
Coeffects: Unified static analysis of context-dependence ?

Tomas Petricek, Dominic Orchard and Alan Mycroft

University of Cambridge, UK
{tp322,dao29,am}@cl.cam.ac.uk

Abstract. Monadic effect systems provide a unified way of tracking
effects of computations, but there is no unified mechanism for tracking
how computations rely on the environment in which they are executed.
This is becoming an important problem for modern software – we need
to track where distributed computations run, which resources a program
uses and how they use other capabilities of the environment.

We consider three examples of context-dependence analysis: liveness
analysis, tracking the use of implicit parameters (similar to tracking of
resource usage in distributed computation), and calculating caching re-
quirements for dataflow programs. Informed by these cases, we present a
unified calculus for tracking context dependence in functional languages
together with a categorical semantics based on indexed comonads. We
believe that indexed comonads are the right foundation for construct-
ing context-aware languages and type systems and that following an
approach akin to monads can lead to a widespread use of the concept.

Modern applications run in diverse environments – such as mobile phones or the
cloud – that provide additional resources and meta-data about provenance and
security. For correct execution of such programs, it is often more important to
understand how they depend on the environment than how they affect it.

Understanding how programs affect their environment is a well studied area:
effect systems [13] provide a static analysis of effects and monads [8] provide a
unified semantics to different notions of effect. Wadler and Thiemann unify the
two approaches [17], indexing a monad with effect information, and showing that
the propagation of effects in an effect system matches the semantic propagation
of effects in the monadic approach.

No such unified mechanism exists for tracking the context requirements. We
use the term coeffect for such contextual program properties. Notions of context
have been previously captured using comonads [14] (the dual of monads) and by
languages derived from modal logic [12,9], but these approaches do not capture
many useful examples which motivate our work. We build mainly on the former
comonadic direction (§3) and discuss the modal logic approach later (§5).

We extend a simply-typed lambda calculus with a coeffect system based on
comonads, replicating the successful approach of effect systems and monads.

Examples of coeffects. We present three examples that do not fit the tradi-
tional approach of effect systems and have not been considered using the modal
logic perspective, but can be captured as coeffect systems (§1) – the tracking of
implicit dynamically-scoped parameters (or resources), analysis of variable live-
ness, and tracking the number of required past values in dataflow computations.

? This is the authors’ copy of the paper appearing in the proceedings of ICALP 2013.

2 Petricek, Orchard, Mycroft

Coeffect calculus. Informed by the examples, we identify a general algebraic
structure for coeffects. From this, we define a general coeffect calculus that unifies
the motivating examples (§2) and discuss its syntactic properties (§4).

Indexed comonads. Our categorical semantics (§3) extends the work of Uustalu
and Vene [14]. By adding annotations, we generalize comonads to indexed comon-
ads, which capture notions of computation not captured by ordinary comonads.

1 Motivation

Effect systems, introduced by Gifford and Lucassen [5], track effects of com-
putations, such as memory access or message-based communication [6]. Their
approach augments typing judgments with effect information: Γ ` e : τ, F . In
Moggi’s semantics, well-typed terms Γ ` e : τ are mapped to morphisms JΓ K→
MJτK where M encodes effects and has the structure of a monad [8]. Wadler and
Thiemann annotate monads with effect information, written MF [17].

In contrast to the analysis of effects, our analysis of context-dependence dif-
fers in the treatment of lambda abstraction. Wadler and Thiemann explain that
“in the rule for abstraction, the effect is empty because evaluation immediately
returns the function, with no side effects. The effect on the function arrow is
the same as the effect for the function body, because applying the function will
have the same side effects as evaluating the body” [17]. We instead consider
systems where λ-abstraction places requirements on both the call-site (latent re-
quirements) and declaration-site (immediate requirements), resulting in different
program properties. We informally discuss three examples that demonstrate how
contextual requirements propagate. Section 2 unifies these in a single calculus.

We write coeffect judgements CsΓ ` e : τ where the coeffect annotation s
associates context requirements with the free-variable context Γ . Function types
have the form Csτ1 → τ2 associating latent coeffects s with the parameter. The
CsΓ syntax and Csτ types are a result of the indexed comonadic semantics (§3).

