
Automatic SIMD Vectorization for Haskell

Leaf Petersen
Intel Labs

leaf.petersen@intel.com

Dominic Orchard
Computer Laboratory

University of Cambridge
dominic.orchard@cl.cam.ac.uk

Neal Glew
Intel Labs

aglew@acm.org

Abstract
Expressing algorithms using immutable arrays greatly simplifies
the challenges of automatic SIMD vectorization, since several im-
portant classes of dependency violations cannot occur. The Haskell
programming language provides libraries for programming with
immutable arrays, and compiler support for optimizing them to
eliminate the overhead of intermediate temporary arrays. We de-
scribe an implementation of automatic SIMD vectorization in a
Haskell compiler which gives substantial vector speedups for a
range of programs written in a natural programming style. We com-
pare performance with that of programs compiled by the Glasgow
Haskell Compiler.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; D.3.4 [Programming Languages]:
Processors—Optimization; D.1.1 [Programming Techniques]: Ap-
plicative (Functional) Programming

Keywords Vectorization, SIMD, Compiler Optimization, Haskell,
Functional Languages

1. Introduction
In the past decade, power has increasingly been recognized as
the key limiting resource in micro-processors, in part due to the
limited battery on mobile devices, but more fundamentally due to
the non-linear scaling of power usage with frequency. This has
forced micro-processor designs to explore (or re-explore) different
avenues at both the micro-architectural and the architectural levels.
One successful architectural trend has been the increasing emphasis
on data parallelism in the form of single-instruction multiple-data
(SIMD) instruction sets.

The key idea of data parallelism is that significant portions of
many sequential computations consist of uniform (or almost uni-
form) operations over large collections of data. SIMD instruction
sets exploit this at the machine instruction level by providing data
paths for and operations on fixed-width vectors of data. Program-
mers (or preferably compilers) are then responsible for finding data
parallel computations and expressing them in terms of fixed-width
vectors. In the context of languages with loops (or compiled to
loops), this corresponds to choosing loops for which multiple it-
erations can be computed simultaneously.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP’13, September 25–27, 2013, Boston, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500365.2500605

The task of automatically finding SIMD vectorizable code in
the context of a compiler has been the subject of extensive study
over the course of decades. For common imperative programming
languages, such as C and Fortran, in which programs are structured
as loops over mutable arrays of data, the task of rewriting loops in
SIMD vector form is straightforward. However, the task of discov-
ering which loops permit a valid rewriting (via dependency analy-
sis) is in general undecidable, and has been the subject of extensive
research (see e.g. [13] and overview in [15]). Even quite sophisti-
cated compilers are often forced to rely on programmer annotations
to assert that a given loop is a valid target of SIMD vectorization
(for example, the INDEPENDENT keyword in HPF [7]).

A great deal of the difficulty in finding vectorizable loops sim-
ply goes away in the context of a functional language. In functional
languages, the absence of mutation eliminates large classes of the
more difficult kinds of dependence violations that block vectoriza-
tion in compilers for imperative languages. In this sense, SIMD
vectorization would seem to be quite low-hanging fruit for func-
tional language compiler writers. In this paper, we describe the
implementation of an automatic SIMD vectorization optimization
pass in the Intel Labs Haskell Research Compiler (HRC). We argue
that in a functional language context, this optimization is straight-
forward to implement and gives excellent results.

HRC was originally developed to compile programs written in
an experimental strict functional language, and the vectorization
optimization that we present here was developed in that context.
However, the main bulk of our compiler infrastructure was de-
signed to be fairly language agnostic, and we have more recently
used it to build an experimental Haskell compiler using the Glas-
gow Haskell Compiler (GHC) as a front end. While Haskell is quite
a complex language on the surface, the GHC front end reduces it
to a relatively simple intermediate representation based on System
F, which is fairly straightforward to compile using HRC. By inter-
cepting the GHC intermediate representation (IR) after the main
high-level optimization passes have run, we gain the benefit of the
substantial and sophisticated optimization infrastructure built up in
GHC, and in particular we benefit from its ability to optimize away
temporary intermediate arrays.

We make the following three contributions:

• We design a core language with arrays and SIMD vector prim-
itives (Section 3).

• We present a detailed compositional vectorization process over
this language (Section 4).

• We evaluate our performance compared to GHC with the native
and LLVM backends, showing significant scalar speedups over
GHC and additional vector speedups of up to 6.5× over our
own scalar compiler, on a selection of array processing bench-
marks (Section 5).

We begin with a brief overview of HRC and its relationship to
GHC.

2. Intel Labs Haskell Research Compiler
HRC provides an optimization platform aimed at producing high-
performance executables from functional-style code. The core in-
termediate language of the compiler is a static single-assignment
style, control-flow graph based intermediate representation (IR).
It is strict and has explicit thunks to represent laziness. While
the intermediate representation is largely language agnostic, it is
not paradigm agnostic. The core technologies of the compiler are
designed specifically around compiling functional-language pro-
grams. Most importantly for the purposes of this paper, the com-
piler relies on maintaining a distinction between mutable and im-
mutable data, and focuses almost all of its optimization effort on the
latter. The compiler is structured as a whole-program compiler—
however, none of the optimizations in the compiler rely on this
property in any essential way. In addition to the usual inlining-style
optimizations, contification [5] is performed to turn many uses of
(mutual) recursion into loops. This optimization is crucial for our
purposes since we structure our SIMD-vectorization optimization
as an optimization on loops. Many standard compiler optimizations
have been implemented in the compiler, including loop-invariant
code motion and a very general simplifier in the style of Appel
and Jim [2]. The compiler also implements a number of inter-
procedural representation optimizations using a field-sensitive flow
analysis [11].

The compiler generates output in a modified extension of the
C language called Pillar [1]. Among other things, the Pillar lan-
guage supports tail calls and second-class continuations. Most im-
portantly, it also provides the necessary mechanisms to allow for
accurate garbage collection of managed memory. While an early
version of Pillar was implemented as a modification of a C com-
piler, Pillar is currently implemented as a source to source transla-
tion targeting standard C, which is then compiled using either the
Intel C Compiler or GCC. Our garbage collector and a small run-
time are linked in to produce the final executable.

2.1 Haskell and GHC
The Haskell language and the GHC extensions to it provide a large
base of useful high-level libraries written in a very powerful pro-
gramming language. These libraries are often written using a high-
level functional-language style of programming, relying on excel-
lent compiler technology to achieve good performance. While we
wished to compile Haskell programs and take advantage of the
many libraries, we had no interest in attempting the monumental
task of duplicating all of the high-level compiler technology imple-
mented in GHC. The approach we took therefore was to essentially
use GHC as a Haskell frontend, thereby taking advantage of the
existing type-checker and high-level optimizer.

GHC provides some support for writing its main System-F-style
internal representation (called Core) out to files. While this code is
not entirely maintained, we were able to easily modify it to support
all the current Core features we require. We use this facility to
build a Haskell compiler pipeline by first running GHC to perform
type checking, desugaring, and all of its Core-level optimizations,
and then writing out the Core IR immediately before it would
otherwise be translated to the next-lower representation. HRC then
reads in the serialized Core, and after several initial transformations
and optimizations (including making thunks explicit), performs a
closure-conversion pass and transforms it down to our main CFG
based intermediate representation for subsequent optimization.

2.2 GHC Modifications
Using this approach, we are able to provide a fairly close to func-
tionally complete implementation of the Haskell language as im-
plemented by GHC. However, some of the choices of primitives
used in GHC do not match up well with the needs of HRC, and so

some modification of GHC itself was required. A notable example
of this for the purposes of this paper is the treatment of arrays in
the Data.Vector libraries.

The GHC libraries Data.Vector and REPA [6] provide clean
high-level interfaces for generating immutable arrays. Program-
mers can use typical functional-language operations like maps,
folds, and zips to compute arrays from other arrays. These oper-
ations are naturally data parallel and amenable to SIMD vector-
ization by HRC. For example, consider a map operation over an
immutable array represented with the Data.Vector library. Such ar-
rays are represented internally to the libraries using streams, and
so map first turns the source array into a stream, applies the map
operation to the stream, and then unstreams that back into the final
array. Unstreaming is implemented by running a monadic compu-
tation that first creates a mutable array of the appropriate size, then
initializes the elements of the array using array update, and finally
does an unsafe freeze of the mutable array to an immutable array
type [8]. GHC has optimizations which usually eliminate all of the
intermediate streaming, mapping, and unstreaming operations. The
result of this optimization is a piece of code that sequences the
array creation, the calling of a tail-recursive function that initial-
izes the array elements, and the unsafe freeze. After translation into
our internal representation, HRC can then contify the tail-recursive
function into a loop, resulting in a natural piece of code that can
be effectively optimized using standard loop-based optimizations
adapted to leverage the benefits of immutability.

