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Abstract. The dataflow language Lucid applies concepts from intensional logic
to declarative ISWIM expressions which are intensionalised relative to the
dimension of time, thus introducing the notion of an expression’s history. Lu-
cian, a language derived from Lucid, embeds dataflow into object-orientation
allowing the intensionalisation of objects. Lucian introduces the notion of a
declarative intensional object as the history of an object’s evaluation. This
paper discusses the embedding relationships and semantics of conjoining the
dataflow and object-oriented paradigms to provide the language Lucian for
defining intensional objects.

1. Introduction

In 1966 Landin introduced the ISWIM family of languages, presenting a general
framework for functional, declarative programming [1]. Landin put forward the
notion that the development of languages should come from a “well-mapped”
space, such as a family of languages, rather than deriving a language from the
ground up. During the 1980s Bill Wadge and Ed Ashcroft developed Lucid, a
dataflow language built upon the ISWIM framework introducing the concept of
intens ionality from intensional logic [2]. Lucid intensionalises declarative ISWIM
expressions facilitating the definition of computation in terms of the history of
an expression’s evaluation. This paper introduces the concept of declarative inten-

sional objects expressed in a language that builds upon Lucid to interoperate with
object-orientation thus elucidating the history of an object’s evaluation.

The language presented in this paper, which we have named Lucian1, is a
functional, declarative, dataflow language derived from Lucid and the ISWIM fam-
ily of languages. Lucian facilitates interoperation of dataflow and object-oriented

1The name Lucian is a portmanteau of the dataflow language Lucid and the artist Lucian
Freud, known for depicting people and plants in unusual juxtapositions — analogous to
juxtaposing streams and objects.
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paradigms, integrating the merits of Lucid and the dataflow paradigm into the
prevalent programming paradigm of our age — object-orientation.

In general language interoperation allows disparate languages to cooperate
thus enabling specification of a computation in the form in which it is most natu-
rally expressed and most efficiently computed. This cooperative interoperation can
be seen in high-level languages that present an interface to a lower-level language
such as the Haskell foreign function interface to C [3]. While the higher-level lan-
guage may have many desirable features certain concepts may be expressed more
succinctly and calculated more efficiently in a lower-level language. The interop-
eration of dataflow programming with object-orientation seeks to combine their
respective expressive powers. While dataflow provides a declarative, implicitly par-
allel, state-free approach to programming with definitions and functional relation-
ships, object-orientation provides procedural, state-based programming with the
abstraction of objects. The motivation behind Lucian is not just to explore an
interesting case in the semantics of interoperation, but is also motivated by the
goal to ameliorate both dataflow and object-orientation by providing an escape
from one to the other to allow each paradigm to do what it does best.

The relationship of ISWIM, to Lucid, to Lucian in terms of language con-
structs is described by the following relation which illustrates the concepts each
introduces and presents the etymology of our term declarative intensional objects :

declarative intensional objects

ISWIM ⊂ Lucid ⊂ Lucian

Lucid builds upon the concepts put forward by the ISWIM family of lan-
guages; Lucian builds upon the concepts put forward by Lucid.

The interoperation of object-orientation with dataflow is described by em-

bedding relationships; Lucian embeds dataflow into object-orientation via the con-
cept of declarative intensional objects. This conceptual embedding relationship is
instantiated in the current proof-of-concept implementation by embedding a Kahn-
dataflow subset of single dimension, eager Lucid into the object-oriented language
Ruby as is illustrated in Figure 1.

Interoperation is also achieved via a converse embedding relationship in which
object-orientation is embedded into dataflow via object stream filters c.f. Figure 2.
The converse embedding relationship of object-orientation into dataflow is not
isomorphic to the former which we delineate in Figures 1 and 2 by naming the
embedding operations embeds and embeds’ respectively.

Section 2 of this paper gives a background to this research, briefly introducing
Kahn dataflow, ISWIM, Lucid, intensionality, and object-orientation. The main
discussion of the paper takes place in Sections 3 and 4. The semantics of embedding
dataflow into object-orientation (Figure 1) are covered in Section 3. The converse
relationship of embedding object-orientation into dataflow (Figure 2) is covered
in Section 4. Illustrative examples are presented but are kept short to lessen the
dependence of the examples on the object-oriented language Ruby which the reader
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Figure 1. Embedding dataflow into object-orientation. The aim
and methodology of Lucian described in an informal commutative
diagram.

