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The category theoretic structures of monads and comonads can be used as an abstraction mechanism
for simplifying both language semantics and programs. Monads have been used to structure impure
computations, whilst comonads have been used to structure context-dependent computations. Inter-
estingly, the class of computations structured by monads and the class of computations structured
by comonads are not mutually exclusive. This paper formalises and explores the conditions under
which a monad and a comonad can both structure the same notion of computation: when a comonad
is left adjoint to a monad. Furthermore, we examine situations where a particular monad/comonad
model of computation is deficient in capturing the essence of a computational pattern and provide a
technique for calculating an alternative monad or comonad structure which fully captures the essence
of the computation. Included is some discussion on how to choose between a monad or comonad
structure in the case where either can be used to capture a particular notion of computation.

1 Introduction

Shall we be pure or impure? Today we will be pure- but how?
Following the seminal work of Moggi [11, 12], it is well known that the monad structure from

category theory can be used to structure the semantics of impure notions of computation such as partiality,
non-determinism, continuations, and state. Monads were further popularised in functional programming,
first by Wadler [21, 22], and are now a ubiquitous programming technique. Some languages even provide
specialised let-binding syntax with an overloadable monadic semantics (do in Haskell; let! in F#).

Monads are useful because they abstract over operations which define composition of computations,
or functions, with structured output e.g. functions of type X → TY where T is some (parametric) struc-
ture. One of the joys of category theory is that every concept or theorem comes with an additional
concept or theorem for free: the dual. The dual of monads are comonads which, instead of providing
composition over structured output, provide composition over computations/functions with structured
input e.g. for functions of type DX → Y where D is some parametric structure. Comonads have been
used to structure stream and dataflow computations [18], array computations [14], cellular automata [4],
game semantics [6, 15], intensional semantics [3], environment passing, and more [8].

In 1995, Wadge proposed that the semantics of the dataflow language Lucid, which can be under-
stood as an equational language for infinite streams, could be structured by a monad [19]. Ten years
later, Uustalu and Vene gave a semantics for Lucid in terms of a comonad, and stated that “notions of
dataflow cannot be structured with monads” [18]. There is an apparent conflict, which raises a number
of questions: what does “cannot be structured” mean? Is the monadic semantics flawed in some way?
Is one approach (comonadic or monadic) better than the other? What does “better” mean? And more
generally: are there other notions of computations that can be structured by either a monad or a comonad,
and if so how should one decide which structure to use? This paper provides answers to these questions.
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Parameterised computations are another notion of computation that can be structured by either a
monad or a comonad. Traditionally the exponent monad (known as the reader monad in functional pro-
gramming [22]) can be used to describe computations whose result depends on an additional parameter.
The exponent monad has the structure ExpX A = X → A for some parameter type X , thus computations
are of the type A→ ExpX B ≡ A→ (X → B). Interestingly, the product comonad can also be used
to structure a computation with an additional parameter, where ProdX A = A×X for some parameter
type X , thus computations are of type ProdX A→ B ≡ (A×X)→ B, describing a computation with an
extended input or extended free-variable context1.

It is not a surprise that both the exponent monad and product comonad can be used for the same task
as computations structured by either are isomorphic via the currying/uncurrying isomorphism:

(A×X)→ B

curry

77
A→ (X → B)

uncurry

ww

This isomorphism between computations structured by a product comonad and those structured by an ex-
ponent monad is due to products and exponents being adjoint functors. In this case, the product comonad
ProdX is left adjoint to the exponent monad ExpX (denoted ProdX a ExpX ). Adjoint functors L a R have
an isomorphism between morphisms LX → Y ∼= X → RY of which curry/uncurry is an example.

Previously, Eilenberg and Moore studied adjoint functors where a monad T is left adjoint to a
comonad D i.e. T a D [5]. In Section 3 we study the dual case, of comonads left adjoint to monads
D a T, which we show is the necessary and sufficient condition for monads and comonads to be equiv-
alent in power (in terms of structuring computations) and in which cases there is then a choice between
using a monad or a comonad. Equivalence in power is defined as an isomorphism between the cat-
egory of computations structured by a monad (the Kleisli category) and the category of computations
structured by a comonad (the coKleisli category). The equivalence is at the semantic-level; a syntactic
source-to-source translation is not discussed.

For the semantics of Lucid, the monad used by Wadge and the comonad used by Uustalu and Vene
are not adjoint but, as we will show in Section 4, the two approaches are equivalent, although there are
some good reasons why the comonadic approach is preferable.

Whilst Section 3 studies equivalence between (co)monads where computations exactly fit the model
of computation provided, Section 4 studies equivalence between (co)monads where computations almost
fit the model of computation, but require some additional operations of type DA→ DB or TA→ TB i.e.
the same (co)monad structure appears both on the input and output.

Section 5 provides a discussion on making a choice between a monad or a comonad when there is
some equivalence. The laws and properties of a comonad, particularly their shape preserving property,
and their implications to the utility of comonads, are discussed.

While monads are popular and widely used, comonads have remained somewhat underutilised de-
spite interesting examples. It appears that in some cases monads are used when a comonad could be
used equivalently or perhaps even more appropariately, and vice versa. This paper goes some way to
understanding under which conditions a monad could be usurping a comonad, or vice versa.

We begin with a review of monads, comonads, and adjoint functors.

