
Proceedings of the IASTED International Conference
Applied Modelling and Simulation
September 1-3, 1999, Cairns, Australia

300-110 -1-

Simulation Generation from UML Like Specifications

L.B. Arief and N.A. Speirs

Department of Computing Science, University of Newcastle upon Tyne, England

E-mail: L.B.Arief@ncl.ac.uk Neil.Speirs@ncl.ac.uk

Abstract

We describe a tool which transform UML
specifications (in a textual form) into C++ code
which can be used by C++SIM - a discrete-event
process-based simulation facility. A tool written
in the Perl scripting language is used to perform
the automatic transformation from specification
into C++SIM code. As an example we show
how the tool is used to generate simulations of a
non-trivial fault tolerant distributed computing
system. The system was specified in about 180
lines of UML like notation and automatically
generated a simulation program of about 1100
lines of C++.

Keywords: automated simulation, discrete
event simulation, generating simulations,
distributed systems

1. Introduction

In complex dependable systems it is
desirable to be able to predict or estimate the
performance before the system is built. This is
typically achieved by the use of system
simulation. However, building a simulation
program is not a trivial task. The complexity of
the proposed system often makes it difficult to
begin and quite often a new simulation needs to
be built from scratch. The system developer also
needs to know about some simulation techniques
which is not always the case. These difficulties
can be overcome by first identifying the common
components of a simulation and their
characteristics. Then, some interactions between
these components can be defined to provide a
way to mimic the behaviour of the proposed
system. Based on the components and their
interactions, it is possible to construct a
language/syntax which can then be parsed to
create simulation programs

The syntax we have used follows the UML
notation (in a textual form) which enables
automatic generation of the simulation program
from UML-like specification. The simulation
components, their interactions and the syntax
used for the simulation specification is described
in Section 2. Section 3 discusses the
implementation of the parser and in Section 4 we
discuss how a simulation of a dependable system
(Voltan Fail-Silent nodes [1]) can speedily be
generated from a UML specification.

2. From Design to Simulation

The work described here uses UML for
specifying the system’s requirements. UML [2]
is a language for specifying, visualising,
constructing and documenting the artifacts of
software systems, as well as for business
modelling and other non-software systems. It
uses many different graphical notations to
illustrate a system specification. However, our
work is largely based upon the Class diagram
which represents the static structure of the
system. UML is an industry standard so its
notation is understood by many people. In
addition, the notations employed by UML are
reasonably simple yet powerful enough for
complex specifications of dependable.

We shall transform UML specification into
C++ code which can be used by C++SIM - a
discrete-event process-based simulation facility
[3] which is similar to Simula’s simulation class
and library. We selected C++SIM since more
programmers are familiar with C++ programs
than with Simula programs and because
C++SIM programs runs much faster than their
Simula counterparts.

We now identify various simulation
components which are applicable for many
simulation programs.

-2-

• PROCESS - a PROCESS is used to
represent an active object in the simulated
system and different PROCESS’S are
characterised by different names, attributes
and operations. Instances of a PROCESS
will be transformed into a C++SIM class
and must specify the actions of a Body
function which is invoked automatically.

• DATA - stores Simulation entities which do
not need to be active objects.

• QUEUE - a queuing mechanism is a very
important concept in simulation and hence a
way of specifying queues (for different types
of object) must be provided.

• CONTROLLER - acts as the main thread
which initialises the simulation, obtains the
simulation parameters and summarises the
simulation results.

 In addition to these components there are

some auxiliary components to supplement the
simulation system.
• OBJECT - an instance of a basic type

component. Through these instances, the
interaction among the simulation
components is achieved.

• RANDOMS - the simulation parameters and
their distributions and parameters are
specified.

• STATISTICS - used to specify what needs
to be collected and where and when the
collection should be done.

In Figure 1 we show the specification
needed to simulate a system where jobs are
generated by an arrival process a, are sent to a
queue and are then processed sequentially by a
server s. This specification can then be
transformed into a simulation program
completely automatically.