Implicit parameters and resources. Implicit parameters [7] are dynamically-
scoped variables. They can be used to parameterize a computation without prop-
agating arguments explicitly through a chain of calls and are part of the context
in which expressions evaluate. As correctly expected [7], they can be modelled
by comonads. Rebindable resources in distributed computations (e.g., a local
clock) follow a similar pattern, but we discuss implicit parameters for simplicity.

The following function prints a number using implicit parameters ?culture
(determining the decimal mark) and ?format (the number of decimal places):

λn.printNumber n ?culture ?format

Figure 1 shows a type-and-coeffect system tracking the set of an expression’s
implicit parameters. For simplicity here, all implicit parameters have type ρ.

Context requirements are created in (access), while (var) requires no implicit
parameters; (app) combines requirements of both sub-expressions as well as the
latent requirements of the function.

Coeffects: Unified static analysis of context-dependence 3

(var)
x : τ ∈ Γ
C∅Γ ` x : τ

(app)
CrΓ ` e1 : Ctτ1 → τ2 CsΓ ` e2 : τ1

Cr∪s∪tΓ ` e1 e2 : τ2

(access)
C{?a}Γ ` ?a : ρ

(abs)
Cr∪s(Γ, x : τ1) ` e : τ2
CrΓ ` λx.e : Csτ1 → τ2

Fig. 1. Selected coeffect rules for implicit parameters

The (abs) rule is where the example differs from effect systems. Function
bodies can access the union of the parameters (or resources) available at the
declaration-site (CrΓ) and at the call-site (Csτ1). Two of the nine permissible
judgements for the above example are:

C∅Γ ` (. . .) : C{?culture,?format}int→ string
C{?culture,?format}Γ ` (. . .) : C{?format}int→ string

The coeffect system infers multiple, i.e. non-principal, coeffects for functions.
Different judgments are desirable depending on how a function is used. In the
first case, both parameters have to be provided by the caller. In the second,
both are available at declaration-site, but ?format may be rebound (the precise
meaning is provided by the semantics, discussed in §3).

Implicit parameters can be captured by the reader monad, where parameters
are associated with the function codomain M∅(int → M{?culture,?format}string),
modelling only the first case. Whilst the reader monad can be extended to model
rebinding, the next example cannot be structured by any monad.

Liveness analysis. Liveness analysis detects whether a free variable of an ex-
pression may be used (live) or whether it is definitely not used (dead). A compiler
can remove bindings to dead variables as the result is never used.

We start with a restricted analysis and briefly mention how to make it prac-
tical later (§5). The restricted form is interesting theoretically as it gives rise to
the indexed partiality comonad (§3), which is a basic but instructive example.

The coeffect system in Fig. 2 detects whether all free variables are dead
(CDΓ) or whether at least one variable is live (CLΓ). Variable use (var) is
annotated with L and constants with D, i.e., if c ∈ N then CDΓ ` c : int. A dead
context may be marked as live by letting D v L and adding sub-coeffecting (§2).

The (app) rule can be understood by discussing its semantics. Consider se-
mantic functions f, g, h annotated by r, s, t respectively. The sequential composi-
tion g ◦f is live in its parameter only when both f and g are live. In the coeffect
semantics, f is not evaluated if g ignores its parameter (regardless of evaluation
order). Thus, g ◦ f is annotated by conjunction ru s (where Lu L = L). A point-
wise composition of g and h, passing the same parameter to both, is live in its
parameter if either g or h is live (i.e., disjunction s t t). Application uses both
compositions, thus Γ is live if it is needed by e1 or by the function and by e2.

(var)
x : τ ∈ Γ
CLΓ ` x : τ

(app)
CrΓ ` e1 : Ctτ1 → τ2 CsΓ ` e2 : τ1

Crt(sut)Γ ` e1 e2 : τ2

Fig. 2. Selected coeffect rules for liveness analysis

4 Petricek, Orchard, Mycroft

(var)
x : τ ∈ Γ
C0Γ ` x : τ

(app)
CmΓ ` e1 : Cpτ1 → τ2 CnΓ ` e2 : τ1

Cmax(m,n+p)Γ ` e1 e2 : τ2

(prev)
CnΓ ` e : τ

Cn+1Γ ` prev e : τ
(abs)

Cmin(m,n)(Γ, x : τ1) ` e : τ2
CmΓ ` λx.e : Cnτ1 → τ2

Fig. 3. Selected coeffect rules for causal data flow

An (abs) rule (not shown) compatible with the structure in Fig. 1 combines
the context annotations using u. Thus, if the body uses some variables, both the
function argument and the context of the declaration-site are marked as live.