1The idea of using comonads to structure parameter passing is mentioned in the conclusion of the paper by Lewis et al.
on implicit parameters in Haskell [10]. Others have since mentioned this use [17], and there is a product comonad library for
GHC/Haskell named Control.Comonad.Reader [1] suggesting its use for parameter passing akin to the reader monad.
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2 Review of monads, comonads, and adjoint functors

Notation C ,D are categories. |C | denotes the objects of a category C . C (A,B) denotes the set of
morphisms of C from A to B. Functors, or the functor of a monad/comonad, are always in sans font
e.g. F,T,D. A monad’s functor is usually given the letter T and a comonad’s functor D. To ease
understanding of commutative diagrams, overline and underline are used as markers to show when a
particular functor persists.

Background motivation Consider the following typing judgment for a term e of the simply-typed
λ -calculus in a context Γ of free variables:

Γ : τ ` e : τ
′

where Γ = x1 : τ1, . . .xn : τn and thus τ is the type of the whole environment (perhaps constructed with a
record or product type). A categorical semantics of the language can be given where terms are interpreted
as morphisms, mapping from a free variable context to a result value, in some category C [9] e.g.:

JΓ : τ ` e : τ
′K : JτK→ Jτ

′K ∈ C

where the types are interpreted as objects in the category/domain of the semantics [9].
Moggi proposed that various impure notions of computation can be described by a pure semantics

with morphisms: τ → Tτ ′, were T is a structure which captures an impure computation of a value τ ′

[11]. For example, the functor TA = A+⊥ provides a structure modelling partial computations. Moggi
showed that T should be a monad structure (also known as a triple), which provides compositionality
(with a unit) for such computations: i.e. if f : A→ TB, g : B→ TC then g ◦̂ f : A→ TC.

Dually, a comonadic semantics describes programs as mappings Dτ → τ ′, where D is a comonad
structure over the context/input. As with monads, the operations and laws of a comonad provide compo-
sitionality of such computations.

2.1 Monads

Monads will be familiar to Haskell programmers as defined by the type class:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

where m is a parametrically polymorphic data type. This form of a monad is known as the Kleisli triple
form in mathematics. The >>= operator (usually called bind in programming) is commonly called the
extension operation in mathematics. In this paper we will predominantly use a different, but equivalent,
formulation and will use a symbolic syntax for compactness.

Definition A monad (T,η ,µ) comprises an endofunctor T : C → C with two natural transformations:

η : 1C → T

µ : TT→ T

[M1] µ ◦ηT= 1T
[M2] µ ◦Tη = 1T
[M3] µ ◦µT= µ ◦µT

T

ηT

��

Tη
//

[M2]

TT

µ

��
TT

[M1]

µ
// T

TTT

[M3]µT
��

Tµ
// TT

µ

��
TT

µ
// T

called unit and multiplication respectively, such that [M1-3] hold.
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Example 2.1. The exponent monad on a category C comprises the endofunctor ExpX : C → C where:
• ExpX A = X → A for all objects A ∈ |C |
• ExpX f = λe . f ◦ e for all morphisms f : A→ B ∈ C

and operations:
• ηa = λx. a where η : A→ (X → A)

• µe = λx.(e x) x where µ : (X → (X → A))→ (X → A)
The exponent monad is often called the reader monad in functional programming and is commonly used
for passing a parameter to a computation [7, 22].

Definition Given a monad T on a category C , the Kleisli category CT, has objects |C | and morphisms
CT(A,B) = C (A,TB) (for all objects A,B) with:
• Composition: ◦̂ : CT(B,C)→ CT(A,B)→ CT(A,C) defined: g ◦̂ f = µ ◦Tg◦ f

• Identities: îdA : CT(A,A) defined ˆid = η

A Kleisli category thus captures the computations of an impure language (as structured by a monad).
Functions/morphisms of type A→ TB will be referred to as Kleisli morphisms of the monad T.

The extension operator of a monad is an operation of type: (−)∗ : C (A,TB)→ C (TA,TB) (which
corresponds to the (>>=) operator in Haskell shown above) where (for all f : A→ TB,g : B→ TC):

[K1] η∗ = idT [K2] f ∗ ◦η = f [K3] (g∗ ◦ f )∗ = g∗ ◦ f ∗

Definition The Kleisli triple form of a monad comprises an object mapping T : |C | → |C |, extension
operator (−)∗, and η , satisfying [K1-3].

Example 2.2. In Kleisli triple form, the exponent monad on a category C has object mapping ExpX :
|C | → |C | where ExpX A = X → A for all objects A ∈ |C |, and operations:
• ηa = λx. a

• f ∗e = λx . ( f (e x)) x for all f : A→ ExpX B

The Kleisli triple and standard form of a monad (in terms of µ) are equivalent by the following equalities:

f ∗ = µ ◦T f µ = idT∗ T f = (η ◦ f )∗

By the left-most equation here, composition in a Kleisli category can be redefined: g ◦̂ f = g∗ ◦ f .
In programming, an operation join modelling µ is often defined in terms of bind as above:

join :: Monad m => m (m a) -> m a

join x = x >>= id

2.2 Comonads

The definitions in this section are dual to those of the previous.