Figure 2. Converse: Embedding object-orientation into dataflow

may be unfamiliar with. Section 5 details some possible useful applications of
Lucian. Information on the proof-of-concept implementation is given in Section 6
followed by related work, concluding remarks, and further work.

2. Background

2.1. The early years of the dataflow paradigm: Kahn Dataflow

The dataflow programming paradigm stems from research carried out over the
last 30 years. A prevalent variety of dataflow is based around ideas set forward by
Gilles Kahn in his seminal paper: The semantics of a simple language for parallel

programming [4]. The computational model for Kahn dataflow is based around net-
works of independent nodes, termed Kahn process networks, which simultaneously
process data, passing it via directional channels. Nodes are thus functions applied
over continuous streams where the output is determined solely by the inputs.

Although a textual representation is often used to describe a process network,
a process network may be represented as a directed graph. For example Figure 3
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corresponds to a collection of mathematical functions applied to values passed
through a Kahn process network.

Figure 3. An example process network applying mathematical
functions to transform a data stream.

2.2. Lucid

In 1974 Edward Ashcroft and Bill Wadge began their own exploration of dataflow
and over the following ten years conceptualised and introduced Lucid [2]. Initially
Ashcroft and Wadge’s approach was to “show that conventional, ‘mainstream’ pro-
gramming could be done in a purely declarative language, one without assignment
or goto statements.” — the conventional, mainstream programming being that of
procedural programming. Their aim was to ease reasoning and verification of pro-
grams by eliminating procedural features such as assignment and goto statements.
Procedural features were eliminated by expressing iterative, statement-based pro-
cedural programs with declarative expressions. For example a procedural counter
in which the value of a variable is updated every iteration of a loop (i := i + 1)
can be declaratively expressed with the following two definitions:

first i = 1

next i = i + 1

Declarative iteration opened up the possibility that operators such as first

and next could be used to describe the dynamic nature of a program and the
contextual values of variables.

Lucid derives from Landin’s ISWIM family of languages [1] introducing con-
cepts of extension and intension from intensional logic to describe the contextual
values of declarative ISWIM expressions. At the centre of intensional logic is the
concept of possible world semantics in which an expression’s meaning is inextri-
cably linked to the context of its evaluation. The extension of an expression is
the value or meaning of an expression in a given context. An expression may have
many different contexts and hence many possible extensions. The intension of an
expression is a mapping from contexts to extensions.

For example, consider the following English natural language expression:
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today it is raining

The truth of this statement is dependent upon the time and place of its
evaluation. Given the intension of the statement and a context, such as ‘Monday
in London’, the extension of the expression can be asserted.

Lucid can be described as an intensional language expressing the intensions of
ISWIM expressions. The first instantiation of Lucid was intensional with respect
to just one discrete, linearly ordered dimension of contexts, arbitrarily referred
to as time. Intensional operators in Lucid facilitate context switching relative to
the current context to access the extensions of an ISWIM expression. The Lucid
operator next refers to the extension, or value, of an expression in the context of
the next unit of time and first refers to the extension of an expression in its first
ever instance. Hence the original, single-dimensional Lucid, operating in a discrete
dimension of time, becomes a formal, declarative system describing the temporal
history of ISWIM expressions.

In Lucid an expression’s intension is represented by an infinite stream of da-

tons of type: list, string, integer, rational, or symbol. The first daton in a stream
is the extension of an expression at the origin of the time dimension. Successive
datons in the stream correspond to successive discrete time contexts. Constant ex-
pressions remain unchanged over time thus each daton in its representative stream
is the same e.g. the constant integer expression 1 is an infinite stream of the integer
1, denotable as <1, 1, 1, ... >. A daton never exists outside of a stream.

Further to the first and next operators Lucid provides other operators,
also referred to as filters, with the ability to manipulate extensions and intensions.
An operator called ‘followed by’, represented by the mnemonic fby, is a binary
operator expressing the first and following extensions of an expression. Ashcroft
and Wadge’s declarative iteration in terms of first and next can be rewritten as:

n = 1 fby (n + 1)

In this expression the first extension of n is the integer 1. Successive extensions
are recursively defined as n + 1. Thus n is the infinite stream of natural numbers
<1, 2, 3, 4, . . . >. The fby operator is analogous to the concept of induction in
which the first parameter of fby is the base case and the second parameter is the
inductive case.