Unfortunately, observe that as described in the previous para-
graph we do not actually get the benefits of immutability with
an unmodified GHC. Instead, we end up with code that creates
a mutable array and then initializes it with general array update
operations—a style of code that we argue is drastically harder to
optimize well in general, and to perform SIMD vectorization on
in particular. As we discuss in Section 4.7, immutable arrays make
determining when a loop can be SIMD vectorized much easier. For
our purposes then, what we would like GHC to generate instead of
the code described above is code that creates a new uninitialized
immutable array and then uses initializing writes to initialize the
array. The two invariants of initializing writes are that reading an
array element must always follow the initializing write of that ele-
ment, and that any element can only be initialized once. This style
of write preserves the benefits of immutability from the compiler
standpoint, since any initializing write to an element is the unique
definition of that element. Initializing writes are key to representing
the initialization of an immutable array using the usual loop code,
while preserving the ability to leverage immutability.

In order to get immutable code written in this style from GHC
and the libraries discussed above, we modified GHC with new
primitive immutable array types1 and primitive operations on them.
The additional operations include creation of a new uninitialized
array, initializing writes, and a subscript operation. We also mod-
ified the Data.Vector library and a small part of the REPA library
to use these immutable arrays instead of mutable arrays and unsafe
freeze (of course, as with the standard GHC primitives, correctness
requires that the library writer use the primitives correctly). With
these modifications, the code produced by GHC is suitable for op-
timization by HRC, including in many cases SIMD vectorization.

2.3 Vectorization in HRC
SIMD vectorization in HRC targets loops for which the compiler
can show that executing several iterations in parallel is seman-
tics preserving, rewriting them to use SIMD vector instructions.
Usually these loops serve to initialize immutable arrays, or to per-

1 GHC does already have some such types—however, we added new ones
to avoid compatibility issues

Register kind k ::= s | v
Variables xk, yk, zk, . . .
Constants c ::= −231, . . . , (231 − 1)
Operations op ::= +,−, ∗, /, . . .
Instruction I ::= zs = c

| zv = 〈xs
0, . . . , x

s
7〉

| zs = xv!i
| zs = op(xs

0, . . . , x
s
n)

| zv = 〈op〉(xv
0 , . . . , x

v
n)

| zs = new[xs]
| zs = xs[ys]
| zv = xs[〈yv〉]
| zv = 〈xv〉[ys]
| zv = 〈xv〉[〈yv〉]
| xs[ys]← zs

| xs[〈yv〉]← zv

| 〈xv〉[ys]← zv

| 〈xv〉[〈yv〉]← zv

Comparisons cmp ::= xs < ys | xs ≤ ys | xs = ys

Labels L ::= L0, L1, . . .
Transfers t ::= goto L(xk

0 , . . . , x
k
n)

| if (cmp) goto L0(x
k
0 , . . . , x

k
n)

else goto L1(y
k
0 , . . . , y

k
m)

| halt

Blocks B ::= L(xk
0 , . . . , x

k
n):

I0
. . .
Im
t

Control Flow Graph ::= Entry L in {B0, . . . , Bn}

Figure 1. Syntax

form reductions over immutable arrays. The compiler generates the
SIMD loops and all of the related control logic simply as code in
our intermediate language. Rather than requiring the compiler to
generate only the SIMD instructions provided by the target ma-
chine, we provide a more uniform SIMD instruction set that may
be a superset of the machine-supported instructions. Our small run-
time provides a library of impedance-matching macros that imple-
ments the uniform SIMD instructions in terms of SIMD intrisics
understood by the underlying C compiler. The C compiler is then
responsible for low-level optimizations including register alloca-
tion and instruction selection.

In the next section we define a vector core language with which
to discuss the vectorization process. This core language is clean,
uniform, and is almost exactly faithful to (a small subset of) our
actual intermediate representation.

3. Vector Core language
We define here a small core language in which to present the vec-
torization optimization. We restrict ourselves to an intra-procedural
fragment only, since for our purposes here we are not interested in
inter-procedural control flow. Programs in the language are given as
control-flow graphs written in a variant of static single-assignment
(SSA) form. To keep things concrete, our language is based on a 32-
bit machine with vector registers that are 256-bits wide; handling
other register and vector widths is a straightforward extension.

3.1 Objects
The primitive objects of the vector core language consist of heap
objects and register values. Heap objects are variable-length im-

mutable arrays subscripted by 32-bit integers. The elements con-
tained in the fields of heap objects are constrained to be 32-bit reg-
ister values. Register values are small values that may be bound
to variables and are implicitly represented at the machine level via
registers or spill slots. The register values consist of 32-bit integers,
32-bit pointers to heap values, and 256-bit SIMD vectors each con-
sisting of eight 32-bit register values. Adding additional primitive
register values such as floating-pointer numbers, booleans, etc. is
straightforward and adds nothing essential to the presentation.

3.2 Variables
Variables are divided into two classes according to size: scalar
variables xs that may only be bound to 32-bit register values and
vector variables xv that may only be bound to 256-bit vector values.
In practice of course, a real intermediate language will also have
additional variable sizes: 64-bit variables for doubles and 64-bit
integers, and a range of vector widths possibly including 128- and
512-bit vectors. Note that the variables xs and xv are considered
to be distinct variables. Informally, we will sometimes use xv to
denote the variable containing a vectorized version of an original
program variable xs—however, this is intended to be suggestive
only and has no semantic significance.

3.3 Instructions
The instructions of the vector language serve to introduce and oper-
ate on the primitive objects of the language. Most of the instructions
bind a new variable of the appropriate register kind, with the excep-
tion of the array-initialization instructions which write values into
uninitialized array elements. The move instruction zs = c binds
a variable to the 32-bit integer constant c. The vector introduction
instruction zv = 〈xs

0, . . . , x
s
7〉 binds the vector variable zv to a vec-

tor composed of the contents of the eight listed 32-bit variables. We
use the derived syntax zv = 〈cs0, . . . , cs7〉 to introduce a vector of
constants—this may be derived in the obvious way by first binding
each of the constants to a fresh 32-bit variable. A component of a
vector may be selected out using the select instruction zs = xv!i,
which binds zs to the ith component of the vector in xv (where i
must be in the range 0 . . . 7).

The instruction zs = op(xs
0, . . . , x

s
n) corresponds to a family

of instructions operating on primitive 32-bit integers, indexed by
the operation op (e.g. addition, subtraction, negation etc.). Primitive
operations must be fully saturated—that is, the number of operands
provided must equal the arity of the given operation. We lift the
primitive operations on integers to pointwise primitive operations
on vectors with the zv = 〈op〉(xv

0 , . . . , x
v
n) instruction, which

applies op pointwise across the vectors. That is, semantically zv =
〈op〉(xv

0 , . . . , x
v
n) behaves identically to a sequence of instructions

performing the scalar version of op to each of the corresponding
elements of the argument vectors, and then packaging up the result
as the final result vector.

Array objects in the vector language are immutable sequences
of 32-bit data allocated in the heap. New uninitialized array objects
are allocated via the zs = new[xs] instruction which allocates a
new array of length xs (where xs must contain a 32-bit integer) and
binds zs to a pointer to the array. The initial contents of the array
are undefined, and every element must be initialized before being
read. It is an unchecked invariant of the language that every element
of the array is initialized before it is read, and that every element
of the array is initialized at most once. It is in this sense that the
arrays are immutable—the write operation on arrays serves only as
an initializing write but does not provide for mutation. Ordinary
scalar element initialization is performed via the xs[ys] ← zs

operation which initializes the element of array xs at offset ys to
zs. Scalar reads from the array are performed using the zs = xs[ys]

instruction, which reads a single element from the array xs at offset
ys and binds zs to it.

In order to support SIMD vectorization, the vector language
also provides a general set of vector subscript and initialization
operations permitting vectors of elements to be read from and
written to arrays (or vectors of arrays) in a single instruction.
The set of instructions we provide are more general than what is
supported by most existing machine architectures. This is done
intentionally since it is often beneficial to vectorize a loop even
if some instructions must be emulated via translation to scalar
operations. Moreover, we believe it is useful to present the language
in its most general form—it is always possible to restrict the set
of generated instructions as desired. We defer discussion of the
situations in which these various styles of loads and stores arise
to subsequent sections on the actual vectorization operation.