The coeffect system thus provides a call-by-name-style semantics, where re-
dundant computations are omitted. Liveness cannot be modelled using monads
with denotations τ1 → Mrτ2. In call-by-value languages, the argument τ1 is al-
ways evaluated. Using indexed comonads (§3), we model liveness as a morphism
Crτ1 → τ2 where Cr is the parametric type Maybe τ = τ + 1 (which contains a
value τ when r = L and does not contain value when r = D).

Efficient dataflow. Dataflow languages (e.g., Lucid [16]) declaratively describe
computations over streams. In causal data flow, programs may access past values.
In this setting, a function τ1 → τ2 becomes a function from a list of historical
values [τ1]→ τ2. A coeffect system here tracks how many past values to cache.

Figure 3 annotates contexts with an integer specifying the maximum number
of required past values. The current value is always present, so (var) is annotated
with 0. The expression prev e gets the previous value of stream e and requires
one additional past value (prev); e.g. prev (prev e) requires 2 past values.

The (app) rule follows the same intuition as for liveness. Sequential compo-
sition adds the tags (the first function needs n+ p past values to produce p past
inputs for the second function); passing the context to two subcomputations
requires the maximum number of the elements required by the two subcompu-
tations. The (abs) rule for data-flow needs a distinct operator – min – therefore,
the declaration-site and call-site must each provide at least the number of past
values required by the function body (as the body may use variables coming
from the declaration-site as well as the argument).

Soundness follows from our categorical model (§3). Uustalu and Vene model
causal dataflow by a non-empty list comonad NeList τ = τ × (NeList τ + 1) [14].
However, this model leads to (inefficient) unbounded lists of past elements. The
coeffect system above infers a (sound) over-approximation of the number of
required past elements and so fixed-length lists may be used instead.

2 Generalized coeffect calculus

The previous three examples exhibit a number of commonalities. We capture
these in the coeffect calculus. We do not overly restrict the calculus to allow for
notions of context-dependent computations not discussed above.

Coeffects: Unified static analysis of context-dependence 5

The syntax of our calculus is that of the simply-typed lambda calculus (where
v ranges over variables, T over base types, and r over coeffect annotations):

e ::= v | λv.e | e1 e2 τ ::= T | τ1 → τ2 | Crτ

The type Crτ captures values of type τ in a context specified by the an-
notation r. This type appears only on the left-hand side of a function arrow
Crτ1 → τ2. In the semantics, Cr corresponds to some data type (e.g., List or
Maybe). Extensions such as explicit let-binding are discussed later (§4).

The coeffect tags r, that were demonstrated in the previous section, can be
generalized to a structure with three binary operators and a particular element.

Definition 1. A coeffect algebra (S,⊕,∨,∧, e) is a set S with an element e ∈ S,
a semi-lattice (S,∨), a monoid (S,⊕, e), and a binary ∧. That is, ∀r, s, t ∈ S:

r ⊕ (s⊕ t) = (r ⊕ s)⊕ t e⊕ r = r = r ⊕ e (monoid)

r ∨ s = s ∨ r r ∨ (s ∨ t) = (r ∨ s) ∨ t r ∨ r = r (semi-lattice)

The generalized coeffect calculus captures the three motivating examples (§1),
where some operators of the coeffect algebra may coincide.

The ⊕ operator represents sequential composition; guided by the categorical
model (§3), we require it to form a monoid with e. The operator ∨ corresponds to
merging of context requirements in pointwise composition and the semi-lattice
(S,∨) defines a partial order: r ≤ s when r ∨ s = s. This ordering implies a
sub-coeffecting rule. The coeffect e is often the top or bottom of the lattice.

The ∧ operator corresponds to splitting requirements of a function body
between the call- and definition-site. This operator is unrestricted in the general
system, though it has additional properties in some coeffects systems, e.g., semi-
lattice structure on ∧. Possibly these laws should hold for all coeffect systems,
but we start with as few laws as possible to avoid limiting possible uses of the
calculus. We consider constrained variants with useful properties later (§4).

Implicit parameters use sets of names S = P(Id) as tags with union ∪ for all
three operators. Variable use is annotated with e = ∅ and ≤ is subset ordering.

Liveness uses a two point lattice S = {D, L} where D v L. Variables are anno-
tated with the top element e = L and constants with bottom D. The ∨ operation
is t (join) and ∧ and ⊕ are both u (meet).