DATA Job
{
 +double arrTime
}

PROCESS Arrival
{
 +void Body()
 {
 wait interArr
 create j of Job
 record arrTime of j
 update totalJobs
 enqueue j to q
 activate s
 }
}

PROCESS Server
{
 +void Body()
 {
 check q
 dequeue j from q
 wait exTime
 update totalDone
 update totalTime
 delete j
 }
}

QUEUE Queue of Job

CONTROLLER Controller
OBJECT a of Arrival
OBJECT s of Server
OBJECT q of Queue

RANDOMS
{
 interArr exponential 5
 exTime uniform 1 10
}

STATISTICS
{
 double totalTime +now-j->arrTime
 int totalJobs +1
 int totalDone +1
}

Figure 1 Specification of a Simple Queueing
System

The specification we have used allows the
following components to be defined and used.

• PROCESS component: each member variable
is declared on a separate line which contains the

queue

Arrival Process

Server Process

job

-3-

visibility (+ for public, - for private, = for a
constructor) followed by its type and name. For
member functions the declaration begins with the
visibility followed by the return type, function
name and the function parameters.

• DATA component: the syntax is the same as
that of PROCESS but no member functions are
allowed.

• QUEUE component: the type of object
contained in the queue is required and is specified
by the word ‘of’ followed by a named object type.

• CONTROLLER component: a controller
component is always required and its functionality
remains almost the same so it is only necessary to
give this component a name.

• OBJECT component: an object represents an
entity used in the simulation. Objects must be
named and their type specified.

• RANDOMS component: this identifies the
statistical distributions and parameters of
variables to be defined.

• STATISTICS component: the STATISTICS
component provides a way to specify statistics
items (and their types) and how they should be
updated. Where and when the items should be
updated is specified in the Body function of the
PROCESS component.

The interactions between the instances of the
simulation’s active objects can be specified in
the operation definition of the PROCESS type.
We present some identified actions below:

1. create: declares a new instance of the basic
type.

2. delete: deletes an instance of the basic type
previously created.

3. wait: reschedules the current process to be
activated later after a given time.

4. activate: activates another process.
5. sleep: passivates the current process.
6. enqueue: places an object (either PROCESS

or DATA type) onto a queue.
7. dequeue: removes an object from the head of

a queue.
8. check: passivates the process from which

this action is invoked if there are no more
items on the queue.

9. update: updates the value of a statistics
variable.

10. record: sets the value of an objects member
variable to the current time or a specified
value.

11. print: prints a diagnostic message
12. generate: produces a number using a

particular random number generator.
13. end: terminates the execution of the current

process

Most of these actions require parameters as
shown in Figure 1. Control flow “if” and
“while” statements are also permitted.

3. The Parser

A tool called SML [4] written in the Perl
scripting language [6] is used to automatically
transform specification into C++SIM code. The
operations of the parser can be divided into:

1. Reading the specification and storing the
information in Perl arrays for processing.

2. Generating header (.h) and implementation
(.cc) files for the C++SIM program using
the data stored in the Perl array.

The parser also automatically generates

appropriate makefiles for the C++SIM code
which it generates. The parser allows any system
configuration which consists of queues and
servers to be specified and simulation code to be
automatically generated. Systems where many
queues feed into a server and where pipelines of
servers are required can also be specified. It is of
course possible for the user to insert their own
code into the C++SIM code generated. This is
necessary to add features to the simulation not
supported by the parser.

4. Example Application

To show that the above tool can be used to
generate simulations which provide performance
information about a non-trivial system, we
selected Voltan fail-silent nodes as an application
[1]. Voltan fail-silent nodes provide a software
implemented technique of creating the
abstraction of a fail-silent processor i.e. one
which either works correctly or fails by
becoming silent. We chose this as an example
system because we have already simulated [5]
and implemented [1] the system and so know the
performance characteristics.

Briefly, a Voltan system is comprised of
two computers, a leader and a follower. Correct

-4-

output messages are signed by both leader and
follower to guarantee their authenticity and
correctness. Messages arrive at the leader node
and are selected for processing in any desired
order. A copy of the message selected for
processing is then sent to the follower node and
the messages are then processed by the nodes.
Then each node sends a signed output messages
to the other and the messages produced by the
two nodes are compared. If the messages are the
same, the received message is countersigned and
output from the node. If a discrepancy is detected
the node attempts to stops processing. No
incorrect doubly signed messages are ever
produced (see [1] for more details).