Definition A comonad (D,ε,δ ) comprises an endofunctor D : C →C with two natural transformations:

ε : D→ 1C

δ : D→ DD

[C1] εD◦δ = 1D
[C2] Dε ◦δ = 1D
[C3] δD◦δ = Dδ ◦δ

D

δ

��

δ //

[C2]

DD

εD
��

DD

[C1]

Dε

// D

D

[C3]δ

��

δ // DD

Dδ

��

DD
δD
// DDD

called counit and comultiplication respectively, such that [C1-3] hold.
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A potential intuition for DA is that it represents context-dependent computations i.e. the computation
of a value of type A is dependent on, or parameterised by, some notion of the context of its evaluation.
An intuition for ε is that it evaluates a computation in some empty or “current” context. For δ , con-
text dependence is duplicated i.e. a context-dependent computation is turned into a context-dependent
context-dependent computation where the inner “current” context is provided by the outer context.

Example 2.3. The product comonad on a category C comprises an endofunctor ProdX : C → C where:

• ProdX A = A×X for all objects A ∈ |C |

• ProdX f = λ (a,x) .( f a,x) for all morphisms f : A→ B ∈ C

and operations:

• ε(a,x) = a where ε : (A×X)→ A

• δ (a,x) = ((a,x),x) where δ : (A×X)→ ((A×X)×X)

As mentioned, the product comonad can be used to structure parameterised computations.

Definition Given a comonad D on a category C , the coKleisli category DC , has objects |C | and mor-
phisms DC (A,B) = C (DA,B) (for all objects A,B) where:

• Composition: ◦̌ : DC (B,C)→ DC (A,B)→ DC (A,C) defined: g ◦̌ f = g◦D f ◦δ

• Identities: ǐdA : DC (A,A) defined ˇid = ε .

A coKleisli category thus captures the computations of a context-dependent language. Functions/morphisms
of type DA→ B will be referred to as coKleisli morphisms of the comonad D.

In the same way as monads, comonads permit a coextension operator: (−)† : C (DA,B)→C (DA,DB)
where (for all f : DA→ B,g : DB→C):

[coK1] ε† = idD [coK2] ε ◦ f † = f [coK3] (g◦ f †)† = g† ◦ f †

An intuition for coextension is that a function from a context-dependent computation DA to a value B can
have the context-dependence propagated to its result, returning a context-dependent computation DB.

Definition Comonads may be presented in coKleisli triple form, in terms an object mapping D : |C | →
|C |, the coextension operator (−)†, and ε , satisfying [coK1-3].

The coKleisli triple and standard form of a comonad (in terms of δ ) are equivalent by the following:

f † = D f ◦δ δ = idD† D f = ( f ◦ ε)†

By the left-most equation, composition for a coKleisli category can be redefined: g ◦̌ f = g◦ f †.

Example 2.4. In coKleisli triple form, the product comonad on a category C has object mapping ProdX :
|C | → |C | where ProdX A = A×X for all objects A ∈ |C |, and operations:

• ε(a,x) = a

• f †(a,x) = ( f (a,x),x) for all f : ProdX A→ B

CoKleisli morphisms of the product comonad are reminiscent of extending a computation’s context i.e.
if we have morphisms JΓK→ A then the product comonad extends the context: JΓK×X → A.
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2.3 Adjoint Functors

There are several equivalent ways to define the adjointness relationship between two functors. Two such
definitions will be of use to us: the hom-set adjunction and the counit-unit adjunction.

Definition (Hom-set adjunction) For categories C and D , a pair of functors L : D → C and R : C →D
is adjoint if there exists a family of bijections:

φY,X : homC (LY,X)∼= homD(Y,RX)

for all objects X in C and Y in D , thus φ is a natural isomorphism.

L is called the left adjoint to R, and conversely R is the right adjoint to L, denoted L a R.
Example 2.5. As mentioned in the introduction, ProdX a ExpX, where both ProdX and ExpX are endo-
functors on some category C , where ProdX A = A×X and ExpX A = X → A, and the hom-set adjunction
is provided by: curry/uncurry : (ProdX A→ B)∼= (A→ ExpX B).

Definition (Unit-counit adjunction) Alternatively, a pair of functors L : D→C and R : C →D is adjoint
if there exists two natural transformations called the counit and unit of the adjunction respectively:

ε : LR→ 1C

η : 1D → RL

satisfying [A1-2].

[A1] εL ◦Lη = 1L

[A2] Rε ◦ηR = 1R

L
Lη
//

[A1]

LRL

εL
��

L

R

ηR
��

[A2]

RLR
Rε

// R

Example 2.6. The unit and counit of ProdX a ExpX are defined as such:
η : 1→ ExpXProdX

η a = λx.(a,x)

ε : ProdxExpX → 1

ε ( f ,n) = f n
Lemma 2.1. Given adjoint functors L : D → C and R : C → D where L a R with counit ε : LR→ 1C

and unit η : 1D →RL there is an equivalent hom-set adjunction φ : homD(LY,X)∼= homC (Y,RX) where:

φ f = R f ◦η (∀ f : LA→ B)
φ−1 g = ε ◦Lg (∀g : A→ RB)

(1)

We omit the proof of this construction for sake of brevity.
Lemma 2.2. Every adjunction (L a R,ε,η) (where L : D → C and R : C → D) gives rise to a monad
(T,η ,µ) in D where T = RL, the unit of the monad is the unit of the adjunction η : 1→ RL, and
µ : RLRL→ RL define µ = RεL (proof in [5]).
Lemma 2.3. Dually, every adjunction (L a R,ε,η) (where L : D → C and R : C → D) gives rise to a
comonad (D,ε,δ ) in C where D = LR, the counit of the comonad is counit of the adjunction ε : LR→ 1,
and δ : LR→ LRLR defined δ = LηR (proof in [5]).
Example 2.7. The adjunction ProdX a ExpX induces a commonly used monad, the state monad, and a
commonly used comonad, the costate comonad.