Dataflow tags are natural numbers S = N and operations ∨,∧ and ⊕ correspond
to max, min and +, respectively. Variable use is annotated with e = 0 and the
order ≤ is the standard ordering of natural numbers.

Coeffect typing rules. Figure 4 shows the rules of the coeffect calculus, given
some coeffect algebra (S,⊕,∨,∧, e). The context required by a variable (var) is
annotated with e. The sub-coeffecting rule (sub) allows the contextual require-
ments of an expression to be generalized.

The (abs) rule checks the body of the function in a context r ∧ s, which
is a combination of the coeffects available in the context r where the function

6 Petricek, Orchard, Mycroft

(var)
x : τ ∈ Γ
CeΓ ` x : τ

(app)
CrΓ ` e1 : Ctτ1 → τ2 CsΓ ` e2 : τ1

Cr∨(s⊕t)Γ ` e1 e2 : τ2

(sub)
CsΓ ` e : τ
CrΓ ` e : τ

(s ≤ r) (abs)
Cr∧s(Γ, x : τ1) ` e : τ2
CrΓ ` λx.e : Csτ1 → τ2

Fig. 4. Type and coeffect system for the coeffect calculus

is defined and in a context s provided by the caller of the function. Note that
none of the judgements create a value of type Crτ . This type appears only
immediately to the left of an arrow Crτ1 → τ2.

In function application (app), context requirements of both expressions and
the function are combined as previously: the pointwise composition ∨ is used to
combine the coeffect r of the expression representing a function and the coeffects
of the argument, sequentially composed with the coeffects of the function: s⊕ t.

For space reasons, we omit recursion. We note that this would require adding
coeffect variables and extending the coeffect algebra with a fixed-point operation.

3 Coeffect semantics using indexed comonads

The approach of categorical semantics interprets terms as morphisms in some
category. For typed calculi, typing judgments x1 : τ1 . . . xn : τn ` e : τ are
usually mapped to morphisms Jτ1K × . . . × JτnK → JτK. Moggi showed the se-
mantics of various effectful computations can be captured generally using the
(strong) monad structure [8]. Dually, Uustalu and Vene showed that (monoidal)
comonads capture various kinds of context-dependent computation [14].

We extend Uustalu and Vene’s approach to give a semantics for the coeffect
calculus by generalising comonads to indexed comonads. We emphasise semantic
intuition and abbreviate the categorical foundations for space reasons.

Indexed comonads. Uustalu and Vene’s approach interprets well-typed terms
as morphisms C(τ1×. . .×τn)→ τ , where C encodes contexts and has a comonad
structure [14]. Indexed comonads comprise a family of object mappings Cr in-
dexed by a coeffect r describing the contextual requirements satisfied by the
encoded context. We interpret judgments Cr(x1 : τ1, . . . , xn : τn) ` e : τ as
morphisms Cr(Jτ1K× . . .× JτnK)→ JτK.

The indexed comonad structure provides a notion of composition for compu-
tations with different contextual requirements.

Definition 2. Given a monoid (S,⊕, e) with binary operator ⊕ and unit e, an
indexed comonad over a category C comprises a family of object mappings Cr

where for all r ∈ S and A ∈ obj(C) then CrA ∈ obj(C) and:

– a natural transformation εA : CeA→ A, called the counit;
– a family of mappings (−)†r,s from morphisms CrA→ B to

morphisms Cr⊕sA→ CsB in C, natural in A,B, called coextend;

Coeffects: Unified static analysis of context-dependence 7

such that for all f : Crτ1 → τ2 and g : Csτ2 → τ3 the following equations hold:

ε ◦ f†r,e = f (ε)
†
e,r = id (g ◦ f†r,s)

†
(r⊕s),t = g†s,t ◦ f

†
r,(s⊕t)

The coextend operation gives rise to an associative composition operation for
computations with contextual requirements (with counit as the identity):

◦̂ : (Crτ1 → τ2)→ (Csτ2 → τ3)→ (Cr⊕sτ1 → τ3) g ◦̂ f = g ◦ f†r,s

The composition ◦̂ best expresses the intention of indexed comonads: contextual
requirements of the composed functions are combined. The properties of the
composition follow from the indexed comonad laws and the monoid (S,⊕, e).