The structure of the Voltan software design
uses queues to pass messages between processes
and so can easily be specified (and hence
simulated) using the above techniques. The
facilities described above enabled us to simulate
the behaviour of a Voltan system within a day
whereas coding the simulation by hand took an
Masters student (with no prior knowledge of
C++SIM) several weeks of effort [5]. The
simulation was generated from the specification
completely automatically. The system was
specified in about 180 lines of UML like
notation (see figure 2 below) and generated a
simulation program of about 1110 lines of C++.

SEQUENCE Queue of Message using id

PROCESS Message once
{
 +int id
 +int type
 +double arrTime
 +void Body()
 {
 if type == 1
 [
 wait localDelay
 enqueue this to lsq
 activate ls
 sleep
]
 else
 [
 #similar code for each
 #message type
]
 end
 }
}

PROCESS Arrival
{
 +void Body()
 {
 wait interArr
 create msg of Message
 create msg2 of Message
 update totalMsgs
 record id of msg=totalMsgs
 record arrTime of msg
 record type of msg = 1
 activate msg
and similarly for msg2
but with type = 2
 }
}

PROCESS LeaderServer
{
 +void Body()
 {
 while lsq->isEmpty()
 [
 sleep
]
 dequeue msg from lsq
 wait procDelay
 create msg2 of Message
 record id of msg2=msg->id
 record arrTime of msg2=
 msg->arrTime
 record type of msg = 11
 record type of msg2 = 12
 activate msg
 activate msg2
 }
}

#Similarly for Follower Server

PROCESS LeaderVoter
{
 +void Body()
 {
 while lvq1->IsEmpty() ||
 lvq2->IsEmpty
 [
 sleep
]
 while lvq1->First->id !=
 lvq2->First()->id
 [
 print “Error”
 sleep

-5-

]
 dequeue msg from lvq1
 dequeue msg2 from lvq2
 update totalTimeL
 update totalDoneL
 }
}

#Similarly for Follower Voter

CONTROLLER Controller
OBJECT a of Arrival
OBJECT lsq of Queue
OBJECT lvq1 of Queue
OBJECT lvq2 of Queue
OBJECT fsq of Queue
OBJECT fvq1 of Queue
OBJECT fvq2 of Queue
OBJECT ls of LeaderServer
OBJECT lv of LeaderVoter
OBJECT fs of FollowerServer
OBJECT fv of FollowerVoter

RANDOMS
{
 interArr exponential 10
 procDelay exponential 1
 localDelay exponential 0
 netDelay exponential 0.1
}

STATISTICS
{
 double totalTimeL +now-
 msg->arrTime
 double totalTimeF +now-
 msg->arrTime
 int totalMsgs +1
 int totalDoneL +1
 int totalDoneF +1
}

Figure 2 Voltan System Specification

The specification consists of an arrival
process to generate new messages, a process for
each message transmission in the system and a
server and voter process for both the leader and
follower. The code for the follower processes is
not shown in Figure 2 but is similar to that
shown for the leader. The SEQUENCE Queue
of Message using id statement specifes
that items stored in the queue are ordered by the
identifier id . The PROCESS Message once

statement indicates that the process is only run
once and is terminated when the word end is
encountered

5. Conclusions

We have described a tool which allows
simulations to be generated automatically from
specification in a UML like notation. The
performance of complex dependable systems can
thus be estimated as soon as they have been
specified rather than having to write complex
simulation code by hand.

6. References

[1] F.V. Brasileiro, P.D. Ezhilchelvan, S.K.
Shrivastava, N.A. Speirs and S. Tao,
Implementing Fail-Silent Nodes for
Distributed Systems, IEEE Transactions on
Computers, 45 (11), November 1996, 1226-
1238.

[2] J. Rumbaugh, I. Jacobson and G. Booch,
Unified Modeling Language Reference
Manual, Addison-Wesley 1999.

 [3] M.C. Little and D.L. McCue, Construction
and Use of a Simulation Package in C++,
Computing Science Technical Report
TR437, University of Newcastle upon Tyne,
July 1993.

[4] L.B. Arief and N.A. Speirs, Proc. 13th
European Simulation Multiconference,
Volume 1, 1999, 85-91.

[5] L.G. Jardin, Simulation of Fault Tolerant
Distributed Systems, M.Sc. Thesis,
University of Newcastle upon Tyne,
September 1998.

[6] L.Wall and R.L. Schwartz. Programming
Perl, O’Reilly & Associates, 1990.