StateX = ExpXProdX = X → (A×X)

CoStateX = ProdXExpX = (X → A)×X

where the StateX monad and the CoStateX comonad have the unit and counit operation shown in Exam-
ple 2.6 respectively. By Lemma 2.2 and Lemma 2.3, and the definitions of Kleisli/coKleisli triples, the
respective extension and coextension operations are defined:
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• f ∗ = µ ◦ExpXProdX f = ExpX εProdX ◦ExpXProdX f = λe.(λx.(λ (e′,x′).( f e′) x′) (e x))

• f † = ProdXExpX f ◦δ = ProdxExpX f ◦ProdX ηExpX
= λ (e,x).(λx′.( f (e,x′),x))

The StateX monad can be used to thread mutable state, of type X , through a computation. StateX B =
X → (B×X) is a map from the current state X to a result B and a new state X .

The CoStateX comonad can be used for modelling general context-dependence, where X represents
some type of context. CoStateX A = (X → A)×X represents a map from contexts X to values A paired
with a “current context” X .

2.4 Other notions

Definition The identity endofunctor 1C : C → C maps objects and morphisms to themselves.

Definition Two categories C and D are isomorphic if there is a functor F : C → D and a functor G :
D → C such that FG= 1D and GF= 1C . We denote isomorphic categories C ∼= D .

3 Equivalent Monads and Comonads

As discussed in the introduction, parameterised computations can be structured by either the exponent
monad ExpX A = X → A or the product comonad ProdX A = A×X . Since ProdX a ExpX , morphisms
A→ ExpX B and ProdX A→ B are isomorphic by the hom-set adjunction φ . Thus, the hom-set adjunction
φ provides an isomorphism between the morphisms of the CExp Kleisli category and the ProdC coKleisli
category.

Here we show that, for any comonad D left-adjoint to a monad T (D a T), the hom-set adjunction
φ (and its inverse φ−1) are functorial i.e. the isomorphism between the morphisms of DC and CT also
preserves composition and identity in DC and CT i.e.

[F1] φ( ˇidA) = ˆidA [F1’] φ−1( ˆidA) = ˇidA

[F2] φ(g ◦̌ f ) = φ(g) ◦̂ φ( f ) [F2’] φ−1(g ◦̂ f ) = φ−1(g) ◦̌ φ−1( f )

(recall ˇid and ◦̌ are the identity and composition of a coKleisli category; ˆid and ◦̂ the identity and
composition of a Kleisli category). Since φ and φ−1 are also mutually inverse, they form mutual inverse
functors, thus provide an isomorphism between the coKleisli and Kleisli categories DC ∼= CT, thus the
comonad D and monad T are equivalent in terms of capturing a particular notion of computation i.e. all
computations and sub-computations are isomorphic.

Theorem 3.1. Given a monad (T,η ,µ) and a comonad (D,ε,δ ), if D a T then DC ∼= CT i.e. if a
comonad is left adjoint to a monad then the Kleisli category of the monad and coKleisli category of the
comonad are isomorphic categories.

Proof Since D aT, where T : C →C and D : C →C , let the counit and unit adjunctions be α : DT→ 1
and β : 1→ TD respectively, and thus via Lemma 2.1 the hom-set adjunction φ for D a T is defined:

φ f = T f ◦β φ−1 f = α ◦D f

Eilenberg and Moore showed that given a monad T, if T has a right adjoint R i.e. T a R then R is a
comonad [5]. This result easily dualises, such that if D is a comonad and has a right adjoint R i.e. D a R,
then R is a monad (or if T is a monad and L a T then L is a comonad).
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Without loss of generality2, we construct the monad T from the comonad (D,ε,δ ) where ε : D→ 1
and δ : D→ DD. The operations of the monad for T can be constructed as such:

µ : TT
βTT
// TDTT

TδTT// TDDTT
TDαT // TDT

Tα // T

µ = Tα ◦TDαT◦TδTT◦βTT (2)

η : 1
β
// TD

Tε // T

η = Tε ◦β (3)

The monad laws [M1-3] can be proved for these constructions (omitted for brevity, see accompanying
technical report [13]). Thus T is a monad.

From φ we construct the functor φ̂ : DC →CT where φ̂A = A on objects and φ̂ f = φ f on morphisms
and φ̂−1 : CT→ DC where φ̂−1A = A on objects and φ̂−1 f = φ−1 f on morphisms. Trivially, φ̂ and φ̂−1

are mutually inverse by the isomorphism of φ , i.e. φ̂ φ̂−1 = 1CT
and φ̂−1φ̂ = 1

DC .
The functor laws for φ̂ and φ̂−1 ([F1-2] and [F1’-2’] above) must be proved. These laws related the

operations of the monad and comonad, e.g.