Filters for arithmetic, parameterised by two streams, apply an operation to
extensions from each stream at the same context and are subsequently termed
pointwise operations.

For example <1, 1, 1, . . . > + <1, 2, 3, . . . > = <2, 3, 4, . . . >.

2.3. Object-orientation

The object-oriented paradigm presents a system of programming in which func-
tions and data are encapsulated into single entities — objects. Originating in the
1960s, object-oriented concepts were used in applications such as Sketchpad and
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languages such as Simula 67. Concepts of object-orientation were explicitly devel-
oped further in the 1970s by the language Smalltalk [5].

As a programming paradigm there is no clear definition that encompasses
all object-oriented languages, but there are common unifying concepts that bind
most languages under this category. These include the concept of objects as entities
holding data and actions, inheritance, classes as sets of instantiated objects, meth-
ods, message passing, abstraction, polymorphism, and encapsulation [6]. Although
these features are not exclusive to object-oriented programming they give an ap-
proximate view of the common features of object-oriented languages. The commu-
nication of objects via method calling is achieved through “message-passing” in
which communication is achieved through the sending and receiving of data.

The use of object-oriented programming proliferated in the 1990s and early
21st century with mainstream languages such as C++, C#, Java, Ruby, PHP, and
Python being used extensively in industry and general programming. The language
Ruby is used in this paper as an instantiation of an object-oriented language in
which to embed Lucid.

3. Embedding Dataflow into Object-orientation

Lucian embeds dataflow into object-orientation as a form of language interoper-
ation. This embedding is semantically realised by declarative intensional objects.
An intensional object declares the intension of an object — a mapping of contexts
to extensions of the object. An extension of an object is an immutable snapshot of
the object and its internal state at a certain time, thus the intensional object as a
whole is a stream of such immutable object snapshots representing the historical
evaluation of a non-intensional object. This is to be understood in the same man-
ner in which a Lucid stream introduces the notion of the historical evaluation of
a non-intensional ISWIM declaration.

For example, if one takes an intensional object and treats it as a stream of
object snapshots the first value of the stream is the extension of the object just
after instantiation. The next value of the stream is the extension of the object in
the next time step, with possible transformations applied, and so on, as illustrated
in Figure 4.

Lucian interoperates with an existing object-oriented language which pro-
vides procedural definitions of object classes. The classes are then referenced in the
intensional Lucian expressions. Lucian’s syntax is modelled after Lucid with some
small differences. One such difference in syntax is that Lucian has clearer, ML-style
syntax for functions, illustrated in later examples. Additionally Lucian provides
constructs and operators for instantiation, attribute referencing, and method call-
ing on intensional objects. Figure 5 shows a portion of Lucian’s grammar defin-
ing the syntax for handling intensional objects. The syntax and semantics of the
object-oriented constructs in Lucian are now discussed.
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Figure 4. An illustration of the notion of an intensional object as
an object snapshot stream. The subscript on the object snapshots
denotes a time context.

LucianExp ::= LucidExp Lucid expressions
| new var instantiation
| var.var attribute reference
| var.var := var attribute update
| var.var(Parameters) method call

Parameters ::= Parameters, LucianExp method parameters
| LucianExp

| ǫ

Figure 5. Syntax for handling intensional objects in Lucian as
an extension to basic Lucid syntax.

Instantiation

Use of the unary new operator with the name of an object-oriented class,
defined in some local object-oriented code, declares an intensional object that is in
an initial state just after instantiation. For instance, if we have a class definition
named X in object-oriented code we can instantiate an intensional object of class
X with the operation:

newX

This expression evaluates to a new intensional object where, in all contexts,
the extension is the object just after instantiation.
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Attribute Referencing

One can reference an attribute of an object using the common object-oriented
“dot” notation for member access:

x.attribute

As an intensional object embodies the notion of an object’s history so an
attribute reference represents an object attribute’s history. Thus an attribute ref-
erence is an intensional attribute stream.

Attribute setting can be performed via method calls but Lucian has additional
syntax of the form:

x.attribute := value stream

The attribute assignment operator := is a pointwise operation, much like Lu-
cid arithmetic filters, thus the attribute is set from the extensions of value stream
in the same contexts as x. The attribute assignment feature is linked with method
calling and is visited again in the following treatment of method calls.

