Proceedings of the IASTED International Conference
Applied Modelling and Simulation
September 1-3, 1999, Cairns, Australia

Simulation Generation from UML Like Specifications

L.B. Arief and N.A. Speirs

Department of Computing Science, University of Newcastle upon Tyne, England

E-mail: L.B.Arief@ncl.ac.ukNeil.Speirs@ncl.ac.uk

Abstract

We describea tool which transform UML
specifications (ira textual form) into C++ code
which can be used by C++SIMa-discrete-event
process-based simulatidacility. A tool written
in the Perl scripting languags usedto perform
the automatictransformationfrom specification
into C++SIM code.As an examplewe show
how the tool is used to generate simulatiohs
non-trivial fault tolerant distributed computing
system.The systemwas specifiedin about 180
lines of UML like notation and automatically
generateda simulation programof about 1100
lines of C++.

Keywords. automated simulation, discrete
event simulation, generating simulations,
distributed systems

1. Introduction

In complex dependable systems it is
desirableto be able to predict or estimatethe
performancebeforethe systemis built. This is
typically achieved by the use of system
simulation. However, building a simulation
program is not trivial task. The complexity of
the proposedsystemoften makesit difficult to
begin and quite oftea new simulation needsto
be built from scratch. Theystemdeveloperalso
needs to know about some simulation techniques
which is not alwaysthe case.Thesedifficulties
can be overcome by first identifying the common
components of a simulation and their
characteristicsThen, some interactionsbetween
thesecomponentscan be definedto provide a
way to mimic the behaviourof the proposed
system. Based on the componentsand their
interactions, it is possible to construct a
language/syntaxwhich can then be parsedto
create simulation programs

300-110 -1-

The syntaxwe haveusedfollows the UML
notation (in a textual form) which enables
automaticgenerationof the simulation program
from UML-like specification. The simulation
components their interactionsand the syntax
used for the simulation specificatios described
in Section 2. Section 3 discusses the
implementation of the parser and in Section 4 we
discuss how a simulation of a dependable system
(Voltan Fail-Silent nodes[1]) can speedily be
generated from a UML specification.

2. From Design to Simulation

The work described here uses UML for
specifyingthe system’srequirementsUML [2]
is a language for specifying, visualising,
constructingand documentingthe artifacts of
software systems, as well as for business
modelling and other non-softwaresystems. It
uses many different graphical notations to
illustrate a system specification. However, our
work is largely basedupon the Class diagram
which representsthe static structure of the
system. UML is an industry standard so its
notation is understoodby many people. In
addition, the notationsemployedby UML are
reasonably simple yet powerful enough for
complex specifications of dependable.

We shall transformUML specificationinto
C++ codewhich can be usedby C++SIM - a
discrete-eventprocess-basedimulation facility
[3] which is similar to Simula’s simulationlass
and library. We selectedC++SIM since more
programmersare familiar with C++ programs
than with Simula programs and because
C++SIM programsruns much faster than their
Simula counterparts.

We now identify various simulation
componentswhich are applicable for many
simulation programs.

* PROCESS - a PROCESS is used to
representan active objectin the simulated
system and different PROCESS’'S are
characterisedy different names, attributes
and operations.Instancesof a PROCESS
will be transformedinto a C++SIM class
and must specify the actions of a Body
function which is invoked automatically.

* DATA - stores Simulation entities whiato
not need to be active objects.

* QUEUE - a queuing mechanismis a very
important concept in simulation arnéncea
way of specifying queues (faifferent types
of object) must be provided.

* CONTROLLER - actsas the main thread
which initialises thesimulation, obtainsthe
simulation parametersand summarisesthe
simulation results.

In addition to these componentsthere are
some auxiliary componentsto supplementthe
simulation system.

* OBJECT - an instance of a basic type
component. Through these instances,the
interaction among the simulation
components is achieved.

* RANDOMS - the simulation parameteasd
their distributions and parameters are
specified.

e STATISTICS - usedto specify what needs
to be collected and where and when the
collection should be done.

In Figure 1 we show the specification
neededto simulate a system where jobs are
generatedy an arrival processa, are sentto a
gueueand arethen processedsequentiallyby a
server s. This specification can then be
transformed into a simulation program
completely automatically.

