
A UML Tool for an Automatic Generation of Simulation
Programs

L.B. Arief and N.A. Speirs
Department Computing Science

University of Newcastle upon Tyne
Newcastle upon Tyne NE1 7RU, England

E-mail: {L.B. Arief, Neil.Speirs}@ncl.ac.uk

ABSTRACT
For sometime now, Unified Modelling Language (UML) has been
accepted as a standard for designing new systems. Its array of
notations helps system designers to capture their ideas in a way
that is expressive yet easy to understand. One thing that UML
lacks though, is a means for predicting the system’s performance
directly from its design. Performance prediction is a desirable
feature that enables us to evaluate whether a particular design is
worth implementing or not. This prediction can frequently be
obtained by constructing a simulation program that mimics the
characteristics of the new system. The information gathered from
running the simulation will then allow us to estimate the
performance. In this paper, we present a simulation framework
that can be used to generate simulation programs straight from
UML notations. We also present a tool has been built to
demonstrate the feasibility of using this framework to perform
such a transformation automatically.

Keywords
Model Design, Discrete Simulation, Program Generators, Process-
Oriented, UML Extension.

1. INTRODUCTION
Design is an important aspect of the software industry: without a
proper design, a software system may fail to deliver its intended
service and quite often this can lead to some catastrophic
consequences. It is therefore necessary for the software
developers to undertake the design process thoroughly before
implementing the system. With the emergence of the Unified
Modelling Language (UML) [7, 10, 17] as an industry standard,
the problem of not understanding other people’s design is reduced
substantially. UML provides a set of graphical notations for
describing new systems in a clear and non-ambiguous way. There
are also many tools available that support UML design notations
and some of them can even generate a skeleton program from the

design. What these tools are lacking though, is a way to evaluate
whether a particular design will satisfy the requirements or not.
There is no point in implementing a design that cannot meet the
requirements and quite often the requirements concern about the
performance of the system more than anything else. Yet we do not
know what kind of performance a particular design will deliver
until we built a prototype or a model based on the real system.
Simulation facilitates the later approach and it is this kind of
approach that we have investigated. Since building a simulation
program requires a sound knowledge of some simulation
technique - which is not often possessed by the system designers -
it is desirable to have a tool that can automatically generate
simulation programs directly from the design. We have identified
some simulation components that are applicable to many
simulation scenarios along with the actions that can be performed
by them. Based on these components and their actions, we have
developed a simulation framework called Simulation Modelling
Language (SimML) [3, 4] to bridge the transformation from
design to simulation program. A UML tool that supports this
framework has been constructed in the Java [6] programming
language using the JFC/Swing package [12]. The simulation
programs are generated in the Java programming language using
the JavaSim [9] package developed at the University of Newcastle
upon Tyne. We decided to use the Extensible Markup Language
(XML) [8, 19] for storing the design and the simulation data for
two reasons. First, it allows us to store the information in a
structure that is specific to our need by defining an appropriate
Document Type Definition (DTD). Second, an XML document
can be manipulated easily using some Java packages such as the
Simple API for XML (SAX) [14] through IBM’s XML4J parser
[11].

The rest of this paper is structured as follows: Section 2 illustrates
the design notations of UML that are relevant for generating a
simulation. Section 3 introduces our simulation framework, the
Java package we have constructed to support this framework and
the simulation environment used (JavaSim package). Section 4
describes the process of putting these all together and Section 5
explains how we can use the XML notation to store the
information that is relevant to both UML and SimML. We then
provide a simple example in Section 6 to show the feasibility of
using our UML tool in designing a system and predicting its
performance through simulation before we conclude our paper in
Section 7.

2. USING UML FOR DESIGNING NEW
SYSTEMS
Unified Modelling Language (UML) is a graphical language for
visualising, specifying, constructing, and documenting the
artefacts of a software-intensive system [7]. Our interest here lies
with the class diagram and the interaction diagram.