The simplest vector array loads and stores are the operations
that read multiple elements directly from a single array into a
vector variable, or initialize multiple elements of a single array
with elements contained in a vector variable. The instruction zv =
xs[〈yv〉] takes a single array xs and a vector of offsets yv and binds
zv to a vector containing the elements of xs from the given offsets.
That is, semantically we may treat the instruction zv = xs[〈yv〉] as
equivalent to the following list of instructions:

ys
0 = yv!0

zs0 = xs[ys
0]

. . .
ys
7 = yv!7

zs7 = xs[ys
7]

zv = 〈zs0, . . . , zs7〉

This instruction is commonly known as a “gather” instruction. The
initializing store xs[〈yv〉]← zv , commonly known as the “scatter”
instruction, writes the elements of the vector zv to the fields of xs

at offsets given by the vector yv .
There are several interesting special cases of scatters and gathers

that are worth further discussion. A common idiom that arises in
SIMD vectorization consists of array loads and stores such that the
index vector is constructed by adding multiples of a constant stride
to a scalar index. We choose to introduce this idiom as derived
syntax as follows, where i is a constant valued stride:

zv = xs[〈ys:i〉] def
= zv = xs[〈yv〉]

xs[〈ys:i〉]← zv
def
= xs[〈yv〉]← zv

where

 yv
l = 〈ys, . . . , ys〉

yv
b = 〈0, . . . , 7 ∗ i〉

yv = 〈+〉(yv
l , y

v
b)

Note that the stride multiplications (e.g. 7 ∗ i) are meta-level oper-
ations. We also provide derived syntax for the further special case
in which the stride is known to be one:

zv = xs[〈ys:〉] def
= zv = xs[〈ys:1〉]

xs[〈ys:〉]← zv
def
= xs[〈ys:1〉]← zv

For the purposes of simplicity of the vector language, we have left
these as derived forms. However, it is worth noting that many archi-
tectures provide support for these idioms directly (and in fact may
provide support only for these idioms) and hence from a pragmatic
standpoint it can be important to provide primitive support for these
addressing modes.

A second mode of addressing for array loads and stores covers
the case where a vector of arrays is indexed pointwise by a single
fixed scalar offset. The zv = 〈xv〉[ys] instruction produces a vector
zv such that the ith element of zv is produced by indexing the ith
array from the vector of arrays xv , using offset ys. Similarly, the

〈xv〉[ys] ← zv instruction sets the element of the ith array in the
vector xv at offset ys to the value in the ith position of zv .

The final mode of addressing for array loads and stores covers
the case in which a vector of arrays is indexed pointwise using
a vector of offsets. The zv = 〈xv〉[〈yv〉] instruction produces a
vector zv such that the ith element is produced by indexing the
ith array from the vector of arrays xv using the ith offset from the
vector of offsets yv . Similarly, the 〈xv〉[〈yv〉] ← zv instruction
sets the element of the ith array in the vector xv at the offset given
by the ith element of the vector of offsets yv to the value in the ith
position of zv .

3.4 Basic Blocks
Instructions are grouped into basic blocks consisting of a labeled
entry, a sequence of instructions, and a transfer which terminates
the block and either transfers control to another block or terminates
the program. We assume an infinite supply of distinct program
labels ranged over by metavariable L used to label basic blocks that
we distinguish by numbering distinct labels with distinct integers
(as L0, L1, etc.).

Basic block headers consist of the label of the block and a list
of entry variables which are defined on entry to the block. The
entry variables are given their defining values by the transfer which
transfers control to the block. Block entry variables may have scalar
or vector kind.

Transfers terminate basic blocks, and serve to transfer control
within a program. The goto L(xk

0 , . . . , x
k
n) transfer shifts control

to the block labeled with L. Well-formed programs must have
matching arities on transfers and the block headers which they
target, that is, the block labeled with L must have entry variables
zk0 , . . . , z

k
n. The transfer of control effected by goto L(xk

0 , . . . , x
k
n)

also defines the entry variables zk0 , . . . , z
k
n to be the values of

xk
0 , . . . , x

k
n.

The conditional control transfer

if (cmp) goto L0(x
k
0 , . . . , x

k
n) else goto L1(y

k
0 , . . . , y

k
m)

behaves as goto L0(x
k
0 , . . . , x

k
n) if the comparison holds, and as

goto L1(y
k
0 , . . . , y

k
m) if the comparison does not hold. Note that

the targets of the two different arms of the conditional are not
required to be distinct.

The halt transfer terminates the program. We do not consider
inter-procedural control-flow in this core language since it is not
relevant to the vectorization optimization—however it is straight-
forward to add additional transfers to account for this if desired.

3.5 Programs
Programs in the core language consist of a single control flow
graph. A control flow graph consists of a designated entry label
L and set of associated basic blocks, each with a distinct label,
one of which (the entry block) is labeled with the entry label L.
The entry block must expect no entry variables. Program execution
proceeds by starting at the designated entry block and executing
block instructions and transfers until a halt instruction is reached
(if ever). Well-formed programs must not contain transfers whose
target label is not in the control-flow graph, and every block in the
control-flow graph must be labeled with a distinct label. As usual
with static single-assignment form, variables may only be defined
once, must be defined before their first use, and have scope given
by the dominator tree of the control-flow graph rooted at the entry
label. The style of static single-assignment form used in this core
language is similar to that used in compilers such as the MLton
compiler [16].

4. Vectorization
The SIMD-vectorization optimization attempts to rewrite a loop to
a new loop that executes multiple iterations of the original loop
on each iteration using SIMD instructions and registers. While the
core idea is quite simple, there are a number of issues that must
be addressed in order to preserve the semantics of the original
program. In the first part of this section we introduce the key issues
using a series of examples. Before doing so, we first review some
preliminary concepts.

4.1 Loops
We have informally described our vectorization efforts as focusing
on loops. Loops tend to account for a high proportion of executed
instructions in programs, and as such are natural targets for intro-
ducing SIMD-vector code. We define loops using the standard no-
tion of a natural loop, merging loops with shared headers in the
usual way to ensure that the nesting structure of loops form a tree.
We do not assume a reducible control-flow graph (since in general
the translation of mutually-recursive functions into loops may in-
troduce irreducible control flow). We focus our vectorization efforts
more specifically on the innermost loops that make up the leaves of
the loop forest of the control-flow graph. For simplicity, we only
target bottom-test loops. A separate optimization pass inverts top-
test loops to form bottom-test loops, both to enable vectorization
and loop-invariant code motion.

4.2 Induction variables
Our notion of induction variable is standard, but we review it in
some detail here since induction variables play a critical role in
our algorithm. We define the base induction variables of a loop
to be the entry variables of the entry block of the loop such that
the definition of that variable provided on the loop back edge is
produced by adding a constant to the variable itself, and where the
initial value passed into the loop is a compile-time constant. The
step of a base induction variable is the constant added each time
around the loop. The full set of induction variables is the least set
of variables satisfying:
• A base induction variable is an induction variable.
• A variable defined by xs = +(ys, zs), where ys is an induction

variable and zs is a constant (defined by zs = c), is an induction
variable.

• A variable defined by xs = ∗(ys, zs), where ys is an induction
variable and zs is a constant, is an induction variable.

Our implementation also deals with the symmetric versions of the
last two cases, and also considers operations such as subtraction
and negation. Arbitrary initial values can be allowed for base in-
duction variables and loop invariants can be allowed in place of
constants at the cost of some additional complexity as discussed
below, but we do not currently support this.

Induction variables can be characterized as affine functions of
the iteration count of the loop. The characteristic function for an
induction variable is is an equation of the form is = p∗#+d where
p is a constant (the step of the induction variable), and d is also a
constant (the initial value of the induction variable). The symbol #
stands for the iteration number: the value of the induction variable
is for iteration j can be computed directly from its characteristic
function simply by replacing # with j.

The characteristic function for an induction variable is derived
as follows:
• The characteristic function of a base induction variable is p ∗
+ d where p is the step of the base induction variable as
defined above, and d is the constant initial value of the induction
variable.

• The characteristic function of an induction variable defined by
xs = +(ys, zs) is p∗#+d+c where zs is a constant (defined
by zs = c), and p ∗#+ d is the characteristic function of ys.

• The characteristic function of an induction variable defined by
xs = ∗(ys, zs) is c∗p∗#+c∗d where zs is a constant (defined
by zs = c), and p ∗#+ d is the characteristic function of ys.

A subtle but important point is that in these computations the com-
piler must ensure that the overflow semantics of the underlying nu-
meric type are respected to avoid introducing or eliminating nu-
meric overflow. It is possible to extend the definition of charac-
teristic functions to allow loop invariants to take the place of the
constants in the above definition at the expense of representing the
characteristic function symbolically, thereby somewhat complicat-
ing code generation and overflow avoidance as discussed below.

4.3 Vectorization by example
Consider the following simple program which computes the point-
wise sum of two arrays bs and cs, each of length ls.