[F2] φ(g ◦̌ f ) = φ(g) ◦̂ φ( f )
Tg◦TD f ◦Tδ ◦β = µ ◦TTg◦Tβ ◦T f ◦β

Since, the monad is defined in terms of the comonad via the adjunction ((2) and (3)) [F1-2] and
[F1’-2’] can be proved via the laws of adjunctions, functors, natural transformations, and comonads, by
unfolding the definitions of the monadic operations e.g. after unfolding φ , ◦̌, and ◦̂:

[F2] φ(g ◦̌ f ) = φ(g) ◦̂ φ( f )
Tg◦TD f ◦Tδ ◦β = Tα ◦TDαT◦TδTT◦βTT◦TTg◦Tβ ◦T f ◦β

. . .

The proof for [F1’-2’] is dual to the proof for [F1-2] and can be proved independently, or can be
proved via the isomorphism of φ/φ−1 and the proof for [F1-2]. The proof is omitted here, but can be
found in the accompanying technical report [13].

Thus φ̂ and ˆφ−1 are mutually inverse functors, therefore DC ∼= CT. �.

Since ProdX a ExpX , by Theorem 3.1 ProdC ∼= CExp, therefore the product comonad and exponent
monad are equivalent in power. In Section 5 we will discuss whether there is a preference between using
a monad or a comonad if they are equivalent in power.

A language with a monadic semantics and a language with a comonadic semantics could be interop-
erated in the case where the monad and comonad are equivalent, under the conditions we have shown
here. Likewise, a program structured by a monad a program structured by an equivalent comonad could
be composed in principle.

Thus we have an equivalence between (co)monads for computations which exactly fit within the
model of computation provided i.e. for coKleisli and Kleisli morphisms.The next section studies comon-
ads/monads where a computation almost fits within the model of computation provided, but the (co)monad
deficient in that not all subcomputations fit the pattern. In some cases, this computation can be more suc-
cinctly and clearly structured by an alternate dual structure. The next section explores when this occurs
and introduces a general technique for constructing a more appropriate structure from a less appropriate.

2i.e. by duality, we could start with the monad T and construct the comonad D and proceed with the proof this way.
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4 Further Equivalences Between Monads and Comonads

Consider a programmer/semanticist using the product comonad for parameter passing. At some point,
they realise that the task at hand requires a parameter’s value to vary during a computation. Changing a
parameter’s value cannot be done with a coKleisli morphism ProdX A→ B, as the result does not have
the product structure. However a morphism of type ProdX A→ ProdX B may change the parameter in the
returned product structure e.g. (reminder: ProdXA = A×X):

change : X → ProdX A→ ProdX A

change x′ = λ (a,x).(a,x′)

The change operation can be composed with the coextension of coKleisli morphisms to change the
environment during a computation, e.g. for an integer environment X = Z we might have:

f = ε ◦ (λ (a,x).(a∗ x))† ◦ (change 2)◦ (λ (a,x).a∗ x)†

where f : ProdZZ→ Z first multiples the input with the parameter, then changes the environment pa-
rameter to 2, then multiplies the new parameter by the current value e.g. f (3,4) = (3∗4)∗2 = 24.

(Note that there is no analogous change function, that changes the parameter value for future com-
putations, that can be defined for the exponent monad, even as a function of type ExpX A→ ExpX B.)

Use of the change function here is however unfortunate; there are no general laws governing its
interaction with the operations of the comonad as it is not a coKleisli morphism, nor is it derived from
one. We call such morphisms sub-coKleisli morphisms.

Definition A sub-coKleisli morphism for a comonad D has type g : DA→ DB, for some A,B, for which
there does not exist a morphism g′ : DA→ B such that g = g′†.

Definition A sub-Kleisli morphism for a monad T has type f : TA→TB, for some A,B, for which there
does not exist a morphism f ′ : A→ TB such that f = f ′∗.

Sub-Kleisli and sub-coKleisli morphisms, with the same monad/comonad structure on “both ends”,
are awkward: there are no laws governing their interaction with the operations of a monad/comonad, and
they usually do not fit well with syntactic extensions to languages (e.g. do notation in Haskell relies on
subcomputations being of the form A→ TB.).

The presence of sub-(co)Kleisli morphisms in a program or semantics may suggest that the (co)monad
structure used does not provide a general enough abstraction for the computations being structured and
that there may be a more appropriate monad or comonad structure that eliminates sub-(co)Kleisli mor-
phisms, replacing them with (co)Kleisli morphisms of an alternative structure.

For the product comonad, the change function was added to allow updateable parameters, thus it is
reasonable to assume that a more appropriate structure might be the state monad rather than the product
comonad. In this case the state monad can be calculated from the structure of the product comonad
and sub-coKleisli morphisms. Recall that ProdX a ExpX , thus there is the hom-set adjunction φA,B :
C (ProdX A,B) ∼= C (A,ExpX B). Applying φ to some sub-coKleisli morphism f : ProdX A→ ProdX B
gives a Kleisli morphism φ f : A→ ExpXProdX A for the monad ExpXProdX induced by the adjunction,
which is the StateX monad! (see Example 2.7). Thus, computations structured by the ProdX comonad,
with sub-coKleisli morphisms, can be translated to the computations structured by the StateX monad,
without any sub-Kleisli morphisms.
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In this section, the above result is generalised such that, given a semantics in terms of the comonad D
with a number of sub-coKleisli morphisms DA→DB, if there exists a functor F such that D a F then the
induced monad FD can be used instead of the comonad D, where all the coKleisli morphisms DA→ B
and the sub-coKleisli morphisms DA→ DB are replaced by isomorphic Kleisli morphisms A→ FDB.
This result dualises in the obvious way.