We use the class diagram to model the static properties of a
system. As we plan to transform the design into simulation, the
classes defined in the class diagram serve as the simulation entities
that we are going to model. In our view, the aspects of the class
diagram that are relevant to simulation include the class name (for
distinguishing one simulation entity from another) and the class
attributes (for storing performance-related information).

The behavioural properties of a system can be represented as an
interaction diagram, which consists of objects and their
relationships, including the messages that might be sent from one
object to another. An interaction diagram is also useful for
constructing an executable system through forward engineering,
which is exactly what we want to achieve with regard to automatic
simulation generation. A sequence diagram is one kind of
interaction diagrams that puts an emphasis on the time ordering of
the message. This provides a clear visual perspective to the flow
of control over time, which is why the sequence diagram is
suitable to model a discrete-event process-based simulation.

Before we can translate the notations employed by the class and
sequence diagrams into a simulation program, we must first
investigate how to construct a simulation program in a generic
way.

3. SIMULATION FRAMEWORK
In order to assist the construction of simulation programs, a
framework called SimML (Simulation Modelling Language) has
been constructed [3, 4]. This framework identifies the common
simulation components and actions, which enables us to
automatically transform the design notation into a simulation
program.

Section 3.1 gives an insight into the simulation environment that
we are going to use, namely the JavaSim simulation package [9].
Section 3.2 discusses the implementation of the SimML
framework as a Java package to allow the construction of
simulation programs in JavaSim environment.

3.1. Simulation Environment: JavaSim
JavaSim is a Java implementation of the original C++SIM
simulation toolkit [5, 13], which supports the discrete-event
process-based simulation where each simulation entity can be
considered as a separate process [9]. The simulation entities are
therefore represented by process objects, which are actually Java
objects that possess an independent thread of control associated
with them when they are created. These “active objects” then
interact with each other through message passing and other
simulation primitives in order to realise the operation path of the
simulation.

In most cases, a simulation program needs to model the aspects of
the real system to correspond to various distribution functions.
JavaSim provides random number generators that follow five
common distribution functions:

1. Uniform distribution
2. Exponential distribution
3. Erlang distribution
4. Hyper Exponential distribution
5. Normal distribution

These random generators, along with the simulation processes,
constitute the core of JavaSim package. By using the JavaSim
package, the effort required to construct a process-oriented
simulation program in Java is substantially reduced.

3.2. Java package for SimML
Java supports modularity by grouping related classes into one
package. We have built a package called
ncl.SML.Components to represent the components and the
actions of the SimML framework. This package is depicted as a
UML class diagram in Figure 1. Some of the SimML components
act as a container for other components. The SMLData may
contain some SMLAttr, while SMLProcess (which inherits

Figure 1: The class diagram for the SimML Components

SMLComponent
1*

SMLController

SMLQueueSMLObject SMLMain

SMLProcess

SMLData

SMLStatComp

SMLStatistics

1

*

SMLRandom

SMLRandComp

1

*

SMLAction

1

*

SMLAttr

1 *

SMLStructure

+dataComp: Vector<SMLData>
+procComp: Vector<SMLProcess>
+queComp: Vector<SMLQueue>
+objComp: Vector<SMLObject>
+randComp: SMLRandom
+statComp: SMLStatistics
+controller: SMLController
+mainProg: SMLMainProg

+generateJavaSim()

from SMLData) may also contain some SMLAction. The
SMLRandComp instances are contained by one SMLRandom
component, just like the SMLStatComps by one
SMLStatistics.

Simulation information (which is derivable from the UML
diagrams - see Section 4) can be loaded into the SimML
framework before being transformed into a more suitable form. In
our case, this would be a simulation program, and a function can
be written to transform the simulation data into a simulation
program for a particular environment, such as JavaSim (shown as
generateJavaSim() function in Figure 1). In other words,
the SimML framework acts as a bridge that enables an automatic
generation of simulation programs from a UML design notation.

This framework can also be used to build simulation programs
from a more formal (textual) notation such as XML. How this is
achieved is discussed in Section 5.3.