Method calls

Method calling also use the standard “dot” notation for object member ac-
cess. To call method from object x with parameters param1, param2, . . . the
syntax is:

x.method(param1, param2, . . .)

Method calls are pointwise operations. When a method is called on an object
the method’s return value is discarded and is not returned as the extension of the
method call expression in the current context. The extension at the context of the
method call is in fact the object snapshot representing the new object state after
the method call. An intensional object must always consist of a stream of object
snapshots thus returning a value from a method and placing it as a daton in the
stream would disrupt this continuity. This is a limitation on method calling. If the
return result of a method is required then the method must be adapted to store
its return result in an attribute to be referenced in an attribute stream. We accept
this as a current hindrance but hope to resolve the limitation in the future with a
construct for expressing the stream of method return values (see Section 7).

Successive method calls to an intensional object are to be ordered with a
special operator, Then, which has a similar operation to fby but addresses refer-
ences to an intensional object differently to facilitate object histories. Observe the
following:

x = new X Then x.method1() Then x.method2() Then x (1)
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The intensional object x is a stream of object snapshots across time. At t = 0
the object has just been instantiated from the class X via the new operator. At
time t = 1 the method named method1 has been applied to the object and at
time t = 2 method2 has been applied. At t > 2 the state of the object x remains
unchanged. It may be useful for the reader to think of the snapshot stream of x in
the following way (where X1 is an object instantiated from the class X):

< X1, X1.method1(), X1.method1().method2(), X1.method1().method2(), . . . >

The Lucian-specific operator Then is syntactic sugar for a combination of fby
and next operations. Expression (1) can be rewritten as:

x = new X fby x.method1() fby (nextx).method2() fby (nextnextx) (2)

Firstly, x is declared as a newly instantiated object. Then method1 is applied
to this extension. Subsequently method1 is applied to the next extension of x,
that is the extension of the object x just after method1 has been applied. This is
followed by another recursive reference, (next next x), to the extension of x once
method1 and method2 have been applied. The operator Then abstracts over this
use of fby and next providing a single operation to order object transformations.

The operator Then can also be used for setting object attributes. For example,
the following declares an object x that is instantiated, has attribute1 set to the
value of y, then method1 is called with a parameter, then attribute2 is set:

x = (new X) Then (x.attribute1 := y) Then x.method1(z) Then (x.attribute2 := w)

The example in Figure 6 presents an intensional object account1 which is
defined in terms of its instantiation from the Ruby class Account and subsequent
method calls transforming the object. The example in Figure 7 develops the
example in Figure 6 including more objects and an example of Lucian’s improved
syntax for functions.

3.1. A formal specification of Lucian

We now discuss a subset of the denotational semantics for Lucian. These formal
semantics are not a complete rigorous formal specification of Lucian due to the
lack of a full domain theory of objects or formal definitions for the object-oriented
language into which the dataflow is embedded. The syntax and semantics for the
whole of Lucian, as far as can be defined, are not discussed in this paper but are
detailed in a language specification that is currently under preparation. Most of
the syntax and semantics are derived from Lucid.

The denotational semantics for Lucian are defined in direct-style denotational
semantics with the following semantic function:

S : Exp− > (State →֒ (State × Stream))
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State acts as a warehouse of all stream variables in the current scope. An
expression is mapped to a function that takes a state and returns a new state —
an updated warehouse — and a stream of the intension of the expression.

A subscripted variable such as xn refers to the nth position in the stream x.

A semantic function ST is used for the denotational semantics of expressions using
the Then operator:

ST : Exp− > (Depth− > (State →֒ (State × Stream)))

The additional integer type Depth is used to calculate the level of nesting
of Then expressions so that the correct number of next operators can be applied
to object variables so that a method call is applied to the latest extension of the
intensional object.

Under Lucian’s denotational semantics the Lucid followed-by operator fby is
redefined as:

S|[Exp1 fby Exp2|] s = (s, β)

where (s, x) = S|[Exp1|] s

(s, y) = S|[Exp2|] s

β = < x0, y0, y1, y2, . . . >

The operator Then is defined similarly:

S|[Exp1 Then Exp2|] s = ST |[Exp1 Then Exp2|] s 0

ST |[Exp1 Then Exp2|] s d = (s, β)

where (s, x) = ST |[Exp1|] s d

(s, y) = ST |[Exp2|] s (d + 1)

β = < x0, y0, y1, y2, . . . >

In terms of the abstract syntax tree for Lucian the semantics of variable
references are affected by belonging to a subtree originating from a Then operator.
The following rules define how next operators are applied to an object variable
for accessing the latest snapshot at a particular depth.