Example 1. Indexed comonads are analogous to comonads (in coKleisli form),
but with the additional monoidal structure on indices. Indeed, comonads are a
special case of indexed comonads with a trivial singleton monoid, e.g., ({1}, ∗, 1)
with 1 ∗ 1 = 1 where C1 is the underlying functor of the comonad and ε and
(−)†1,1 are the usual comonad operations. However, as demonstrated next, not
all indexed comonads are derived from ordinary comonads.

Example 2. The indexed partiality comonad encodes free-variable contexts of
a computation which are either live or dead (i.e., have liveness coeffects) with
the monoid ({D, L},u, L), where CLA = A encodes live contexts and CDA = 1
encodes dead contexts, where 1 is the unit type inhabited by a single value (). The
counit operation ε : CLA → A and coextend operations f†r,s : CrusA → CsB
(for all f : CrA→ B), are defined:

ε x = x f†D,Dx = () f†D,Lx = f() f†L,Dx = () f†L,Lx = f x

The indexed family Cr here is analogous to the non-indexed Maybe (or option)
data type Maybe A = A + 1. This type does not permit a comonad structure
since ε : Maybe A→ A is undefined at (inr ()). For the indexed comonad, ε need
only be defined for CLA = A. Thus, indexed comonads capture a broader range
of contextual notions of computation than comonads.

Moreover, indexed comonads are not restricted by the shape preservation
property of comonads [11]: that a coextended function cannot change the shape

of the context. For example, in the second case above f†D,L : CDA→ CLB where
the shape changes from 1 (empty context) to B (available context).

Monoidal indexed comonads. Indexed comonads provide a semantics to
sequential composition, but additional structure is needed for the semantics of
the full coeffect calculus. Uustalu and Vene [14] additionally require a (lax semi-)
monoidal comonad structure, which provides a monoidal operation m : CA ×
CB → C(A×B) for merging contexts (used in the semantics of abstraction).

The semantics of the coeffect calculus requires an indexed lax semi-monoidal
structure for combining contexts as well as an indexed colax monoidal structure
for splitting contexts. These are provided by two families of morphisms (given a
coeffect algebra with ∨ and ∧):

8 Petricek, Orchard, Mycroft

JCrΓ ` λx.e : Csτ1 → τ2K = curry (JCr∧s(Γ, x : τ1) ` e : τ2K ◦mr,s)

JCr∨(s⊕t)Γ ` e1 e2 : τK = (uncurry JCrΓ ` e1 : Ctτ1 → τ2K) ◦
(id × JCsΓ ` e2 : τ1K

†
s,t) ◦ nr,s⊕t ◦ Cr∨(s⊕t)∆

JCeΓ ` xi : τiK = πi ◦ ε

Fig. 5. Categorical semantics for the coeffect calculus

– mr,s : CrA× CsB → C(r∧s)(A×B) natural in A,B;
– nr,s : C(r∨s)(A×B)→ CrA× CsB natural in A,B;

The mr,s operation merges contextual computations with tags combined by ∧
(greatest lower-bound), elucidating the behaviour of mr,s: that merging may
result in the loss of some parts of the contexts r and s.

The nr,s operation splits context-dependent computations and thus the con-
textual requirements. To obtain coeffects r and s, the input needs to provide at
least r and s, so the tags are combined using the ∨ operator (least upper-bound).

For the sake of brevity, we elide the indexed versions of the laws required by
Uustalu and Vene (e.g., most importantly, merging and splitting are associative).

Example 3. For the indexed partiality comonad, given the liveness coeffect
algebra ({D, L},u,t,u, L), the additional lax/colax monoidal operations are:

mL,L(x, y) = (x, y) nD,D () = ((), ()) nD,L(x, y) = ((), y)
mr,s (x, y) = () nL,D(x, y) = (x, ()) nL,L(x, y) = (x, y)

Example 4. Uustalu and Vene model causal dataflow computations using the
non-empty list comonad NEList A = A×(1+NEList A) [14]. Whilst this comonad
implies a trivial indexed comonad, we define an indexed comonad with integer
indices for the number of past values demanded of the context.

We define CnA = A× (A× . . .×A) where the first A is the current (always
available) value, followed by a finite product of n past values. The definition of
the operations is a straightforward extension of the work of Uustalu and Vene.

Categorical Semantics. Figure 5 shows the categorical semantics of the
coeffect calculus using additional operations πi for projection of the i th element
of a product, usual curry and uncurry operations, and∆ : A→ A×A duplicating
a value. While Cr is a family of object mappings, it is promoted to a family of
functors with the derived morphism mapping Cr(f) = (f ◦ ε)†e,r.