4. INCORPORATING SIMULATION
FRAMEWORK INTO UML
In the previous sections, we have laid out the foundation required
in order to provide a mechanism that can automatically transform
a UML design into a simulation program. A tool that can perform
such a transformation has been built and this section will illustrate
how this tool was constructed. The overall task can be split into
several stages:
• investigation of possible solutions,
• building a Graphical User Interface (GUI) tool for UML, and
• generating simulation program.
When these stages are completed, the resulting tool can be used to
assist the software designer to predict the performance from a
UML design, which is the main issue of this paper.

4.1. Formulating a solution
There were several trails investigated before we came to one
solution. In our previous work, we have built a parser that can
transform a textual form of UML (using the SimML framework)
into C++SIM simulation programs [3, 4]. We could therefore
have adapted one of the UML tools available (such as the Rational
Rose tool [16] or Argo/UML [18]) by extracting the UML
information into a suitable textual format, which can then be
parsed using our tool to generate a simulation program.

In the end, we decided to construct our own UML tool using
Java’s JFC/Swing package [12]. One of the reasons for taking this
approach is because we need a tool that knows about simulation
characteristics, and none of the tools mentioned above meets this
demand. It is also more difficult to augment an existing tool,
especially if this tool is very complex and extensive. By
constructing our own tool, we aim to support the necessary design
notations, and at the same time allowing the simulation
characteristics of a system to be captured.

Figure 2 shows the possible paths that can be taken to generate a
simulation program form a design notation. Later, we specified a
formal textual notation that enables the necessary information to
be interchanged among the components of our tool (Section 5).

4.2. Building a UML Tool
A GUI tool that brings together the UML design and the SimML
framework has been created. It currently supports only the
relevant UML diagrams (the class and sequence diagrams) and it
allows simulation specific information to be identified in an easy
and generic way. Four views are therefore supported:
1. Class Diagram view
 This view allows the user to draw class diagrams, specify their

names and add the attributes and operations for each class (if
any).

2. Sequence Diagram view
 The sequence diagram identifies the objects that are involved

in the interaction and the messages that are sent between them.
Only the SimML messages (i.e. those which are listed as
SimML actions in [3, 4]) are treated in a special manner here.
These SimML messages are used to construct the interactions
between the objects (which represent simulation processes)
hence they can be used to capture the dynamic aspects of the
simulation.

3. Random Variables view
 The random variable names are automatically inferred from

the WAIT and GENERATE messages [3, 4] of the sequence
diagram. Each random variable is assigned to one of the five
random distribution functions (see Section 3.1), and each
distribution needs certain parameter(s) to be supplied, such as
its mean and standard deviation. The random variables view
allows the user to see all of the random variables used and to
edit any of them to have the correct distribution function with
the appropriate parameter(s).

4. Statistics Variables view
 The statistics variable names are created by the UPDATE

messages [3, 4] of the sequence diagram. A statistics
variable’s type is either an integer or a double and the
operations allowed are either simple (increment or decrement)
or calculation. A parameter relevant to the statistics operation
must also be defined, for example, the parameter for an
integer-increment-by-one operation is “+1”. As with the
random variables view, the user is allowed to see all of the
statistics variables and to edit them.

Our UML tool is composed of several Java classes, with a core
class called UMLEditor. This class is supported by several Java
classes, which can be divided into two categories according to
their functionality:
• The classes that provide GUI facilities.

Figure 2: The use case diagram for our UML tool

UMLTool

SimML
Parser

Simulation
Program

Textual
notation

«uses»

«generates»

«generates»

«uses»

 These classes allow the user to draw the class and sequence
diagram notations and to select one of the four supported
views mentioned above.

• The classes that support the SimML framework.
 Included in this category are the classes that store the

information of the class and sequence diagrams (with their
messages), as well as those for obtaining the random and
statistics data for the simulation. The UMLEditor class has a
member variable called smlStruct (which is an instance of
the SMLStructure class) for storing this set of information.

The organisation of the classes used can be seen as a UML class
diagram in Figure 3. By using the SMLStructure class for
storing the information conveyed by the four views above, we are
able to generate a simulation program automatically from a design
notation, as explained in the next section.