L0():
as = new[ls]
is0 = 0
goto L1(is0)

L1(is):
xs = bs[is]
ys = cs[is]
zs = +(xs, ys)
as[is]← zs

is1 = +(is, 1)
if (is1 < ls) goto L1(is1)

else goto Lexit(is1)

(1)

Ignoring the crucial issue of whether or not it is in fact valid
to vectorize this loop, there are a number of issues that need to be
addressed in order to produce a vector version of this program.

4.3.1 The vector loop
The core of the vectorization optimization is to produce an inner
loop, each iteration of which executes multiple iterations of the
original loop. For Example 1, this corresponds to generating code
to vector-load eight elements of the arrays b and c at appropriate
offsets, perform a pointwise vector addition of the loaded elements,
and to perform a vector write of the eight result elements into the
new array a. The comparison which controls the exit test at the
bottom of the loop must also be adjusted appropriately to account
for the fact that multiple iterations are being performed. Finally, on
the exit edge of the loop, the use of the last value of the induction
variable is1 must also be accounted for.

To motivate the general treatment of the vectorization optimiza-
tion, we first consider the individual instructions of Example 1, be-
ginning with the load instruction xs = bs[is]. Executing this in-
struction during iteration j of the loop loads a single element from
the array bs at an offset given by the value of is. In the vector
loop, we wish to perform iterations j, j + 1, . . . , j + 7 simulta-
neously. The vector version of this instruction then must load eight
elements from bs at offsets given by the values of is at iteration
j, j+1, . . . , j+7. A natural first attempt at vectorization might be
to simply assume that vector versions of all variables are available,
and to then generate the corresponding vector instruction using the
vector variables. In this case, if we assume the existence of vari-
ables bv and iv containing the values of bs and is for iterations
j, . . . , j + 7 then the vector instruction xv = 〈bv〉[〈iv〉] puts into
xv the appropriate values of xs for iterations j, . . . , j + 7.

While this approach is correct (and in the most general case is
sometimes necessary) a key insight in SIMD vectorization is that
it is often possible to do much better by using knowledge of loop
invariants and induction variables. In this case, the variable bs is
loop invariant, and consequently bv will consist simply of eight
copies of the same value. Semantically then, we can replace our
use of the general vector load instruction with the simpler gather

instruction xv = bs[〈iv〉], which does not require us to produce
the vector version of bs and which may also have a more efficient
implementation. More importantly, the variable is here is a base
induction variable with step 1. It is consequently possible to predict
the value of is at each of the next eight iterations: that is, the value
of iv will always be 〈is, is+1, . . . , is+7〉. The vector load can then
be seen to be a load of eight contiguous elements from bs, for which
we have provided the derived instruction xv = bs[〈is:〉], which
performs a contiguous load of eight elements, as desired. Since
this form of load is generally well supported in vector hardware,
generating this specialized form in preference to the general form
is highly desirable.

The second load instruction can then be vectorized in an exactly
analogous fashion, resulting in two vector variables xv and yv . The
addition instruction zs = +(xs, ys) can then be computed using
vector addition on the vector variables, as zv = 〈+〉(xv, yv). To
produce a vector version of the instruction as[is] ← zs which
writes the computed value to the new array we follow a similar
argument to that above for the loads to produce the as[〈is:〉]← zv

instruction which performs a contiguous write of the values in zv

into the array as starting at offset is.
The last instruction of the loop, is1 = +(is, 1), is the induction

variable computation, and as such requires special treatment. The
result of this instruction is used for three purposes: in the computa-
tion of the test to decide whether to proceed with another iteration,
to provide a new value for the induction variable in the next itera-
tion, and to provide the value passed out on the exit edge.

For the latter two uses, the required value is easy to see. Each
iteration of the vector loop corresponds to eight iterations of the
scalar loop, and we require on entry to the loop that the induction
variable is contain the value appropriate for the first of the eight
iterations. Given the value of is for iteration j then, the back edge
of the loop requires the value of is1 for iteration j +7, which is one
plus the value of is on iteration j+7. Similarly, the exit edge of the
loop requires the value of is1 at iteration j+7. Since the computation
of the value of is for each iteration depends on the value of itself
in the previous iteration, we might imagine ourselves to be stuck.
However, the nature of induction variables as affine transformations
means that we can compute the value of is1 at iteration j+7 directly:
each iteration adds 1 to the original value, hence the value of is at
iteration j + 7 is given by is + 7, and the value of is1 at iteration
j + 7 is is + 7 + 1. Hence we can compute the appropriate value
of is1 for both the back and the exit edge as is + 8.

The remaining use of the induction variable is1 is to compute the
loop exit test. The key insight is that it is no longer sufficient to
check that there is at least one iteration remaining: in order to exe-
cute the vector loop again, we must have at least eight remaining it-
erations. Upon completion of a vector iteration computing scalar it-
erations j, . . . , j+7, the question that must be answered is whether
the scalar loop would always execute iterations j + 8, . . . , j + 15.
Because of the monotonic nature of the induction variable compu-
tation this in turn can be reduced to the question of whether or not
the value of is1 at iteration j + 14 is less than ls. Since is1 is an in-
duction variable which is incremented by 1 on each iteration, this
corresponds to changing the exit test to ask whether is +15 < ls.

4.3.2 Entry and exit code
Using the ideas from previous section, it is straightforward to write
a vector version of the core loop. In addition to the issues touched
on above, vectorizing this example also requires accounting for the
possibility that there may be insufficient iterations to allow use of
the vector loop, and also for the possibility that there may be extra
iterations left over if the exit test succeeds with fewer than eight
but more than zero iterations left. To account for these we keep
around the original scalar loop, and use it to perform any iterations

that cannot be computed with the vector loop. A preliminary test
is inserted before the loop choosing either to target the scalar loop
(if less than eight total iterations will be performed) or the vector
loop (otherwise). Similarly, after the vector loop exits, a check is
done for the presence of extra iterations, which if required are again
performed using the scalar loop.

Using these transformations, we arrive at the final desired vec-
torized program.

L0():
as = new[ls]
is0 = 0
if (7 < ls) goto L2(is0)

else goto L1(is0)

Lcheck():

if (is3 < ls) goto L1(is3)
else goto Lexit(is3)

L2(is2):
xv = bs[〈is2:〉]
yv = cs[〈is2:〉]
zv = 〈+〉(xv, yv)
as[〈is2:〉]← zv

is3 = +(is2, 8)
is4 = +(is2, 15)
if (is4 < ls) goto L2(is3)

else goto Lcheck()

L1(is):
xs = bs[is]
ys = cs[is]
zs = +(xs, ys)
as[is]← zs

is1 = +(is, 1)
if (is1 < ls) goto L1(is1)

else goto Lexit(is1)

(2)

4.4 Automatic vectorization
The reasoning of the previous section leads us to the desired result,
but seems completely ad hoc and unsuitable to implementation in
a compiler. Fortunately, it is possible to derive a simple composi-
tional transformation which accomplishes the same thing in a gen-
eral manner.

The essential design principles that guide the design of the op-
timization are those of orthogonality and compositionality. As we
will see, while the local transformation of instructions produces
specialized code depending on the particulars of the instruction,
each instruction is nonetheless translated in a compositional fash-
ion in the sense that the translation does not depend on how the re-
sult is used. A consequence of this choice is that the compositional
translation may produce numerous extraneous, redundant, or loop-
invariant instructions, which could be avoided in a less composi-
tional approach. The principle that we follow is that the elimina-
tion of extraneous, redundant, and loop-invariant instructions is an
orthogonal issue, which is already addressed by dead-code elimina-
tion, common sub-expression elimination, and loop-invariant code
motion respectively. So long as the vectorization transformation is
defined appropriately, we can safely rely on these optimizations to
sweep away the chaff, leaving behind only the essential bits.

The core of the vector transformation works by translating each
scalar instruction into a sequence of instructions which compute
three separate values: the scalar value, the vector value, and the
last value. For a vector loop computing iterations j, . . . , j + 7 of a
scalar loop, the scalar value of a variable x is the value computed at
iteration j, the last value is the value computed at iteration j+7, and
the vector value is the vector containing the computed values for all
of the iterations. While it is clear that there is always a degenerate
implementation that simply computes the vector variable and then
computes the scalar and last values by projecting out the first and
last iteration value, we often compute the scalar and last values
separately. This is crucial for a number of reasons: in the first place,
we may be able to compute the vector variable more efficiently as
a direct function of the scalar value; but more importantly, it will
frequently be the case that the vector variable (or similarly the last
value) will be unused. It is therefore important not to introduce a

data-dependence of the scalar (or last) value on the vector value lest
we keep an expensive-to-compute vector value live unnecessarily.