Arrival Process

Server Process

! queue

job 6—>

DATA Job
{

+double arrTime

}

PROCESS Arrival

{
+void Body()

wait interArr
create j of Job
record arrTime of
update totalJobs
enqueue jtoq
activate s
}
}

PROCESS Server

+void Body()

{
check g
dequeue j from g
wait exTime
update totalDone
update totalTime
delete j

}
}

QUEUE Queue of Job

CONTROLLER Controller
OBJECT a of Arrival
OBJECT s of Server
OBJECT g of Queue

RANDOMS

{
interArr exponential 5
exTime uniform 1 10

}

STATISTICS

{
double totalTime +now-j->arrTime
int totalJobs +1
int totalDone +1

}

Figure 1 Specification of a Simple Queueing
System

The specificationwe have used allows the
following components to be defined and used.

¢ PROCESS component: each membatiable
is declaredon a separatdine which containsthe

visibility (+ for public, - for private, = for a
constructor)ollowed by its type and name. For
member functionshe declarationbeginswith the
visibility followed by the return type, function
name and the function parameters.

« DATA component: thesyntaxis the sameas
that of PROCESSbut no memberfunctions are
allowed.

* QUEUE component: the type of object
contained in the queue is requiradd is specified
by the word of’ followed by a named object type.

* CONTROLLER component: a controller
component is always required and its functionality
remains almost the same so it is only necesgary
give this component a name.

 OBJECT component: an objeetpresentsn
entity usedin the simulation. Objects must be
named and their type specified.

« RANDOMS component:this identifies the
statistical distributions and parameters of
variables to be defined.

* STATISTICS component: the STATISTICS
componentprovidesa way to specify statistics
items (andtheir types)and how they should be
updated.Where and when the items should be
updated is specifieth the Body function of the
PROCESS component.

The interactions between the instancethef
simulation’s active objects can be specifiedin
the operationdefinition of the PROCESStype.
We present some identified actions below:

1. create: declaresa new instanceof the basic
type.

2. dedete: deletesan instanceof the basic type
previously created.

3. wait: rescheduleghe current processto be
activated later after a given time.

4. activate: activates another process.

5. dleep: passivates the current process.

6. engueue: places arobject (eitherPROCESS
or DATA type) onto a queue.

7. dequeue: removes an object from the heafd
a queue.

8. check: passivatesthe processfrom which
this actionis invokedif there are no more
items on the queue.

9. update: updatesthe value of a statistics
variable.

10. record: sets thevalue of an objectsmember
variable to the currenttime or a specified
value.

11. print: prints a diagnostic message

12. generate: produces a number using a
particular random number generator.

13. end: terminateghe executionof the current
process

Most of theseactionsrequire parametersas
shown in Figure 1. Control flow “if" and
“while” statements are also permitted.

3. The Par ser

A tool called SML [4] written in the Perl
scripting language[6] is usedto automatically
transformspecificationinto C++SIM code. The
operations of the parser can be divided into:

1. Readingthe specificationand storing the
information in Perl arrays for processing.

2. Generatingheader(.h) and implementation
(.cc) files for the C++SIM program using
the data stored in the Perl array.

The parser also automatically generates
appropriate makefiles for the C++SIM code
which it generates. The parser alloarsy system
configuration which consists of queues and
servers to be specified and simulatiodeto be
automatically generated.Systemswhere many
gueues feedhto a serverand where pipelinesof
servers are required can alsodpecified.It is of
coursepossiblefor the userto insert their own
codeinto the C++SIM code generatedThis is
necessaryo add featuresto the simulation not
supported by the parser.

4. Example Application

To show thatthe abovetool canbe usedto
generatesimulationswhich provide performance
information about a non-trivial system, we
selected Voltan fail-silent nodes as an application
[1]. Voltan fail-silent nodesprovide a software
implemented technique of creating the
abstractionof a fail-silent processori.e. one
which either works correctly or fails by
becomingsilent. We chosethis as an example
systembecausewe have already simulated [5]
and implemented [1] the system and so know the
performance characteristics.

Briefly, a Voltan systemis comprised of
two computersa leaderand a follower. Correct

output messagesre signed by both leaderand
follower to guaranteetheir authenticity and
correctnessMessagesrrive at the leader node
and are selectedfor processingin any desired
order. A copy of the messageselected for
processing is thementto the follower nodeand
the messagesare then processeddy the nodes.
Then eachode sendsa signedoutput messages
to the otherand the messagegproducedby the
two nodes areomparedIf the messagesrethe
same, the receivethessages countersignecéand
output from the node. If a discrepancy is detected
the node attemptsto stops processing.No
incorrect doubly signed messagesare ever
produced (see [1] for more details).