4.3. Generating JavaSim code
The SimML framework enables a direct transformation from UML
design notations into simulation programs. Section 3.2 outlines
the implementation of the SimML framework as a package in the
Java programming language. The SimML components and actions
are represented as Java classes that inherit from a parent class
called SMLComponent (Figure 1). The difference is, the SimML
components act as containers within which the SimML actions
can be defined.

Both the SimML component classes and the SimML action classes
are referred to as the components of the
ncl.SML.Components package. Each component of the
ncl.SML.Components package provides a mapping to
transform the information stored in it into a (segment of) JavaSim
program. The container components (i.e. those which represent
the SimML components) have a write() member function to

perform this transformation. The write() functions of all
container components are then invoked by the
generateJavaSim() function (of the SMLStructure class)
to obtain the complete JavaSim program. These write()
functions can be adapted to generate simulation programs in other
simulation environments, such as C++SIM or SIMULA. The
modifications that need to be made are limited to the language
specific syntax as the SimML framework is generic to almost all
process-based simulation requirements.

5. DATA INTERCHANGE
The information conveyed in the UML diagrams needs to be
stored into a file so that it can be retrieved again later. As
demonstrated in Section 3 and Section 4, this information can be
kept in a structured way by using the SimML framework. A
widely used technique for filing a structured document is through
the Extensible Markup Language (XML). This section discusses
the applicability of XML for storing UML and SimML related
information, which can then be used to supplement our UML tool.

5.1. Extensible Markup Language (XML)
The Extensible Markup Language (XML) is designed to make it
easy to interchange structured documents over different
application programs [8]. XML is based on the idea that a
structured document is made of a series of entities where each
entity can contain one or more logical elements. Each element is
distinguished by its name, and may have a content and/or a list of
attributes. XML clearly marks the start and the end of each
element by a pair of tags. The start tag is composed of the element
name followed by its attribute list (if any), enclosed in a pair of
angle brackets (<…>). The end tag is similar but the name is
preceded by a forward slash character (‘/’) and it does not include
the attribute list. The content of the element is defined in between

Figure 3: The structure of our UML tool

UMLEditor

+smlStruct: SMLStructure
UMLRandomDisplay

11

UMLStatDisplay
11

UMLMenuBar
1

1

UMLView

1

1

UMLToolBar

UMLToolBarClass

UMLToolBarSequence

UMLToolBarRandom

UMLToolBarStat

1 4

UMLDisplay

UMLObject

UMLObjectConnectorUMLObjectSequenceUMLObjectClass

UMLObjectJoint

1

2

1 *

1

*

1

2

1

*

these two tags, and it is possible for an element to have an empty
content.

XML does not have a predefined set of tags; instead, it is up to the
user to define their own tags set in a formal model known as the
Document Type Definition (DTD). Since the XML tags are based
on the logical structure (not presentational style) of the document,
it is easier for a computer application to understand and to process
them.

5.2. DTD for SimML
In order to define a set of tags that can be used to capture the
SimML structure, we must create a DTD that formally identifies
the relationships between the various components of the SimML
framework. These SimML component are therefore regarded as
XML elements and some of these can be seen in Figure 4. The
complete SimML DTD is available at [2].

The SimML DTD dictates that a valid XML document must start
with a <SPEC> tag (and consequently end with a </SPEC> tag).
A specification is composed of DATA, PROCESS, QUEUE,
OBJECT, RANDOM and STATISTICS elements, which in turn
are composed of smaller elements.

5.3. XML Parser for SimML using SAX
A suitable parser is required to read the information stored in an
XML document. For that purpose, we have built an application
program that parses an XML document written to follow the
SimML DTD. This program was written as a Java package
(ncl.SML.Parser) to allow other application programs (such
as the UML tool described in Section 4) to re-use its parsing
features.