Definition Given an endofunctor F : C → C , a functor subcategory for F is a full subcategory on C ,
denoted FC , with objects |FC |= |C | and morphisms homFC (X ,Y ) = homC (FX ,FY ).

Theorem 4.1. The functor subcategory DC for an endofunctor D : C → C is isomorphic to a Kleisli
category CT, if there exists R : C → C such that D a R where T = RD is the monad induced by the
adjunction.

Proof Assuming an R : C → C such that D a R, then let β : 1→ RD, α : DR→ 1 be the unit and counit
of adjunction, and φ be the hom-set adjunction:

φA,B : C (DA,B)∼= C (A,RB)

where φ f = R f ◦β and φ−1 f = α ◦D f .
Let (T,η ,µ) = (RD,β ,RαD) be the monad induced by the adjunction D a R.
For DC to be isomorphic to CT we require two functors F : DC → CT and G : CT → DC where

FG= 1CT
and GF= 1DC . Taking φ with the second component restricted to DB objects3, θA,B = φA,DB:

θA,B : C (DA,DB)∼= C (A,RDB)

provides an isomorphism between the morphisms of the DC functor subcategory, and the CRD Kleisli
category. Thus F and G can be defined in terms of θ :

F : DC → CT G : CT→ DC
FX = X GX = X
F f = θ f G f = θ−1 f

The functor laws for F and G must then be proved:

[F1] F idD = îd [F1’] G ˆid = idD

[F2] F (g◦ f ) = (F g) ◦̂(F f ) [F2’] G(g ◦̂ f ) = (Gg) ◦ (G f )

[F2] F(g◦ f )
= R(g◦ f )◦β {F/θ def}
= Rg◦ (R f ◦β ) {functor}
= Rg◦R(αD◦Dβ )◦ (R f ◦β ) [A1]
= R(g◦αD)◦RDβ ◦ (R f ◦β ) {functor}
= R(αD◦DRg)◦RDβ ◦ (R f ◦β ) (4)
= RαD◦RD(Rg◦β )◦ (R f ◦β ) {functor}
= (Rg◦β )◦̂(R f ◦β ) {◦̂ def}
= Fg ◦̂F f � {F/θ def}

[F1] FidD

= R idD ◦β {F,θ def}
= β � {functor id}

Naturality of α:

DR(DX)

α(DX)

��

DR f
// DR(DY )

α(DY )
��

DX
f

// DY

(4)

3i.e. pre-compose the dinatural – natural in two components – isomorphism φ with D functor for the second component,
which is still a dinatural isomorphism.
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The proof of functoriality for G is dual, or follows from the proof for F and the isomorphism of θ ,
thus it is omitted for brevity. Therefore, F and G are functors, which are mutually inverse by the natural
isomorphism of θ . Therefore, F and G provide the isomorphism DC ∼= CRD. �

Lemma 4.2. Given a comonad D, there exists a functor J : DC → DC mapping the coKleisli category
for D to the functor subcategory for D.

Proof The construction of J is straightforward:

• JA = A for all objects A ∈ C .

• J f = f † for all morphisms f : DA→ B ∈ C .

The functor laws are satisfied:

[F1] J ˇid = Jε {def ˇid}
= ε† {def J}
= idF [coK1] �

[F2] J (g ◦̌ f ) = (g† ◦ f )† {def J, ◦̌}
= g† ◦ f † [coK3]
= Jg◦J f {def J} �

Given a program/semantics comprising coKleisli morphisms DA→ B and sub-coKleisli morphisms
DA→DB, if we have a functor R : C →C such that D a R, then by Theorem (4.1) and Lemma (4.2) all
of the coKleisli and sub-coKleisli morphisms can be mapped to Kleisli morphisms for the monad RD.

There are, of course, dual theorems and lemmas to the above:

Theorem 4.3. The functor subcategory TC for an endofunctor T : C → C is isomorphic to a coKleisli
category DC , if there exists L : C → C such that L a T where D = LT is the comonad induced by the
adjunction.

Lemma 4.4. Given a monad T, there exists a functor J : CT→ TC mapping the Kleisli category for T
to the functor subcategory for T.

We are now ready to address the apparent conflict between Wadge’s monadic semantics and Uustalu
and Vene’s comonadic semantics for Lucid.

Dataflow: a monad or a comonad? As discussed in the introduction, Uustalu and Vene gave a
comonadic semantics for the dataflow language Lucid and stated that “notions of dataflow cannot be
structured with monads” [18], however, a decade earlier Bill Wadge presented a monadic view of Lucid,
arguing that monads can structure aggregate data such as streams hence the semantics of Lucid can be
structured with a monad [19]. In fact, Wadge’s monadic approach is isomorphic to Uustalu and Vene’s
comonadic approach, which we show here via Theorem (4.3).