The semantics of variable use and abstraction are the same as in Uustalu
and Vene’s semantics, modulo coeffects. Abstraction uses mr,s to merge the
outer context with the argument context for the context of the function body.
The indices of e for ε and r, s for mr,s match the coeffects of the terms. The
semantics of application is more complex. It first duplicates the free-variable
values inside the context and then splits this context using nr,s⊕t. The two
contexts (with different coeffects) are passed to the two sub-expressions, where
the argument subexpression, passed a context (s⊕ t), is coextended to produce

Coeffects: Unified static analysis of context-dependence 9

a context t which is passed into the parameter of the function subexpression (cf.
given f : A→ (B → C), g : A→ B, then uncurry f ◦ (id × g) ◦∆ : A→ C).

A semantics for sub-coeffecting is omitted, but may be provided by an op-
eration ιr,s : CrA → CsA natural in A, for all r, s ∈ S where s ≤ r, which
transforms a value CrA to CsA by ignoring some of the encoded context.

4 Syntax-based equational theory

The operational semantics of every context-dependent language here differs as
the notion of context is always different. However, for coeffect calculi satisfying
certain conditions we can define a universal equational theory. This suggests
a pathway to an operational semantics for two out of our three examples (the
notion of context for data-flow is more complex).

In a pure λ-calculus, β- and η-equality for functions (also called local sound-
ness and completeness respectively [12]) describe how pairs of abstraction and
application can be eliminated: (λx.e2)e1 ≡β e1[x ← e2] and (λx.e x) ≡η e. The
β-equality rule, using the usual Barendregt convention of syntactic substitution,
implies a reduction, giving part of an operational semantics for the calculus.

The call-by-name evaluation strategy modelled by β-reduction is not suitable
for impure calculi therefore a restricted β rule, corresponding to call-by-value, is
used, i.e. (λx.e2)v ≡ e2[x← v]. Such reduction can be encoded by a let-binding
term, let x = e1 in e2, which corresponds to sequential composition of two
computations, where the resulting pure value of e1 is substituted into e2 [4,8].

For an equational theory of coeffects, consider first a notion of let-binding
equivalent to (λx.e2) e1, which has the following type and coeffect rule:

CsΓ ` e1 : τ1 Cr1∧r2(Γ, x : τ1) ` e2 : τ2

Cr1∨(r2⊕s)Γ ` let x = e1 in e2 : τ2
(1)

For our examples, ∧ is idempotent (i.e., r ∧ r = r) implying a simpler rule:

CsΓ ` e1 : τ1 Cr(Γ, x : τ1) ` e2 : τ2

Cr∨(r⊕s)Γ ` let x = e1 in e2 : τ2
(2)

For our examples (but not necessarily all coeffect systems), this defines a more
“precise” coeffect with respect to ≤ where r ∨ (r ⊕ s) ≤ r1 ∨ (r2 ⊕ s).

This rule removes the non-principality of the first rule (i.e., multiple possible
typings). However, using idempotency to split coeffects in abstraction would
remove additional flexibility needed by the implicit parameters example.

The coeffect r ∨ (r ⊕ s) can also be simplified for all our examples, leading
to more intuitive rules – for implicit parameters r ∪ (r ∪ s) = r ∪ s; for liveness
we get that r t (r u s) = r and for dataflow we obtain max(r, r + s) = r + s.

Our calculus can be extended with let-binding and (2). However, we also
consider the cases when a syntactic substitution e2[x ← e1] has the coeffects
specified by the above rule (2) and prove subject reduction theorem for certain
coeffect calculi. We consider two common special cases when the coeffect of

10 Petricek, Orchard, Mycroft

variables e is the greatest (>) or least (⊥) element of the semi-lattice (S,∨) and
derive additional properties that hold about the coeffect algebra:

Lemma 1 (Substitution). Given Cr(Γ, x : τ2) ` e1 : τ1 and CsΓ ` e2 : τ2
then Cr∨(r⊕s)Γ ` e2[x ← e1] : τ1 if the coeffect algebra satisfies the conditions
that e is either the greatest or least element of the semi-lattice, ⊕ = ∧, and ⊕
distributes over ∨, i.e., X ⊕ (Y ∨ Z) = (X ⊕ Y) ∨ (X ⊕ Z).