ST |[var|] s 1 = (s, s[var])

ST |[var|] s d = ST |[next var|] s (d − 1)
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class Account

attr_reader :balance

def initialize

@balance = 0

end

def deposit(x)

@balance+=x

end

def withdraw(x)

@balance-=x

end

end

<%

account1 = new Account Then

account1.deposit(10) Then

account1.withdraw(8) Then

account1.withdraw(5) Then

account1.deposit(2) Then

account1

%>

Figure 6. The Account class is instantiated as an intensional
object named account1 in the dataflow code. Various method calls
are performed. The attribute stream account1.balance has values
<0, 10, 2, -3, -1, -1, . . . >

All other expressions under the semantic function ST are defined in the same
way as their semantic definitions under S with additional passing of the depth

parameter to sub-expressions.

4. Embedding Object-orientation into Dataflow

Lucian embeds dataflow into object-orientation via declarative intensional objects
as described in the previous section. A converse embedding relationship is also
provided by Lucian which embeds object-orientation into dataflow c.f. Figure 2.
It is important to note that the relationship of embedding object-orientation
into dataflow is not a mathematical inverse of embedding dataflow into object-
orientation. Hence one cannot embed via one embedding relationship and retract
via the other.

In early instantiations of Smalltalk designers Alan Kay and Adele Gold-
berg conceptualised objects as processes that transform input and output message
streams linked to procedure calls [7]. This conceptual view from SmallTalk-72 is
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class Account ...

class Bank ....

<%

fun withdraw account amount =

if ((account.balance)>=amount)

then account.withdraw(amount)

else account.withdraw(0)

end

fun deposit account amount =

account.deposit(amount)

account1 = new Account Then

(deposit(account, 10)) Then

(withdraw(account, 8)) Then

(withdraw(account, 5)) Then

(deposit(account, 2)) Then account1

account2 = new Account

bank = new Bank Then

bank.addAccount(account1) Then

bank.addAccount(account2) Then bank

%>

Figure 7. Building on the previous example, this example uses user-
defined dataflow functions. The attribute stream account1.balance now
has values <0, 10, 2, 0, 2, 2, . . . >. A further account is defined and a
“Bank” intensional object holds all accounts.

remarkably similar to the concept of filters in dataflow alluding to an object-filter
“duality” where objects can be described as filters and filters described as ob-
jects. Lucian explicitly realises this duality by embedding object-orientation into
dataflow via object stream filters in which objects defined in object-oriented code
are used as pointwise filters in dataflow. Thus the return stream and parameter
streams of the object filter embody Kay’s concept of input and output message
streams from an object.

The advantageous of representing filters with objects are two-fold: coarse-

grained parallelism can be achieved, and state can be handled.
Declarative dataflow is free from side-effects thus expressions can be eval-

uated in any order, or in parallel, hence dataflow is implicitly parallel. Further-
more the notion of streams and filters can be modelled simply as a network of
nodes/processes joined by channels as in Kahn process networks. The nodes of
the process network are atomic and thus define the granularity of potential paral-
lelism. In Lucid and Lucian the built-in filters are the atomic units and are thus
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the minimum level of granularity. If a Lucid program is transcribed into a process
network every filter is transformed into a process therefore the granularity is very
fine with many nodes. Being able to specify a filter in procedural object-oriented
code reduces the granularity as fine-grained computations can be expressed pro-
cedurally, encapsulated, and hidden within an object which is seen as an atomic
filter. Therefore the resolution of the granularity is reduced hence coarse-grained

parallelism is provided.

Filters defined by objects in the object-oriented language can manage local
internal state and can be used to deal with any global state-transforming opera-
tions, such as input and output. State, whether it be global or local, is handled
only by the object-oriented code thus the dataflow code remains state-free. The
ability of the object-oriented code to fully manipulate state provides the potential
for the implicit parallelism of dataflow to be invalidated by side-effects in object
filters. We acknowledge this is and can do it little to prevent it but argue that
Lucian helps to control the careful usage of state. The interoperation of object-
orientation with dataflow reduces the need for state in the object-oriented code.
Additionally via object stream filters Lucian provides a way for state to be handled
procedurally which is hidden from the dataflow code, delegating the task to the
object-oriented paradigm as opposed to attempting to add the functionality for
state manipulation to the dataflow.