The Lucid dataflow language is essentially a calculus of infinite streams with pointwise stream opera-
tions, constant streams, and a number of special stream functions, called intensional operators, which can
compute an element of a stream from any other elements of the parameter streams (i.e. non-pointwise),
the two most important of which are next and fby (followed by) [20]. Using 〈a,b,c, . . .〉 as a notation for
infinite streams, the main connectives of Lucid behave in the following way:

1  〈1,1,1, . . .〉
〈x0,x1,x2, . . .〉 + 〈y0,y1,y2, . . .〉  〈x0 + y0,x1 + y1,x2 + y2, . . .〉

next 〈x0,x1,x2, . . .〉  〈x1,x2, . . .〉
〈x0,x1,x2, . . .〉 fby 〈y0,y1,y2, . . .〉  〈x0,y0,y1, . . .〉
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In [19], Wadge’s stream monad is essentially the exponent monad with natural numbers in the domain
of the exponent: Stream A = ExpN A = N→ A, with η and µ defined in the same way4 as the exponent
monad in Example 2.2. Multiplication operation takes the diagonal of a “doubly indexed” stream (i.e. a
pair of contexts like a two-dimensional matrix), and unit defines a constant stream.

The pointwise operations in Lucid are given a semantics in terms of the non-stream function com-
posed with η e.g. J+K= η ◦(+). Wadge however does not directly address how the intensional operators
(next and fby) fit into the semantics. These functions return streams where the value at position n is com-
puted from values in the parameter stream at positions other than n, thus the entire parameter stream is
required in order to perform this computation. i.e. they are not Kleisli morphisms of type A→ Stream B
or lifted pointwise operators, but can only be defined as sub-Kleisli morphisms StreamA→ StreamB:

fby : Stream (A×A)→ Stream A

fby s = λn. if (n = 0) then (π1 ◦ s) 0 else (π2 ◦ s) (n−1)

next : Stream A→ Stream A

next s = λn.s (n+1)

Uustalu and Vene define the semantics of Lucid using a “streams with a position comonad” [17,
18, 16] which is the costate comonad, arising from ProdX a ExpX , shown in Example 2.7, with natural
numbers for context, i.e. CoStateN = ProdNExpN = (N→ A)×N. Thus, CoStateN defines a stream as
a map from positions to values along with a “current” position. The ε and coextension operation (−)†

are defined in the same way as in Example 2.7. Coextension for CoStateN can be illustrated (using the
stream notation from above) as such:

f † (〈x0,x1, . . .〉,n) = (〈 f (〈x0,x1, . . .〉,0),
f (〈x0,x1, . . .〉,1),
. . .〉, n)

Wadge’s semantics use the exponent monad ExpN which has the product functor ProdN as a left
adjoint: ProdN a ExpN, which we have been using throughout. Thus, by Theorem 4.1 and Lemma 4.2,
Wadge’s monadic semantics, with sub-Kleisli morphisms, can be converted into a comonadic semantics
with only coKleisli morphisms for the comonad ProdNExpN which is exactly the CoStateN comonad
used by Uustalu and Vene.

The hom-set adjunction for ProdN a ExpN is the curry/uncurry isomorphism (seen in Example 2.5)
which provides the conversion from Wadge’s semantics to Uustalu and Vene’s:

A→ (ExpN B)
A→ (N→ B)

Wadge

(−)∗
55

(ExpN A)→ (ExpN B)
(N→ A)→ (N→ B)

uncurry

66

CoStateN A→ B
(A×N)×N→ B

Uustalu & Vene
curry

tt

Thus, the two approaches are equivalent. Wadge’s approach however requires sub-Kleisli morphisms,
thus Uustalu and Vene’s assertion, that dataflow cannot be structured by a monad, is true if we understand
monadic structuring as excluding sub-Kleisli morphisms. As discussed earlier, there are good reasons to
avoid sub-(co)Kleisli morphisms. We discuss the trade-offs further now.

4Note: Wadge used the symbol ∗ for the η operation of the monad and the functor, and ↓ for the multiplication (join)
operation µ . We use the standard notation here.
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5 Choosing Between a Monad and a Comonad

Choice in the presence of sub-(co)Kleisli morphisms A computation solely captured by Kleisli or
coKleisli morphisms benefits from equational laws for reasoning and optimisation by simplification, as
well as better syntactic support in languages. Such benefits are not available for sub-(co)Kleisli mor-
phisms. Furthermore, a computation with sub-(co)Kleisli morphisms may have code repetition, where
code is repeated in order to emulate the (co)extension operation of the more appropriate structure.

By constructing an equivalent dual structure (e.g. a monad instead of a comonad) and eliminating
sub-(co)Kleisli morphisms, any redundancy is captured within the new, more applicable, structure and
general laws and syntactic extensions can be applied once again. Thus, if Theorem 4.1 or Theorem 4.3
is applicable, it is generally more useful to use the structure without sub-(co)Kleisli morphisms.

Choice given an equivalent monad and comonad In the case of a monad and a comonad that are ex-
actly equivalent in power (see Theorem 3.1) the choice between structures is more subtle and subjective.

In the case of parameter passing, it is not clear whether the product comonad or exponent monad
is objectively better. An argument in favour of the comonadic approach is that the read-only property
of parameter passing is a consequence of the comonad laws, but in the monadic approach the read-only
property must be independently proved and does not similarly come for free.

The read-only property of parameters in the product comonad is a consequence of the property that
coextension (for any comonad) preserves the shape of the the parameter object.

Definition For some functor F the shape of a particular object x : FA is given by (FconstA) x, where
constA : A→ 1 is unique morphism from A to the terminal object 1 of C .

Thus in programming, if F is some data type, then FconstA replaces the elements of a data structure
with the terminal object (in Haskell this is usually the empty tuple ()).