Proof. By induction over `, using the laws (§2) and additional assumptions. ut

Assuming →β is the usual call-by-name reduction, the following theorem
models the evaluation of coeffect calculi with coeffect algebra that satisfies the
above requirements. We do not consider call-by-value, because our calculus does
not have a notion of value, unless explicitly provided by let-binding (even a
function “value” λx.e may have immediate contextual requirements).

Theorem 1 (Subject reduction). For a coeffect calculus, satisfying the con-
ditions of Lemma 1, if CrΓ ` e : τ and e→β e

′ then CrΓ ` e′ : τ .

Proof. A direct consequence of Lemma 1. ut

The above theorem holds for both the liveness and resources examples, but
not for dataflow. In the case of liveness, e is the greatest element (r ∨ e = e); in
the case of resources, e is the least element (r ∨ e = r) and the proof relies on
the fact that additional context requirements can be placed at the context CrΓ
(without affecting the type of function when substituted under λ-abstraction).

However, the coeffect calculus also captures context-dependence in languages
with more complex evaluation strategies than call-by-name reduction based on
syntactic substitution. In particular, syntactic substitution does not provide a
suitable evaluation for dataflow (because a substituted expression needs to cap-
ture the context of the original scope).

Nevertheless, the above results show that – unlike effects – context-dependent
properties can be integrated with call-by-name languages. Our work also provides
a model of existing work, namely Haskell implicit parameters [7].

5 Related and further work

This paper follows the approaches of effect systems [5,13,17] and categorical
semantics based on monads and comonads [8,14]. Syntactically, coeffects differ
from effects in that they model systems where λ-abstraction may split contextual
requirements between the declaration-site and call-site.

Our indexed (monoidal) comonads (§3) fill the gap between (non-indexed)
(monoidal) comonads of Uustalu and Vene [14] and indexed monads of Atkey [2],
Wadler and Thiemann [17]. Interestingly, indexed comonads are more general
than comonads, capturing more notions of context-dependence (§1).

Coeffects: Unified static analysis of context-dependence 11

Comonads and modal logics. Bierman and de Paiva [3] model the � modality
of an intuitionistic S4 modal logic using monoidal comonads, which links our
calculus to modal logics. This link can be materialized in two ways.

Pfenning et al. and Nanevski et al. derive term languages using the Curry-
Howard correspondence [12,3,9], building a metalanguage (akin to Moggi’s monadic
metalanguage [8]) that includes � as a type constructor. For example, in [12],
the modal type �τ represents closed terms. In contrast, the semantic approach
uses monads or comonads only in the semantics. This has been employed by
Uustalu and Vene and (again) Moggi [8,14]. We follow the semantic approach.

Nanevski et al. extend an S4 term language to a contextual modal type
theory (CMTT) [9]. The context is a set of variables required by a computation,
which makes CMTT useful for meta-programming and staged computations.
Our contextual types are indexed by a coeffect algebra, which is more general
and can capture variable contexts, but also integers, two-point lattices, etc..

The work on CMTT suggests two extensions to coeffects. The first is devel-
oping the logical foundations. We briefly considered special cases of our system
that permits local soundness in §4; local completeness can be treated similarly.
The second is developing a coeffect metalanguage. The use of coeffect algebras
provides an additional flexibility over CMTT, allowing a wider range of applica-
tions via a richer metalanguage.

Relating effects and coeffects. The difference between effects and coeffects
is mainly in the (abs) rule. While the semantic models (monads vs. comonads)
are different, they can be extended to obtain equivalent syntactic rules. To allow
splitting of implicit parameters in lambda abstraction, the reader monad needs
an operation that eagerly performs some effects of a function: (τ1 →Mr⊕sτ2)→
Mr(τ1 →Msτ2). To obtain a pure lambda abstraction for coeffects, we need to
restrict the mr,s operation of indexed comonads, so that the first parameter is
annotated with e (meaning no effects): CeA× CrB → Cr(A×B).