There is an Application Programming Interface (API) called SAX
(Simple API for XML) [14], which is essentially another Java
package that provides a skeleton for parsing any XML document.
SAX is an event-based API, which means that it reports parsing
events (such as the start and end of elements) directly to the
application. The application must therefore implement a handler
to deal with different events; three of the most important ones are
listed here:
• startElement event
 This event is raised by the parser when it detects the beginning

of every element in an XML document. The application
handler must then obtain the element’s name and if any, the

list of its attribute. For SimML handler, the information
gathered from this event is used to initialise the appropriate
components of the SimML structure.

• endElement event.
 When the end of an element is reached, the handler must

update the named element, which for SimML handler means
updating the right component of the SimML structure.

• character data event
 In between the startElement and the endElement events, the

parser returns all character data as a single chunk of
information. This chunk actually represents the content of the
element, therefore it must be stored by the corresponding
SimML component.

An application program based on the SAX approach has been
built to read any XML notation that conforms to the SimML
DTD. The information read is then stored as a SimML structure,
which is transformable into a JavaSim simulation program. We
have also augmented our UML tool to support the same feature by
implementing a class called the XMLReader. This class is
incorporated into our UMLEditor tool and it allows the user of
our tool to read a SimML XML file and display the information as
class and sequence diagrams. The random variables and statistics
information is also loaded into the appropriate views of this tool.

6. SIMPLE EXAMPLE AND RESULTS
As an example, let us consider a simple queuing system where
jobs arrive into the system randomly according to an exponential
distribution with mean 5. The jobs are then placed into a queue
before being processed by a server. By keeping track of how many
jobs are completed and the total time spent by these jobs in the
system, we can work out the average response time. This problem
can be represented as a simulation diagram in Figure 5, and as a
UML sequence diagram in Figure 6 (the class diagram, random
and statistics views of our UMLEditor tool are not shown here).

<!ELEMENT SPEC (DATA*, PROCESS+, QUEUE+,
 OBJECT+, RANDOMS, STATISTICS)>
<!ELEMENT DATA (ATTR*)>
<!ATTLIST DATA name CDATA #REQUIRED>
<!ELEMENT PROCESS (ATTR*, ACTION)>
<!ATTLIST PROCESS name CDATA #REQUIRED
 span (ONCE | FOREVER)
 "FOREVER">
<!ELEMENT ATTR (#PCDATA)>
<!ATTLIST ATTR visibility (public |
 private | protected) "public"
 type CDATA #REQUIRED>
<!ELEMENT ACTION (CREATE | WAIT
 | ACTIVATE | SLEEP | ENQUEUE | DEQUEUE
 | CHECK | RECORD | UPDATE | GENERATE
 | END | IF | ELSIF | ELSE | WHILE)*>
...

Figure 4: A snapshot of the SimML DTD

Figure 5: Diagram of a simple queuing system

Figure 6: Sequence diagram of a simple queueing system

Arrival Server
Job

Queue

The performance of this system depends on how quick the server
can process the jobs; a faster server costs more than a slower one.
The server takes an exponentially distributed time to complete
each job, and by altering the mean of this delay, different results
will be obtained. These results reflect the performance of the
system for each scenario, hence we can choose one which satisfies
the requirements with a minimal cost.

A simulation program is generated using our UMLEditor tool and
two simulation experiments were conducted using different server
delays: one with a mean processing delay of 6 and the other of 4.
Each simulation is run for a length of 10,000, which generates
1929 jobs. The results obtained from the two simulations are
compared in Table 1.

Table 1: Simulation results

processing
delay

total proc.
time

total jobs
completed

avg. proc.
time

6 1364886.5 1613 846.2
4 7995.9 1928 4.1

The results show that the system performs badly if the Server
takes too long to process each job. When the processing delay is 6
(which is greater than the inter arrival time of 5), the queue grows
quite rapidly and the jobs spend most of the time waiting in the
queue. This is shown by the high number of uncompleted jobs and
the high average processing time. On the other hand, when the
processing delay is 4 (i.e. it is less than the inter arrival time),
virtually all of the jobs is completed and the average response time
is very close to the expected value (4.1).