For clarity in the translation, we define meta-operators for pro-
ducing fresh variables from existing scalar variables. For a variable
xs, we take fvxs to be a fresh scalar variable, which by convention
will contain the scalar value of xs in the vector loop. Similarly, we
take lvxs to be a fresh scalar variable, which by convention will
contain the last value of xs; and we take vvxv to be a fresh vector
variable, which by convention will contain the vector value of xs.

Induction variables require a small amount of additional mech-
anism. For every base induction variable is with step s, we say that
the affine basis of is is the vector 〈0∗s, 1∗s, . . . , 7∗s〉 (the multi-
plications here are at the meta-level). Note that for a base induction
variable is, adding is to each of the elements of its affine basis
gives the values of is for each of the next eight iterations. Other
(non-base) induction variables also have affine bases, which are
computed by code emitted as part of the transformation described
below, starting from the bases of the base induction variables. We
use the notation bviv to denote a fresh variable which by convention
holds the affine basis for the scalar induction variable is.

It is occasionally necessary to introduce a promoted version of
a variable: that is, for a variable xs, to produce a vector variable
containing the vector 〈xs, . . . , xs〉. By convention, we use pvxv to
denote a fresh variable containing the promoted version of xs.

In order to simplify the algorithm, it is convenient to apply it
only to loops for which all variables defined in the loop and used
outside of the loop (that is, live out from the loop) are explicitly
passed as parameters on the exit edge. This is in no way necessary,
but avoids the need to rename variables throughout the rest of the
program to preserve the SSA property. This does not restrict the
generality of the algorithm since it is always possible to transform
loops into this form.

The algorithm applies to single block loops of the form

L(is0, . . . , i
s
n):

I0
. . .
Im
if (is < ls) goto L(is01, . . . , i

s
n1)

else goto Lexit(xs
0, . . . , x

s
p)

where the variables is0, . . . , isn are base induction variables, is is an
induction variable with a positive step (the case where the step is
zero or negative make no sense), and the variables xs

0, . . . , x
s
p are

the live out variables of the loop. All the instructions I0, . . . , Im
must be scalar instructions (and thus define scalar variables), and
cannot create new arrays. It is straightforward to support exit tests
of the form is ≤ ls as well. In all cases, the variable ls must be
defined outside of the loop (and hence be loop invariant).

We assume the loop has a preheader,2 that is a block that ends
with goto L(iis0, . . . , ii

s
n) and that only this block and the loop

transfer to L.
As suggested by the ad hoc development from the previous

section, the vectorization transformation must produce three new
pieces of code: an entry test that decides whether there are sufficient
iterations to enter the vector loop; the core vector loop itself that
performs the SIMD iterations; and a cleanup test that checks if
there are any iterations remaining after the SIMD loop has finished,
which must be processed by the original scalar loop which remains
in the program unchanged. By convention we take Lvec and Lcheck to
be fresh labels for the new vector loop and cleanup test respectively.

2 Assuming preheaders does not restrict our algorithm - transforming a pro-
gram into an equivalent one where all loops have preheaders is a standard
technique.

4.4.1 Entry tests
The job of the entry test is to determine if there are sufficient
iterations to execute the vector loop, and if not to go straight to
the original scalar loop. It also needs to set up some initial values
for use in the vector loop. In particular, any variables used in the
loop but not defined in the loop must have scalar, last value, and
vector versions for use by the instructions in the vector loop.

First, for each variable ys used in the loop but not defined in it
(and not an entry variable), we add the following instructions to the
end of the instructions of the preheader:

fvys = ys

lvys = ys

vvyv = 〈ys, . . . , ys〉
Next, we must determine whether the vector loop should be

entered at all. The desired property of the entry test is that the
vector loop should only be entered if there are at least 8 iterations to
be performed. The monotonic nature of induction variables means
that this question is equivalent to asking whether at least one more
iteration remains after performing the first 7 iterations: that is, we
wish to know the result of the exit test of the original loop on the 7th
iteration. If the characteristic function for is is s ∗#+ d, then the
value of is on the 7th iteration can be obtained by replacing # with
6 and calculating the result statically. The appropriate entry test is
then of the form iis < ls where iis is defined as iis = s ∗ 6 + d.

The value s ∗ 6 + c is a compiler computed constant, and the
compiler can statically determine that this does not overflow. If
we generalize the notion of characteristic function to include loop-
invariants in addition to constants this test may require generating
multiplication and addition instructions, and code must also be
emitted to fall back to the scalar code if there is a possibility that
the additional arithmetic might overflow.

4.4.2 Vector loop
To generate code for the main vector loop, we perform three oper-
ations. We first generate the last value and vector versions of base
induction variables, using their steps to produce these directly from
the scalar values. For each of the original instructions of the loop
we then generate instructions to compute the scalar, vector, and last
value versions of the instruction. Finally, we adjust the exit test.

For each entry variable isj for 0 ≤ j ≤ n, which is a base induc-
tion variable of step sj , we produce the vector, basis, promoted, and
last value versions of the induction variable as follows. The basis
variable and promoted variables bvivj and pvivj are defined as

bvivj = 〈0 ∗ sj , . . . , 7 ∗ sj〉
pvivj = 〈fvisj , . . . , fvisj〉

The vector version of isj can then be defined directly as follows and
the last value lvisj can be defined directly using the step.

vvivj = 〈+〉(bvivj , pvivj)
lvisj = +(fvisj , 7 ∗ sj)

This initial step defines vector and last value variables for each
base induction variable of the loop, as well as basis and promoted
variables. The translation of each instruction then proceeds com-
positionally, with the translated version of each instruction making
use of the vector and last value variables produced by the trans-
lation of all of the previous instructions. In addition, each induc-
tion variable makes use of the previously defined basis variables to
produce its own vector, last value, basis, and promoted variables
directly. The complete definition of this translation is given in Fig-
ure 2.

Adjusting the exit test of the loop is again straightforward using
the step information. The desired new exit test must check whether

Instruction Vector translation Side conditions

zs = c

fvzs = c
vvzv = 〈fvzs, . . . , fvzs〉
lvzs = fvzs

zs = +(xs, ys)

fvzs = +(fvxs, fvys)
bvzv = bvxv

pvzv = 〈fvzs, . . . , fvzs〉
vvzv = 〈+〉(bvzv, pvzv)
lvzs = +(lvxs, fvys)

If zs and xs are induction variables.

zs = ∗(xs, ys)

fvzs = ∗(fvxs, fvys)
bvzv = 〈∗〉(bvxv, vvyv)
pvzv = 〈fvzs, . . . , fvzs〉
vvzv = 〈+〉(bvzv, pvzv)
lvzs = ∗(lvxs, fvys)

If zs and xs are induction variables.

zs = op(xs
0, . . . , x

s
n)

fvzs = op(fvxs
0, . . . ,

fvxs
n)

vvzv = 〈op〉(vvxv
0 , . . . ,

vvxv
n)

lvzs = op(lvxs
0, . . . ,

lvxs
n)

If zs is not an induction variable.

zs = xs[ys]

fvzs = fvxs[fvys]
vvzv = fvxs[〈fvys:〉]
lvzs = fvxs[lvys]

If xs is loop invariant, and ys is an induction variable with step 1.

zs = xs[ys]

fvzs = fvxs[fvys]
vvzv = fvxs[〈fvys:i〉]
lvzs = fvxs[lvys]

If xs is loop invariant, and ys is affine with step i

zs = xs[ys]

fvzs = fvxs[fvys]
vvzv = fvxs[〈vvyv〉]
lvzs = fvxs[lvys]

If xs is loop invariant, and ys is not an induction variable.

zs = xs[ys]

fvzs = fvxs[fvys]
vvzv = 〈vvxv〉[fvys]
lvzs = lvxs[fvys]

If xs is not loop invariant, and ys is loop invariant.

zs = xs[ys]

fvzs = fvxs[fvys]
vvzv = 〈vvxv〉[〈vvyv〉]
lvzs = lvxs[lvys]

If both xs and ys are not loop invariant.

xs[ys]← zs fvxs[〈fvys:〉]← vvzv If xs is loop invariant, and ys is an induction variable with step 1.
xs[ys]← zs fvxs[〈fvys:i〉]← vvzv If xs is loop invariant, and ys is an induction variable with step i.
xs[ys]← zs fvxs[〈vvyv〉]← vvzv If xs is loop invariant, and ys is not an induction variable.
xs[ys]← zs 〈vvxv〉[fvys]← vvzv If xs is not loop invariant, and ys is loop invariant.
xs[ys]← zs 〈vvxv〉[〈vvyv〉]← vvzv If both xs and ys are not loop invariant.

