal/SimML.dtd">

<SPEC>
 <PROCESS name="Job">
 <ATTR visibility="public" type="double">
 arrTime</ATTR>
 <ACTION>
 <ENQUEUE to="q">this</ENQUEUE>
 <ACTIVATE>s</ACTIVATE>
 <SLEEP></SLEEP>
 <END />
 </ACTION>
 </PROCESS>

 <PROCESS name="Arrival">
 <ACTION>
 <CREATE type="Job">j</CREATE>
 <RECORD of="j">arrTime</RECORD>
 <ACTIVATE>j</ACTIVATE>
 <UPDATE>totalJobs</UPDATE>
 <WAIT>interArr</WAIT>
 </ACTION>
 </PROCESS>

 <PROCESS name="Server">
 <ACTION>
 <CHECK>q</CHECK>
 <DEQUEUE from="q">j</DEQUEUE>
 <WAIT>procTime</WAIT>
 <UPDATE>totalDone</UPDATE>
 <UPDATE>totalTime</UPDATE>
 <UPDATE>avgTime</UPDATE>
 <ACTIVATE>j</ACTIVATE>
 </ACTION>
 </PROCESS>

 <QUEUE of="Job">Queue</QUEUE>
 <OBJECT type="Arrival">a</OBJECT>
 <OBJECT type="Queue">q</OBJECT>
 <OBJECT type="Server">s</OBJECT>

 <RANDOMS>
 <EXPONENTIAL mean="5">
 interArr</EXPONENTIAL>
 <EXPONENTIAL mean="6">
 procTime</EXPONENTIAL>
 </RANDOMS>

 <STATISTICS>
 <SIMPLE type="double" diff="+Time()-
 j.arrTime">totalTime</SIMPLE>
 <SIMPLE type="int" diff="+1">
 totalJobs</SIMPLE>
 <SIMPLE type="int" diff="+1">
 totalDone</SIMPLE>
 <CALC type="double" expr="=totalTime/
 totalDone">avgTime</CALC>
 </STATISTICS>
</SPEC>

Figure 11: An XML notation for a simple queueing
system

References

[1] M. Fowler and K. Scott, UML Distilled: Applying
the Standard Object Modeling Language,
Addison-Wesley, 1997.

[2] J. Rumbaugh, I. Jacobson, and G. Booch, The
Unified Modeling Language Reference Manual,
Addison-Wesley, 1999.

[3] G. Booch, J. Rumbaugh, and I. Jacobson, The
Unified Modeling Language User Guide,
Addison-Wesley, 1999.

[4] L. B. Arief and N. A. Speirs, “Automatic
Generation of Distributed System Simulations
from UML”, Proc. 13th European Simulation
Multiconference (ESM'99), Warsaw, Poland,
June 1999, pp. 85-91.

[5] L. B. Arief and N. A. Speirs, “Simulation
Generation from UML Like Specifications”,
Proc. IASTED International Conference on
Applied Modelling and Simulation, Cairns,
Australia, September 1999, pp. 384-388.

[6] K. Arnold and J. Gosling, The Java
Programming Language, Addison-Wesley, 1996.

[7] Java-Team, “Creating a GUI with JFC/Swing”,
http://java.sun.com/docs/books/tutorial/uiswing.

[8] Computing-Laboratory, “The JavaSim User's
Manual”, Department of Computing Science,
University of Newcastle upon Tyne, 1999.

[9] W3C, “Extensible Markup Language (XML)”,
http://www.w3.org/XML/.

[10] M. Bryan, “An Introduction to the Extensible
Markup Language (XML)”, The SGML Centre,
http://www.personal.u-
net.com/~sgml/xmlintro.htm.

[11] D. Megginson, “SAX: The Simple API for
XML”,
http://www.megginson.com/SAX/index.html.

[12] IBM, “XML Parser for Java - XML4J”, IBM
Alpha Works,
http://www.alphaworks.ibm.com/tech/xml4j.

[13] Arjuna-Team, “C++SIM User's Guide”,
Department of Computing Science, University of
Newcastle upon Tyne, 1994.

[14] M. C. Little and D. L. McCue, “Construction and
Use of a Simulation Package in C++”,
Department of Computing Science, University of
Newcastle upon Tyne, Technical Report 437, July
1993.

[15] Rational, “Rational Rose”,
http://www.rational.com/products/rose/.

[16] UCI, “Argo/UML - Providing Cognitive Support
for Object-Oriented Design”,
http://www.ics.uci.edu/pub/arch/uml/.

[17] L. B. Arief, “DTD for the SimML Framework”,
http://www.cs.ncl.ac.uk/~l.b.arief/home.formal/Si

mML.dtd.
[18] D. H. Akehurst and A. G. Waters, “UML

Specification of Distributed System
Environments”, Computing Laboratory,
University of Kent at Canterbury, Technical
Report 18-99, May 1999.

[19] R. J. Pooley and P. J. B. King, “The Unified
Modeling Language and Performance
Engineering”, IEE Proceedings on Software, Vol.
146, No. 1, February 1999, pp. 2-10.