The action of nesting object filters into the dataflow component of Lucian is
syntactically expressed using a caret ‘∧’ operator with a class name from the em-
bedded object-oriented code and a set of parameters. Figure 8 shows an example
usage that uses an object as a filter for pretty-printing the Fibonacci sequence
of numbers. This example demonstrates internal state management within the
Pretty Print Fib filter object via a counter that is incremented for each input da-
ton received. The example also demonstrates global state effects by printing to the
standard output in the object-oriented code. All state transformation are left to
the procedural code, with the dataflow code remaining state-free.

Some preparation of the class used for as the object filter is required in the
current implementation, including subclassing it from a Node superclass which
provides interoperation via buffers to the inputs and outputs of the filter.

5. Applications

Aside from using declarative intensional objects to help formalise object-oriented
programming some interesting applications of intensional objects arise. One such
use is to manipulate object snapshot streams to facilitate versioned objects where
changes to objects can be “rolled-back” or undone. Versioned objects have par-
ticular use in user interfaces where undo and redo functionalities are required, or
even branching of versioned objects.

An interesting feature of dataflow languages such as Lucian and Lucid is
their ability to express dynamical systems, specifically in initial value problem
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<%

class Pretty_Print_Fib < Node

def initialize(x, y)

super(x, y)

@counter = 0

end

# Formatting expressed in Ruby

def pretty_print(a)

# Local counter state

@counter+=1

print "Fibonacci number "+@counter.to_s+" = "+a.to_s+"\n"

end

# Implementing the ’run’ method from the Node class

# Using input_buffers and output_buffer attributes

# added by the Node class

def run

a = @input_buffers[0].read

pretty_print(a)

@output_buffer.write(a)

end

end

%>

// Lucian code

// Use the caret operator to embed the Pretty_Print_Fib class

// from Ruby and use as a dataflow filter to print the fib sequence

^Pretty_Print_Fib(fib) where

fib = (1 fby (1 fby (fib + (next fib))))

end

An example execution of this program:

$ lucian pretty_fib.lcr; ruby pretty_fib.rb;

Fibonacci number 1 = 1

Fibonacci number 2 = 1

Fibonacci number 3 = 2

Fibonacci number 4 = 3

Fibonacci number 5 = 5

....

Figure 8. An example of embedding an object from Ruby as a
filter into Lucian’s dataflow code to handle local and global state,
pretty printing the Fibonacci sequence. The Ruby code is enclosed
by <% and %>.
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form. Analysis of dynamical systems aims to understand how a variable or system
of variables changes over time, thus analysis captures the intension of the variables
in the context of time.

An initial value problem is a system of ordinary differential equations defined
in terms of an initial value and the first order derivative for each variable in the
system of equations [8]. For example, variable y has a first order derivative in the
form:

ẏ(t) = F (y(t)) (3)

And an initial condition on the function y is specified:

y(t0) = y0 where y0 ∈ dom(F ) (4)

The definition of y(t) is typically unknown and F is usually independent of
time. Such a system is naturally expressable in Lucid or Lucian in the form:

y = y0 fby y + F (y)

Discrete small-step approximations may be used, as in the Euler technique,
to calculate a numerical approximation of the solution, where h is the small step
value:

y = y0 fby y + h ∗ F (y)

This simple definition of y captures the intension of the variable, evaluating
to the infinite time series of the approximate solution of y. Whole systems of
equations can be defined simply in this way, with the ability to apply more accurate
approximation techniques easily, such as Runge-Kutta:

y = y0 fby y + ydot

where

k1 = F (y)

k2 = F (Y + k1 ∗ h/2)

k3 = F (Y + k2 ∗ h/2)

k4 = F (y + k3 ∗ h)

ydot = y + (h/6) ∗ (k1 + 2 ∗ k2 + 2 ∗ k3 + k4)

One particular usage of dynamical systems in biology is the modelling of
biochemical reactions within cells.