Figure 2. Vector Block Instruction Translation

is < ls would succeed for at least eight more iterations. Since is

is an induction variable, letting s be its step, it increases by s on
each iteration. Thus the value of is on the next eight iterations will
be lvis + 0 ∗ s, . . . , lvis + 7 ∗ s. These will all be less than ls if the
last of them is less than ls (recall that ls is loop invariant). Thus the
desired new exit condition is lvis + 7 ∗ s < ls.

Putting this all together the vector loop will be as follows, where
i′s is a fresh variable:

Lvec(fvis0, . . . ,
fvisn):

Instructions for base induction variables
Transformed I0, . . . , Im
i′s = +(lvis, 7 ∗ s)
if (i′s < ls) goto Lvec(lvis01, . . . ,

lvisn1)
else goto Lcheck()

Note that the back edge targets the vector loop, the exit edge
targets the cleanup check, and the last values of the base induction
variables are passed on the back edge.

4.4.3 On the subject of overflow
For the most part, the vectorization transformation here is careful
to only compute the same values computed in the original program.
Generating entry and exit tests violate this property. As mentioned
in Section 4.4.1, the compiler can check statically that overflow
does not occur when computing constants for the initial entry test.
For the exit test, it is sufficient to check before entry to the vector
loop that ls < MI − 7 ∗ s where MI is the largest representable
integer and s is the step of is. For signed types, this check must
be adjusted in the obvious way when loop bounds or steps are
negative. In all cases, if the checks fail then the original scalar loop
is used to perform the calculation using the original code.

4.4.4 Cleanup check
The cleanup check is responsible for determining if scalar iterations
remain to be performed after the vector loop has exited. This is done
simply by performing the original loop exit test. Scalar iterations
remain to be performed exactly when lvis < ls, where lvis is the last
value for is computed in the vector loop (since this represents the

Entry test Vector loop Cleanup check Optimized result
L0():
as = new[ls]
is0 = 0
fvas = as

vvav = 〈as, . . . , as〉
lvas = as

fvbs = bs
vvbv = 〈bs, . . . , bs〉
lvbs = bs
fvcs = cs
vvcv = 〈cs, . . . , cs〉
lvcs = cs
fvls = ls
vvlv = 〈ls, . . . , ls〉
lvls = ls

iis = 6 ∗ 1 + 1
if (iis < ls) goto L2(is0)

else goto L1(is0)

L2(fvis):
bviv = 〈0 ∗ 1, . . . , 7 ∗ 1〉
pviv = 〈fvis, . . . , fvis〉
vviv = 〈+〉(bviv, pviv)
lvis = +(fvis, 7 ∗ 1)
fvxs = fvbs[fvis]
vvxv = fvbs[〈fvis:〉]
lvxs = fvbs[lvis]
fvys = fvcs[fvis]
vvyv = fvcs[〈fvis:〉]
lvys = fvcs[lvis]
fvzs = +(fvxs, fvys)
vvzv = 〈+〉(vvxv, vvyv)
lvzs = +(lvxs, lvys)
fvas[〈fvis:〉]← vvzv
fvis1 = +(fvis, 1)
bviv1 = bviv
pviv1 = 〈fvis1, . . . , fvis1〉
vviv1 = 〈+〉(bviv1 , pviv1)
lvis1 = +(lvis, 1)
i′s1 = +(lvis1, 7 ∗ 1)
if (i′s1 < ls) goto L2(lvis1)

else goto Lcheck()

Lcheck():
is2 = +(fvis, 7 ∗ 1)
is3 = +(is2, 1)
if (is3 < ls) goto L1(is3)

else goto Lexit(is3)

L0():
as = new[ls]
is0 = 0
iis = 7
if (iis < ls) goto L2(is0)

else goto L1(is0)

L2(fvis):
lvis = +(fvis, 7)
vvxv = bs[〈fvis:〉]
vvyv = cs[〈fvis:〉]
vvzv = 〈+〉(vvxv, vvyv)
as[〈fvis:〉]← vvzv
lvis1 = +(lvis, 1)
i′s1 = +(lvis1, 7)
if (i′s1 < ls) goto L2(lvis1)

else goto Lcheck()

Lcheck():
is2 = +(fvis, 7)
is3 = +(is2, 1)
if (is3 < ls) goto L1(is3)

else goto Lexit(is3)

Figure 3. Vectorized version of Example 1

value of is from the last completed iteration). Since the vector loop
dominates the cleanup check, all its entry variables and variables it
defines are in scope, so the cleanup check could be formed as:

Lcheck():

if (lvis < ls) goto L(lvis01, . . . ,
lvisn1)

else goto Lexit(lvxs
0, . . . ,

lvxs
p)

Note that the last values of the base induction variables are passed
to the scalar loop and the last values of the live-out variables
(xs

0, . . . , x
s
p) are passed to the exit label.

However, instead of using the last values computed in the vec-
tor loop, it is better to recompute them in order to avoid introducing
data dependencies that may keep instructions live in the loop which
could otherwise be eliminated. This turns out to be straightforward:
the portion of the translation in Figure 2 that computes last values
can simply be repeated. This results in a complete calculation of
all of the last values, including lvis. While most of these instruc-
tions will turn out to be unnecessary, a single pass of dead code
elimination is sufficient to eliminate them.

4.5 Transformed example
The actual process of producing SIMD vector versions of loops
seems at first quite ad hoc and difficult to do cleanly, but turns out
to be amenable to a simple and straightforward translation which
systematically produces vector versions of scalar instructions, rely-
ing on orthogonal optimizations to clean up unnecessary generated
code. To illustrate the results of this process, Figure 3 shows the
results of applying the algorithm to Example 1. First note that the
base induction variables are just is of step 1, and the only other
induction variable is is1 also of step 1. The variables as, bs, cs,
and ls are used in the loop but not defined by it. Block L0 is the
preheader for the loop. We first transform the preheader to define
variables used by but not defined by the loop and to do the entry
test. This results in Figure 3 under the header “Entry test”. Next

we generate the instructions for the base induction variable, trans-
formed instructions of the loop, and adjusted exit condition to form
the vector loop. The result of this appears under the header “Vec-
tor loop”. Finally we form the cleanup check by regenerating the
last-value computations and using the original loop-exit condition.
For simplicity we just show enough instructions to compute the last
value of is1, the only needed last value. This block appears under the
header “Cleanup check”.

This code, as expected, is terribly verbose. However, by apply-
ing copy propagation followed by dead-code elimination, the ex-
traneous parts disappear, yielding the code shown under the header
“Optimized result”. By applying common sub-expression elimina-
tion this code can be further improved by eliminating the calcula-
tion of is2 in favor of lvis, and is3 in favor of lvis1. Finally, simplifying
the chained arithmetic expressions yields the same vectorized loop
as derived by the initial ad hoc vectorization shown in Section 4.3.

4.6 Reductions
The SIMD vectorization process defined so far primarily applies to
loops which serve to create new arrays. An additional idiom that is
important to handle in vectorization is that of loops which serve (in
total or in part) to compute a reduction using a binary operator. That
is, instead of, or in addition to, initializing a new array, each itera-
tion of the loop accumulates a value into an accumulator parameter
as a function of the value from the last iteration. For example, the
innermost dot product of a matrix multiply routine generally takes
the form of a reduction.

Adding support for reductions to the vectorization transforma-
tion is not difficult. In the same manner that we identify certain
variables as induction variables and treat them specially, we iden-
tify variables that fit the pattern of reductions and add additional
cases to the vectorization transformation to handle them differently.
Specifically, we say that a variable xs is a reduction variable if it
is a parameter to the loop that is not an induction variable, and

which is defined on the back edge of the loop by the application
of an associative, commutative binary operator applied to xs and
some distinct variable. All uses of xs and its associated back edge
variable must be in reductions. For example, the loop:

L0():
xs
0 = 1

is0 = 0
goto L1(is0, x

s
0)

L1(is, xs):
ys = cs[is]
xs
1 = +(xs, ys)

is1 = +(is, 1)
if (is1 < ls) goto L1(is1, x

s
1)

else goto Lexit(xs
1)

(3)

computes one more than the sum of the elements of the array cs via
a reduction (assuming that ls is the length of cs) and passes out the
result on the exit edge as xs

1. We say that xs and xs
1 are reduction

variables in this loop, with initial value 1.
The general strategy for SIMD vectorization of reductions is to

pass a vector variable around the loop, each element of which con-
tains a partial reduction. Implicitly, we re-associate the reduction so
that element i of the vector variable contains the partial reduction
of all of the values of the iterations which are congruent to i modulo
the vector width (8 here). After exiting the vector loop, performing
a horizontal reduction on the vector variable itself results in the full
reduction of all the iterations (albeit performed in a different order,
hence the requirement of associativity and commutativity).