Proposition 5.1. Let (D,ε,(−)†) be a coKleisli triple in C . Coextension of any coKleisli morphism
f : DA→ B yields a shape preserving morphism f † : DA→ DB i.e. the shape of the parameter object is
preserved in the result thus:

DconstB ◦ f † = DconstA (5)

Proof By the terminal object property of 1∈C , constA : A→ 1 is a unique morphism mapping an object
A to 1. Therefore, for all morphisms f : A→ X , g : A→ Y :

constX ◦ f = constA = constY ◦g (6)

by the uniqueness of morphisms to the terminal object. Thus, shape preservation (5.1) is proved:

Dconst ◦ f †

= Dconst ◦D f ◦δ {(−)† def}
= D(const ◦ f )◦δ {functor}
= D(const ◦ ε)◦δ (6)
= Dconst ◦Dε ◦δ {functor}
= Dconst � [C2]

The crucial step in the proof is [C2] (equivalent to [coK2]), which enforces preservation of shape for
the comonad. Monads on the other hand permit shape to be changed. This is a useful property to have in
mind when deciding whether to use a monad or comonad. If changes in shape are required, then a monad
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must be used (unless shape-changing sub-coKleisli morphisms are used). Dually, if shape preservation
is required, a comonad might be the right choice as this property is intrinsic to the comonad.

In the case of the product comonad, the type of coKleisli morphisms (A×X)→ B shows that a
coKleisli morphism itself cannot provide a new value for the parameter; there is no value X in the
result. The shape preservation property confirms that coextension does not modify the parameter. For
this reason, the product comonad might be preferred over the exponent monad for (read-only) parameter
passing, although a prove can be given for the exponent monad that it too preserves the parameter.

6 Concluding Remarks and Further Work

Summary This paper showed and proved three main theorems:

1. (Theorem 3.1) Given a monad T and a comonad D, if D a T, then DC ∼= CT.

2. (Theorem 4.1) Given a comonad D, if there exists a functor R such that D a R then DC ∼= CRD,
where DC is the functor subcategory (with morphisms DA→ DB) and RD is the induced monad.

3. (Theorem 4.3) Dually, given a monad T, if there exists a functor L such that L aT then TC ∼= LtC ,
where TC is the functor subcategory (with morphisms TA→TB) and LT is the induced comonad.

Product/exponent adjunction In a programming setting, the main (useful) example adjunction is that
between the product functor ProdX = A×X and the exponent functor ExpX = X → A where ProdX a
ExpX . This adjunction was applied for each of the three theorems above, which had the following
implications:

1. ProdC ∼=CExp, thus parameter passing can be equivalently structured by either the product comonad
or exponent monad.

2. ProdC ∼= CState where StateX = ExpXProdX . Thus, parameter passing structured by the product
comonad with the change : X→ProdX A→ProdX A sub-coKleisli morphism is equivalent to using
the StateX monad.

3. ExpC ∼= CoStateC where CoStateX = ProdXExpX . Thus, Wadge’s monadic semantics for Lucid in
terms of the ExpN monad, with intensional operators ExpN A→ ExpN B, is equivalent to using the
CoStateN comonad used by Uustalu and Vene to give a comonadic semantics for Lucid.

Containers The results on structuring streams can be generalised to containers [2]. Containers have
a set of shapes S, and for a particular shape s ∈ S there is a set of positions Ps. The container functor is
defined FA = ∑s:S(Ps→ A) i.e. a coproduct of maps from a set of positions to values, for each possible
shape. Containers can be both a monad and a comonad.

Mono-shape containers have just one shape s. For example, lists of length n have S = {n} where
Pn = N≤n i.e. positions are natural numbers less than n. Thus, ListnA = N≤n→ A.

For a mono-shape container MsA = (Ps→ A), all morphisms MsA→MsB are shape-preserving, and
by Theorem 4.1 there is an equivalent comonad (Ps→ A)×Ps i.e. the costate comonad CoStatePs.
Uustalu and Vene mention the costate comonad for containers in [17].
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Popularity of Comonads Whilst monads are popular and widely accepted, comonads have remained
somewhat underutilised and little understood. We suggest four possible reasons for the relative underuse
of comonads in programming compared to monads:

1. Redundancy: some programs/computations can be structured equally well with a monad instead
of a comonad.

2. Utility: the laws and operations of comonads means that there are less useful comonads for pro-
gramming i.e. the structure is dual, but its utility is not.

3. Support: unlike monads, there is a lack of syntactic support in languages.

4. Sociological: monads were popularised first and are still an advanced topic for many; comonads
are viewed as even more esoteric/complicated/confusing.

The first of these reasons has been the main focus of this paper in Sections 3 and 4. By the equiv-
alences in this paper, we have shown that there are cases where a monad could be usurping a comonad,
which may be a more appropriate structure than a monad in some cases.

Some attention was given to the second reason in Section 5. The shape preservation property of
comonads is quite strong and may be one of the limiting factors in the utility of comonads; there may
be fewer situations in which a computation is shape preserving, and more situations in which shape is
changed throughout a computation, in which case a monad is more appropriate.

The third reason can be remedied by providing syntax for comonadic programming in languages,
dualising Haskell’s do (perhaps the od or codo notation) and F#’s let!. This is addressed in the author’s
upcoming PhD thesis in which such notation is introduced.
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