The ever expanding field of systems biology seeks to understand biological
systems at all levels of abstraction not just focussing on a single aspect of a system
independent of other aspects. The systems biology approach aims to understand
the relationships and interactions between all aspects of a system in order to under-
stand emergent behaviours at an organismal level [9]. In the case of understanding
cells dynamical systems are used to model the biochemical reactions that take
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place within cells. While dynamical systems models are informative their relation-
ship with other aspects of a cell is still relatively unmodelled in systems biology. To
link biochemical reactions to higher behaviours requires models of other processes
and structures within the cell, such as membranes, receptors, or flaggela. Hybrid
modelling techniques are appearing in which abstract models of cell components
are integrated with dynamical models of the biochemical reactions.

Lucian’s natural ability to laconically express systems of dynamical equa-
tions is furthered by its ability to interoperate these time-series-like computations
with intensional objects which can model more abstract aspects and behaviours.
Therefore Lucian provides a basis with which to build hybrid models of complex
systems that unifies differential equations with other abstract models expressible
as intensional objects. Figure 9 presents a fragment of a hypothetical model of
a cell written in Lucian that combines dynamical equations with abstract models.
The model uses a Hopf bifurcation system modulated by a receptor, sensing the
environment of a cell, which controls the “tumbling” of a flagellum to propel the
cell. The intension of the variables x, y, and z in the differential equations, the
intension of the cell components, and the relationships between the two types of
model are captured succinctly within Lucian.

// Reaction Rates

r1 = 3.2*x*a

r2 = x*y

r3 = x

r4 = z

r5 = y

// First order derivatives

xdot = (r1 - r2) - r3

ydot = r4 - r5

zdot = r3 - r4

// Dynamics

x = 2.5 fby (x+h*xdot)

y = 2.5 fby (y+h*ydot)

z = 2.5 fby (z+h*zdot)

// Receptor concentration integrated into the dynamics

a = 1 fby (a + h*(receptor.concentration - (next receptor.concentration)))

// Abstract cell components

flagella = (new Flagella) fby flagella.tumble(x)

receptor = (new Receptor) fby receptor.sense()

Figure 9. A hypothetical hybrid model of a cell, modelled with
a dynamical system of a equations and abstract models of cell
components represented in objects (object-oriented code not
shown).
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Figure 10. A Kahn process network for the natural numbers
illustrating the concurrent implementations of Lucian programs.

6. Implementation of Lucian

A proof-of-concept implementation of Lucian is written in Haskell. Lucian pro-
grams are compiled by translating Lucian code into a target object-oriented lan-
guage, determined by the language of the object classes used for intensional objects
or filters, which in this case is Ruby. Interoperation with the popular Java and C#
languages is planned. Input to the Lucian translator is in the form of source code
that has dataflow and object-oriented code suitably delimitered with <% and %>
markers as can be seen in Figure 8.

The translated program forms a concurrent Kahn process network in which
independent parallel processes communicate via unbounded buffers within the
object-oriented language; filters are translated into processes, and streams are
translated into unbounded buffers.

For example a simple expression declaring the stream of natural numbers: n =

1 fby n+1 is translated into a Kahn-style process network by the Lucian translator
as in Figure 10. Processes are defined for the nodes 1, +, and fby, which pass
values between each other with concurrent buffers. The intermediate streams are
shown next to the edges in the process graph in Figure 10 representing the flow
of datons in the concurrent buffers joining processes.

The Lucian translation process allows an easily implementable and control-
lable integration process between the two languages (Lucian and Ruby) in which
the Lucian dataflow code is translated into the object-oriented language. If trans-
lation was made into a third language a higher formal understanding of the object-
oriented language would be required in order to translate both the object-oriented
and dataflow code into the third language. A complete treatment of the formal
semantics of an object-oriented language is rare as many object-oriented languages
are partially or totally undefined — true for Java and Ruby.

The scheme of translating Lucian into the object-oriented language works well
although as dataflow code increases in complexity the speed of execution rapidly
decreases due to large overheads in Ruby’s concurrency constructs. It is hoped
that these implementational issues will be resolved soon, although the current
implementation serves the purpose of being an initial proof-of-concept translator.
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6.1. Related Work

The language GLU (Granular Lucid) explores the concept of integrating dataflow
with the procedural paradigm. GLU (pronounced glue) combines the intensional
dataflow programming of Lucid with the procedural language C, allowing functions
written in C to be used as intensional filters within Lucid [10]. GLU’s C filters
allow coarse-grained parallelism in Lucid programs. GLU thus provides a similar
functionality to the embedding of object-orientation into dataflow in Lucian via
object stream filters. We feel Lucian’s object-based filters provides a more natural
model of a filter than a C procedure as an object filter encapsulates internal state
and implements method calls via message passing.