More concretely, to vectorize a reduction variable xs, we simply
promote xs to a vector variable xv . In the preheader of the loop,
we lift the definition of the initial value for the reduction variable
to contain the original initial value in element 0, and the unit for
the reduction operation in all other elements. In Example 3 this
corresponds to defining the initial value as xv

0 = 〈1, 0, . . . , 0〉
(since 0 is unit for addition). The reduction operation in the loop
is lifted to perform the same vector operation pointwise, hence
xv
1 = 〈+〉(xv, yv) for the example. Finally, in the cleanup check

block, the lifted reduction variable xv
1 is itself reduced to produce

the final scalar result of the portion of the reduction performed
by the vector loop (which is then passed in as the initial value to
the scalar loop if subsequent iterations remain to be computed).
This final reduction may be performed using scalar operations. It
is possible to maintain last value and scalar values for reduction
variables within the vector loop as well as the vector value, but
doing so requires performing a reduction on the vector value on
each iteration which is potentially expensive enough to make SIMD
vectorization a poor idea. Consequently, we simply choose to reject
SIMD vectorization of loops which would require the calculation
of scalar or last values for reduction variables.

Unfortunately, the associativity requirement for binary opera-
tions used in reductions can be problematic since most floating
point operations (e.g. addition and multiplication) are not fully as-
sociative. In practice, reductions over floating point operators are
important idioms. By default, HRC does not re-associate floating
point operations, and hence refuses to vectorize loops which per-
form reductions over floating point data. We provide a flag which
permits the compiler to re-associate floating point operations only
for SIMD vectorization (but not other optimizations) which allows
such loops to be vectorized at the expense of occasionally produc-
ing slightly different results from the sequential version.

4.7 Dependence Analysis
At this point, one might be concerned that we have left aside a
critical point in our development. While we have shown how to
vectorize a loop, we have said nothing about when (or why) it might
be valid to do so. The crux of any kind of automatic vectorization
lies in determining when it is semantics preserving to execute
multiple iterations of a scalar loop in parallel. In the most general
case this can be a tremendously hard problem to solve, and there

is a vast literature on techniques for showing that particular loops
can validly be vectorized (see for example Bik [3] for an overview).
For the particular case of immutable arrays however, the problem
becomes drastically easier. In this section we give a brief overview
of why this is the case.

We say that an instruction I2 is dependent on an instruction I1 if
I2 must causally follow I1. There are a number of different reasons
that this ordering might be required, each inducing a different
kind of dependence. Flow dependence (or data-dependence) is a
standard dataflow dependence induced by a read of the value of
a variable or location which was written at an earlier point in the
program execution. This is sometimes known as a read-after-write
dependence. An anti-dependence on the other hand is induced by
a write after a read: that is, a location or variable is updated with a
new value after an old value has been read, and therefore the write
must happen after the read to avoid changing the value seen by the
read. Finally, output dependence is dependence induced by a write
after a write: that is, a location or variable is updated with a new
value which overwrites an old value written by a previous statement
(and hence the writes cannot be re-ordered without affecting the
final value of the written to location or variable).

The key insight for automatic vectorization of immutable arrays
is that neither anti-dependence nor output dependence can occur.
This is obvious by construction, since the nature of immutability
is such that the only writes are initializing writes. Therefore, there
cannot be a write after a read (since this would imply a read of
uninitialized data), nor can there be a write after a write (since this
would imply mutation). The only remaining dependence then is
flow-dependence. Flow-dependences which are carried by variable
definitions and uses are straightforward to account for, and do
not generally cause unusual trouble. In general, it is possible for
loop-carried flow-dependences to block vectorization, however. For
example, consider the following simple program:

L0():
as = new[ls]
as[0]← 0
goto L1(1)

L1(is):
as[is]← is

xs = as[is − 1]
if (is < ls) goto L1(is + 1)

else goto Lexit(xs)

While this program uses only initializing writes, it nonetheless in-
curs a loop-carried dependence in which a read in one iteration de-
pends on a write in a previous iteration. Clearly then, the problem
of dependence analysis is not completely trivial even for functional
programs even after eliminating the problems of anti-dependences
and output-dependences. Note that while this example reads and
writes as through the same variable name, there is nothing pre-
venting the binding of as to a different variable name, and hence
allowing array accesses (reads or initializing writes) via an alias.

In practice however, all programs that we have considered (and
indeed, based on the way that immutable arrays are produced, all
programs that we are at all likely to consider) have the very useful
property that they are allocated and initialized in the same lexical
scope. The implication of this is that it is usually trivially easy to
conservatively determine that an initializing write in a loop does not
alias with any of the reads in the loop simply by checking that no
aliases for the newly allocated array are introduced before the loop.
As a result, a very naive analysis is quite successful at breaking
read after write dependences in this style of loops.

5. Benchmarks
We show performance results for eight benchmarks, measured on
an Intel Xeon E5-4650 (Sandybridge) processor implementing the
AVX SIMD instruction set. For each benchmark, the best time
out of five runs was recorded. Three of the benchmarks are small

Vector Add Vector Sum Dot Product N Body
Matrix

Multiply
1D

Convolution
2D

Convolution
Blur

GHC 0.15 0.72 0.24 0.34 0.35 0.02 0.34 0.45

GHC LLVM 0.15 0.73 0.35 0.97 0.98 0.02 0.58 0.86

HRC 1.05 1.84 2.00 4.37 1.34 6.68 5.03 3.02

0

1

2

3

4

5

6

7

8

GHC

GHC LLVM

HRC

Figure 4. Speedup over HRC Scalar (HRC Scalar=1).

synthetic benchmarks. The first computes the pointwise sum of two
arrays of 32-bit floating point numbers using the following code:

addV v1 v2 = zipWith (+) v1 v2

The second computes the horizontal sum of an array of 32-bit
floating point numbers using the following code:

sumV v = foldl (+) 0 v

Both of the kernels use the operations from our modified version
of the Data.Vector.Unboxed library. The third kernel computes a
dot product, implemented precisely as the composition of the two
previous kernels above. These code snippets are each run in a
benchmark harness which generates test data and repeatedly runs
the same kernel a number of times in order to increase the runtime
to reasonable lengths for benchmarking.

The fourth benchmark is an n-body simulation kernel which
uses the naive quadratic algorithm to calculate accelerations for
n gravitational bodies, represented as quadruples of 32-bit float-
ing point numbers (three dimensions plus mass). For our measure-
ments, one time step is computed for 100,000 bodies. The code is
written in an straightforward manner using the REPA array library.

The fifth benchmark is the matrix-matrix multiply routine in-
cluded in the REPA array library. The matrix elements are dou-
ble precision (64-bit) floating point numbers. The program gener-
ates random arrays, performs a single multiplication, computes a
checksum, and writes the result out to a file. The portion of the
program that is timed and reported here is the matrix multiplica-
tion and the checksum computation. The measurements were taken
using a 3000 by 3000 element array.

The sixth benchmark is a two dimensional five-by-five stencil
convolution written using the REPA stencil libraries [9]. The con-
volution is repeatedly performed 4000 consecutive times on a 1000
by 1000 element array of 32-bit floating point numbers.

The seventh benchmark is a one dimensional convolution of an
8192 element floating-point stencil applied to an array of complex
numbers represented as pairs of 32-bit floats. The REPA stencil
libraries could not be applied to this problem, but an elegant and
simple solution was arrived at which extracts a slice of the complex
array, zips it with the stencil array, and then reduces with a fold.

The final benchmark is the “blur” image processing example in-
cluded with the REPA distribution. The benchmark was modified
slightly to match our benchmark harness requirements, with tim-
ing code inserted around the kernel of the computation to avoid
including file input/output times in the measurements. No changes
to the code implementing the algorithm itself were made. The tim-

ings presented measure the result of performing twenty successive
blurrings on a 4592x3056 pixel image.

The performance of these eight benchmarks is given in Figure 4.
Each bar shows speedup over our standard scalar compiler without
vectorization, since the primary goal is to demonstrate the perfor-
mance increase obtained from SIMD vectorization. Speedup for a
given build is computed by dividing the HRC Scalar runtime by
the runtime for that build: thus HRC Scalar is always at 1, and
higher numbers indicate better performance. We also show the per-
formance of unmodified GHC 7.6.1 using both the standard back
end and the new LLVM backend [14]. This is intended primarily
to demonstrate that the scalar code from which we begin is suit-
ably optimized. Both the unmodified and our modified version of
GHC were run with optimization flags “–O2”, “–msse2”. Various
combinations of the flags “–fno-liberate-case”, “–funfolding-use-
threshold”, and “–funfolding-keeness-factor” were also used fol-
lowing the documentation of the REPA libraries, and based on
some limited experimentation as to which arguments gave better
performance. HRC was run with flags requiring it to preserve float-
ing point value semantics and requiring the backend C compiler
to do the same. The only exception was that the flag discussed in
Section 4 to permit the re-association of floating point operations
during vectorization of reductions was used. For some benchmarks,
this caused small perturbations in the results.