The structureof the Voltan softwaredesign
uses queues tpassmessagebetweenprocesses
and so can easily be specified (and hence
simulated) using the above techniques. The
facilities described abovenabledus to simulate
the behaviourof a Voltan systemwithin a day
whereascoding the simulation by handtook an
Masters student (with no prior knowledge of
C++SIM) several weeks of effort [5]. The
simulation was generatedrom the specification
completely automatically. The system was
specified in about 180 lines of UML like
notation (seefigure 2 below) and generateda
simulation program of about 1110 lines of C++.

SEQUENCE Queue of Message using id

PROCESS Message once
{

+int id

+int type

+double arrTime

+void Body()

{

if type ==

wait localDelay
enqueue this to Isq
activate Is

sleep

]

else
[
#similar code for each
#message type
]end
}
}

PROCESS Atrrival

+void Body()

wait interArr

create msg of Message
create msg2 of Message
update totalMsgs

record id of msg=totalMsgs
record arrTime of msg
record type of msg = 1
activate msg

and similarly for msg2
but with type = 2

}

PROCESS LeaderServer

+void Body()

{
while Isg->isEmpty()
[

sleep
]
dequeue msg from Isq
wait procDelay
create msg2 of Message
record id of msg2=msg->id
record arrTime of msg2=
msg->arrTime

record type of msg = 11
record type of msg2 = 12
activate msg
activate msg2

}

#Similarly for Follower Server

PROCESS LeaderVoter

+void Body()

{
while Ivq1->IsEmpty() ||
Ivg2->IsEmpty
[

sleep

]

while Ivql->First->id !=
Ivg2->First()->id

[

print “Error”
sleep

]

dequeue msg from Ivql
dequeue msg2 from Ivg2
update totalTimeL
update totalDoneL
}
}

#Similarly for Follower Voter

CONTROLLER Controller
OBJECT a of Arrival
OBJECT Isq of Queue
OBJECT Ivgl of Queue
OBJECT Ivg2 of Queue
OBJECT fsq of Queue
OBJECT fvgl of Queue
OBJECT fvg2 of Queue
OBJECT Is of LeaderServer
OBJECT Iv of LeaderVoter
OBJECT fs of FollowerServer
OBJECT fv of FollowerVoter

RANDOMS

{
interArr exponential 10
procDelay exponential 1
localDelay exponential O
netDelay exponential 0.1

}

STATISTICS

double totalTimeL +now-
msg->arrTime

double totalTimeF +now-
msg->arrTime

int totalMsgs +1

int totalDonelL +1

int totalDoneF +1

Figure 2 Voltan System Specification

The specification consists of an arrival
processo generatenew messagesa processfor
eachmessagdransmissionn the systemand a
serverand voter processfor both the leaderand
follower. The codefor the follower processess
not shownin Figure 2 but is similar to that
shown for the leadeThe SEQUENCEQueue
of Message using id statementspecifes
that items stored in thqueueare orderedby the
identifierid . The PROCESSMessage once

statement indicatethat the processs only run
onceand is terminatedwhen the word end is
encountered

5. Conclusions

We have describeda tool which allows
simulationsto be generatedautomaticallyfrom
specification in a UML like notation. The
performance otomplexdependablesystemscan
thus be estimatedas soon as they have been
specifiedrather than having to write complex
simulation code by hand.

6. References

[1] F.V. Brasileiro, P.D. Ezhilchelvan, S.K.
Shrivastava, N.A. Speirs and S. Tao,
Implementing Fail-Silent Nodes for
Distributed Systems |[EEE Transactions on
Computers, 45 (11), Novembet 996, 1226-
1238.

[2] J. Rumbaugh,l. Jacobsonand G. Booch,
Unified Modeling Language Reference
Manual, Addison-Wesley 1999.

[3] M.C. Little andD.L. McCue, Construction
andUseof a Simulation Packagein C++,
Computing Science Technical Report
TR437, University of Newcastle upomyne,
July 1993.

[4] L.B. Arief and N.A. Speirs, Proc. 13th
European Smulation Multiconference,
Volume 1, 1999, 85-91.

[6] L.G. Jardin, Simulation of Fault Tolerant
Distributed Systems M.Sc. Thesis,
University of Newecastle upon Tyne,
September 1998.

[6] L.Wall and R.L. Schwartz Programming
Perl, O'Reilly & Associates, 1990.