The OLucid language extends Lucid to allow classes defined in the object-
oriented language Java to be instantiated as datons in Lucid streams [11]. OLucid
has the benefit of allowing Lucid to operate with complex data structures that are
useful for real-world applications, rather than just the standard set of Lucid datons.
While there are some similarities between Lucian and OLucid the semantics of ob-
jects in OLucid differ from Lucian’s semantics. OLucid allows streams where each
daton is an individual object whereas Lucian presents a single intensional object
whose extensions are immutable snapshots. While OLucid is practical and has a
strong parallel eductive implementation the intensionality of the dataflow language
is compromised by the object constructs which do not preserve the intensional-
ity of Lucid. We feel Lucian presents a more coherent, intensionality preserving,
semantic model for interoperating objects with Lucid via declarative intensional
objects and object stream filters.

The notion of intensional objects presented in this paper differs significantly
from the intensional objects of Kropf and Plaice which are used in a intensional
warehouse system for intensional versioning [12]. The use of objects in a distributed
environment is discussed by Kropf and Plaice in which objects can have their imple-
mentations adapted based on their context. This differs from Lucian’s intensional
objects which are a direct intensional version of non-intensional objects.

Other notable uses of intensional programming have been in the domain of
real-time systems such as the language Lustre [13] and its derivatives which have
become well established in critical real-time systems programming in avionics and
control systems.

7. Conclusions and Further Work

This paper has presented the Lucian dataflow language, derived from Lucid, which
interoperates dataflow and object-orientation via two different embedding rela-
tionships. Lucian has successfully demonstrated that the paradigms can be suc-
cinctly combined providing a useful tool for the programmer. The interoperation of
dataflow and object-orientation in Lucian is not a simple foreign-function interface,
but is such that it resolves the semantics of objects, streams, and intensionality
relative to each other.
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The embedding of dataflow into object-orientation is realised via declarative

intensional objects in which streams of object snapshots define the intension of
an object. This presents a formal declarative method for defining object-oriented
programs in terms of histories of computations on objects.

The converse embedding relationship of embedding object-orientation into
dataflow is realised through object stream filters in which objects defined in an
object-oriented language are used as filters in dataflow. This facilitates handling
local state and input/output from a dataflow program promoting practical appli-
cations. Functionality defined procedurally in filters also reduces the granularity
of implicit parallelism by expressing finely granular operations procedurally in an
atomic, encapsulated object stream filter.

While the Lucian translator is still in development it is usable with many
operable sample programs. This includes some larger programs as alluded to in
Section 5 that show the benefits of mixing declarative dataflow programming with
object-orientation. Specifically we have given details of using Lucian to define
hybrid models for the purpose of systems biology modelling and simulation in
which models of dynamical systems are unified with other system components
abstractly modelled with objects.

We accept that the current inability of intensional object method calls to
return a value directly into a stream is a loss in expressivity. The return value
of a function must be explicitly stored in an object attribute to be retrieved. A
possible future solution may be to offer syntax to reference the return value of a
method. For example suffixing the method call with an exclamation mark:

x method return = x.method(param1, param2, . . .)!

This expression would not actually call the method on x but would evaluate
to the stream of datons from any calls to method. This problem requires further ex-
perimentation and exploration to provide the most expressive and natural solution
inline with the semantics of intensional objects.

While operational and denotational semantics for Lucian have been formally
defined the definitions are incomplete as the object domains are unknown and the
semantics of the underlying languages are undefined. We would like to see further
work in strengthening the formal specification of Lucian, perhaps using Abadi and
Cardelli’s imperative object calculus [14] combined with stream calculus [15].

Lucian has allowed for an exploration of the issues involved in creating a
multi-paradigm language that interoperates languages of different paradigms via
more than just a simple data-marshalling foreign function interface. Lucian has
given a sufficient example of how dataflow and object-orientation can be conjoined,
and raises questions in the area of the semantics of combined paradigm languages.
It is our hope that further work will develop the formalism of multi-paradigm
languages and that concepts of intensionality and dataflow will find their way into
main stream programming to improve the expressivity of techniques, languages,
and tools available to the problem solver.
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