For the vector-vector addition benchmark, our baseline com-
piler gives large speedups over both the standard GHC backend
and the LLVM backend. Unfortunately this benchmark is poorly
structured for measuring floating point performance. Performance
analysis shows that the run time is almost entirely dominated by
memory costs associated with initializing the new arrays allocated
on each iteration. The vector sum benchmark on the other hand per-
forms a reduction over the input vector producing only a scalar re-
sult. Consequently memory latency issues are less important since
the input vectors are in cache, and SIMD vectorization gives 1.8×
speedup. For the dot product kernel, the GHC frontend successfully
eliminates the intermediate array, and further optimization by HRC
results in a vectorizable loop for a 2× speedup.

The N-Body simulation benchmark benefits significantly from
SIMD vectorization, since the core of the inner loop does a sub-
stantial amount of floating point work on each iteration. While our
baseline compiler gives only slightly better performance than the
LLVM backend on the benchmark, the SIMD vectorized version
gets a 4.4× speedup over the scalar version.

The matrix multiplication routine gets some limited benefit
from SIMD vectorization (1.3×). This benchmark uses double
precision which reduces the expected speedup, and more work is

done outside of the core inner (vectorizable) loop. Memory latency
is also a factor in this benchmark.

The one dimensional convolution benchmark gets an excellent
SIMD vector speedup of 6.7×. Good cache locality makes this
benchmark largely compute bound. Unfortunately, while GHC and
REPA do an excellent job of fusing away the implied intermediate
arrays, GHC is unable to eliminate all of the allocation in the inner
loop and so performs extremely poorly on this benchmark. HRC
is able to eliminate all of the remaining allocation and so achieves
significantly better baseline performance.

Both the two dimensional convolution and blur benchmarks
suffered originally from a sequential optimization of the REPA
libraries in which the inner loop was unrolled four times3 [9]. While
this gave substantial speedup on the scalar builds, it limited the
vector speedup because the generated code used non unit-stride
vector loads which are not supported natively on the measurement
hardware. To address this, we modified our version of the REPA
library to eliminate the unrolling. This penalizes our scalar build
substantially, but greatly benefits the vector build since contiguous
vector loads can be emitted. The GHC builds were measured using
the original REPA optimizations. The 2D convolution benchmark
gets a 5× speedup, and the blur benchmark gets a 3× speedup.

Of particular importance to note with respect to all of the bench-
marks but most especially for the last two is that the timings pre-
sented here are not for the vectorized loops alone, but for the entire
kernel of the program (essentially everything except the input (or
input generation) and output).

6. Related and Future Work, Conclusions
There is a vast and rich literature on automatic SIMD vectorization
in compilers. Bik [3] provides an excellent overview of the essen-
tial ideas and techniques in a modern setting. Many standard com-
piler textbooks also provide at least some rudimentary introduction
to SIMD vectorization. The NESL programming language [4] pio-
neered the idea of writing nested data parallel programs in a func-
tional language, an idea which has more recently been picked up
by the Data Parallel Haskell project [12]. A related project focusing
on regular arrays [6] (REPA) has had good success in getting array
computations to scale on multi-processor machines. Programs writ-
ten using the REPA libraries are promising targets for SIMD vec-
torization, either automatic as in this work, or via explicit language
constructs in the library implementation. Mainland et al. [10] have
pursued this latter approach. They implement primitives in GHC
that correspond to SIMD instructions and modify the stream fusion
used in the Data.Vector library to generate these SIMD primitives.
In this way, they achieve SIMD vectorization in the library, where
we achieve SIMD vectorization in the compiler. Two different, pos-
sibly complimentary, ways to achieve the same ends.

Our initial implementation of SIMD vectorization targets only
simple loops with no conditional tests. An obvious extension to this
work would be to incorporate support for predicated instructions to
allow more loops to be SIMD vectorized. However, hardware sup-
port for this is somewhat limited in current processors, and the per-
formance effects of generating predicated code are harder to pre-
dict. A more limited effort to target the special case of condition-
als performing array bounds checks seems like a promising area
for investigation. As functional languages tend to allocate heav-
ily, supporting allocation of heap objects inside vectorized loops
could be important. A vector allocation instruction allocates 8 ob-
jects and places pointers to them in a vector variable. Implementing
this operation for fixed-size objects is straightforward and should
be quick—a single limit check, vector instructions to compute the

3 Thanks to an anonymous reviewer for pointing out the source of this
unrolling which we had embarrassingly missed.

pointers, and a scatter to initialize the object meta-data used by the
garbage collector. Implementing vectorized allocation of variable-
length arrays should also be straightforward. A special-case in-
struction for when the length is loop-invariant would likely have
a faster implementation.

To summarize, we have utilized the naturally data-parallel typ-
ical functional-language operations on immutable arrays such as
maps, folds, zips, etc., utilized the large body of work on eliminat-
ing intermediate arrays, and utilized our own internal operations on
immutable arrays to produce nice loops amenable to SIMD vector-
ization. Implementing that SIMD vectorization automatically is a
surprisingly straightforward process, and one that we have shown
can produce excellent speedups on functional language workloads.
A key part of this simplicity is the use of immutable objects and
operations on them, and in particular our use of initializing writes.
As utilizing SIMD instruction sets is important on modern archi-
tectures, these techniques are an important and low-hanging fruit
for functional-language implementations.

References
[1] T. Anderson, N. Glew, P. Guo, B. T. Lewis, W. Liu, Z. Liu, L. Petersen,

M. Rajagopalan, J. M. Stichnoth, G. Wu, and D. Zhang. Pillar: A
parallel implementation language. In V. Adve, M. J. Garzarán, and
P. Petersen, editors, Languages and Compilers for Parallel Computing,
pages 141–155. Springer-Verlag, Berlin, Heidelberg, 2008.

[2] A. Appel and T. Jim. Shrinking lambda expressions in linear time.
Journal of Functional Programming, 7(5), Sept. 1997.

[3] A. J. C. Bik. The Software Vectorization Handbook. Intel Press, 2004.
[4] G. E. Blelloch. Programming parallel algorithms. Communications of

the ACM, 39(3):85–97, Mar. 1996. ISSN 0001-0782.
[5] M. Fluet and S. Weeks. Contification using dominators. In Interna-

tional Conference on Functional Programming, pages 2–13, Florence,
Italy, 2001. ACM.

[6] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and
B. Lippmeier. Regular, shape-polymorphic, parallel arrays in Haskell.
In International Conference on Functional Programming, pages 261–
272, Baltimore, Maryland, USA, 2010. ACM.

[7] K. Kennedy, C. Koelbel, and H. Zima. The rise and fall of High Perfor-
mance Fortran: an historical object lesson. In History of Programming
Languages, pages 1–22. ACM, 2007.

[8] R. Leshchinskiy. Recycle your arrays! In Practical Aspects of Declar-
ative Languages, pages 209–223. Springer, 2009.

[9] B. Lippmeier and G. Keller. Efficient parallel stencil convolution in
haskell. In Haskell Symposium, pages 59–70. ACM, 2011.

[10] G. Mainland, R. Leshchinskiy, and S. Peyton Jones. Exploiting Vector
Instructions with Generalized Stream Fusion. In International Con-
ference on Functional Programming. ACM, 2013.

[11] L. Petersen and N. Glew. GC-safe interprocedural unboxing. In Com-
piler Construction, pages 165–184, Tallinn, Estonia, 2012. Springer-
Verlag.

[12] S. Peyton Jones. Harnessing the multicores: Nested data parallelism
in Haskell. In Asian Symposium on Programming Languages and
Systems, pages 138–138, Bangalore, India, 2008. Springer-Verlag.

[13] W. Pugh. A practical algorithm for exact array dependence analysis.
Communications of the ACM, 35(8):102–114, 1992.

[14] D. A. Terei and M. M. Chakravarty. An LLVM backend for GHC.
SIGPLAN Notices, 45(11):109–120, 2010.

[15] N. Vasilache, C. Bastoul, A. Cohen, and S. Girbal. Violated de-
pendence analysis. In International Conference on Supercomputing,
pages 335–344. ACM, 2006.

[16] S. Weeks. Whole-program compilation in MLton. In Workshop on
ML, pages 1–1, Portland, Oregon, USA, 2006. ACM.