7. CONCLUSIONS AND FURTHER WORK
The work presented in this paper enables us to evaluate whether a
particular system design will deliver its performance requirement
or not. The tool that has been constructed allows the system
developer to design a new system using the UML Class and
Sequence diagram notations. These diagrams, along with some
random and statistics information, can then be used to generate a
simulation program to mimic the execution of the proposed
system. From the simulation run, we can predict the kind of
performance that the system will deliver, and hence we can decide
whether it is worth it or not to implement this design.

Other work that has been conducted in this area includes the
Parmabase project [1], which puts the emphasise on the UML
Deployment and Component diagrams to derive a model of the
system. Work by Pooley and King [15] argues that the UML
sequence diagram is more suitable as a display format rather than
for detailing the behaviour of a system. Although this is true to
some extent, we have shown that it is possible to use the sequence
diagram to specify the behavioural characteristics of a simulated
system with an aid of the SimML framework.

The UML tool that we have constructed can be improved in
several ways. First, the class diagram can be utilised more to allow
the random properties of the static objects to be specified. This
can be achieved by attaching a “note” to the appropriate class. The
associations between the classes can also be used to indicate the
multiplicity of the objects involved in the system. This is useful,
for example, to evaluate the effect of adding another server to
process a queue. We are currently investigating the use of this tool

in more complex situations.

REFERENCES
[1] Akehurst, D. H. and A. G. Waters, “UML Specification

of Distributed System Environments”, Computing
Laboratory, University of Kent at Canterbury, Technical
Report 18-99 (May, 1999).

[2] Arief, L. B., “DTD for the SimML Framework”,
(http://www.cs.ncl.ac.uk/~l.b.arief/home.formal/SimML.
dtd).

[3] Arief, L. B. and N. A. Speirs, “Automatic Generation of
Distributed System Simulations from UML”, Proc. 13th
European Simulation Multiconference (ESM’99),
Warsaw, Poland, pp. 85-91 (June, 1999).

[4] Arief, L. B. and N. A. Speirs, “Simulation Generation
from UML Like Specifications”, Proc. IASTED
International Conference on Applied Modelling and
Simulation, Cairns, Australia, pp. 384-388 (September,
1999).

[5] Arjuna-Team, “C++SIM User's Guide”, Department of
Computing Science, University of Newcastle upon Tyne
(1994).

[6] Arnold, K. and J. Gosling, The Java Programming
Language, Addison-Wesley (1996).

[7] Booch, G., J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley
(1999).

[8] Bryan, M., “An Introduction to the Extensible Markup
Language (XML)”, The SGML Centre
(http://www.personal.u-net.com/~sgml/xmlintro.htm).

[9] Computing-Laboratory, “The JavaSim User's Manual”,
Department of Computing Science, University of
Newcastle upon Tyne (1999).

[10] Fowler, M. and K. Scott, UML Distilled: Applying the
Standard Object Modeling Language, Addison-Wesley
(1997).

[11] IBM, “XML Parser for Java - XML4J”, IBM Alpha
Works (http://www.alphaworks.ibm.com/tech/xml4j).

[12] Java-Team, “Creating a GUI with JFC/Swing”,
(http://java.sun.com/docs/books/tutorial/uiswing).

[13] Little, M. C. and D. L. McCue, “Construction and Use
of a Simulation Package in C++”, Department of
Computing Science, University of Newcastle upon
Tyne, Technical Report 437 (July, 1993).

[14] Megginson, D., “SAX: The Simple API for XML”,
(http://www.megginson.com/SAX/index.html).

[15] Pooley, R. J. and P. J. B. King, “The Unified Modeling
Language and Performance Engineering”, IEE
Proceedings on Software, Vol. 146, No. 1, pp. 2-10
(February 1999).

[16] Rational, “Rational Rose”,
(http://www.rational.com/products/rose/).

[17] Rumbaugh, J., I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual, Addison-
Wesley (1999).

[18] UCI, “Argo/UML - Providing Cognitive Support for
Object-Oriented Design”,
(http://www.ics.uci.edu/pub/arch/uml/).

[19] W3C, “Extensible Markup Language (XML)”,
(http://www.w3.org/XML/).