Structural coeffects. To make the liveness analysis practical, we need to as-
sociate information with individual variables (rather than the entire context).
We can generalize the calculus from this paper by adding a product operation ×
to the coeffect algebra. A variable context x : τ1, y : τ2, z : τ3 is then annotated
with r× s× t where each component of the tag corresponds to a single variable.
The system is then extended with structural rules such as:

(abs)
Cr×s(Γ, x : τ1) ` e : τ2
CrΓ ` λx.e : Csτ1 → τ2

(contr)
Cr×s(x : τ1, y : τ1) ` e : τ2

Cr∨s(z : τ1) ` e[x← z][y ← z] : τ2

The context requirements associated with function are exactly those linked to the
specific variable of the lambda abstraction. Rules such as contraction manipulate
variables and perform a corresponding operation on the indices.

The structural coeffect system is related to bunched typing [10] (but gener-
alizes it by adding indices). We are currently investigating how to use structural
coeffects to capture fine-grained context-dependence properties such as secure
information flow [15] or, more generally, those captured by the dependency core
calculus [1].

12 Petricek, Orchard, Mycroft

6 Conclusions

We examined three simple calculi with associated coeffect systems (liveness anal-
ysis, implicit parameters, and dataflow analysis). These were unified in the coef-
fect calculus, providing a general coeffect system parameterised by an algebraic
structure describing propagation of context requirements throughout a program.

We model the semantics of the coeffect calculus using the indexed (monoidal)
comonad structure – a novel structure, which is more powerful than (monoidal)
comonads. Indices of the indexed comonad operations manifest the semantic
propagation of context so that the propagation of information in the general
coeffect type system corresponds exactly to the semantic propagation of context
in our categorical model.

We consider the analysis of context to be essential, not least for the examples
here but also given increasingly rich and diverse distributed systems.

Acknowledgements. We thank Gavin Bierman, Tarmo Uustalu, Varmo Vene and
reviewers of earlier drafts. This work was supported by the EPSRC and CHESS.

References

1. M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of dependency.
In Proceedings of POPL, 1999.

2. R. Atkey. Parameterised notions of computation. J. Funct. Program., 19, 2009.
3. G. M. Bierman and V. C. V. de Paiva. On an intuitionistic modal logic. Studia

Logica, 65:2000, 2001.
4. A. Filinski. Monads in action. In Proceedings of POPL, 2010.
5. D. K. Gifford and J. M. Lucassen. Integrating functional and imperative program-

ming. In Proceedings of Conference on LISP and func. prog., LFP ’86, 1986.
6. P. Jouvelot and D. K. Gifford. Communication Effects for Message-Based Concur-

rency. Technical report, Massachusetts Institute of Technology, 1989.
7. J. R. Lewis, M. B. Shields, E. Meijert, and J. Launchbury. Implicit parameters:

dynamic scoping with static types. In Proceedings of POPL, POPL ’00, 2000.
8. E. Moggi. Notions of computation and monads. Inf. Comput., 93:55–92, July 1991.
9. A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. ACM

Trans. Comput. Logic, 9(3):23:1–23:49, June 2008.
10. P. O’Hearn. On bunched typing. J. Funct. Program., 13(4):747–796, July 2003.
11. D. Orchard and A. Mycroft. A Notation for Comonads. In Post-Proceedings of

IFL’12, LNCS. Springer Berlin / Heidelberg, 2012.
12. F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Mathe-

matical. Structures in Comp. Sci., 11(4):511–540, Aug. 2001.
13. J. Talpin and P. Jouvelot. The type and effect discipline. In Logic in Computer

Science, 1992. LICS’92., pages 162–173, 1994.
14. T. Uustalu and V. Vene. Comonadic Notions of Computation. Electron. Notes

Theor. Comput. Sci., 203:263–284, June 2008.
15. D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow analysis.

J. Comput. Secur., 4:167–187, January 1996.
16. W. W. Wadge and E. A. Ashcroft. LUCID, the dataflow programming language.

Academic Press Professional, Inc., San Diego, CA, USA, 1985.
17. P. Wadler and P. Thiemann. The marriage of effects and monads. ACM Trans.

Comput. Logic, 4:1–32, January 2003.

	Coeffects: typing context-dependent computations using comonads
	Examples of coeffects.
	Coeffect calculus.
	Indexed comonads.

	Motivation
	Implicit parameters and resources.
	Liveness analysis.
	Efficient dataflow.

	Generalized coeffect calculus
	Coeffect typing rules.

	Coeffect semantics using indexed comonads
	Indexed comonads.
	Monoidal indexed comonads.
	Categorical Semantics.

	Syntax-based equational theory
	Related and further work
	Comonads and modal logics.
	Relating effects and coeffects.
	Structural coeffects.

	Conclusions

