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Abstract

A central aim of systems biology is the strengthening of quantita-
tive and qualitative knowledge of biological systems by studying the
interactions between components and processes that lead to emerg-
ing properties and behaviours. Systems biology proliferated over the
latter half of the 20th century with the aid of technological advances
and subsequent interdisciplinary research between natural scientists,
computer scientists, and mathematicians. In this paper we present
µCell, an interdisciplinary research project undertaken by undergrad-
uates at the University of Warwick, seeking to aid systems biology
intuition. The project delivered a modelling and simulation tool for
multi-cellular environments aimed at simulating higher-level cellular
behaviours based on the interoperation of metabolic dynamics models
of cell biochemistry and procedural models of cell structures, such as
flagella. Based on these interoperated models µCell is able to simulate
spatial properties and behaviours of cells, such as chemotaxis. This
paper introduces µCell , gives a case study model and simulation, and
discusses the pedagogical outcomes of the project for the students.

Note

This is an author’s PDF version of the paper published in the

Reinvention Journal, April 2009. Any quotations should be taken

from the online version of this paper as this PDF may contain mi-

nor grammatical variations. The published article can be found online at
http://www2.warwick.ac.uk/go/reinventionjournal/issues/volume2issue1/orchard.

1 Introduction

Technological and scientific progress has yielded successively higher resolu-
tion techniques for the observation and manipulation of cells, aiding biologi-
cal research. However, there is still much to be understood. The interaction
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of cells with their environment and with each other, via processes such as
adhesion, movement, and quorum sensing, induces behaviour such as cell mi-
gration, aggregation of cells into tissues, precision growth across relatively
large distances, and group behaviour such as fruiting body formation [10].
A thorough understanding of the cause and control of such behaviours is
difficult due to the complexity of cells and their interactions.

Studying components and processes of cell independently from other
components and processes often fails to expose the full spectrum of a cell’s
properties and behaviour. The study of emergent behaviours and properties
at the cellular and organismal level requires an understanding of the dy-
namic interactions and causal relationships between individual lower-level
processes within a cell, and between cells. Such study is the focus of the
burgeoning field of systems biology [13]. In the last decade, interdisciplinary
research between natural scientists, computer scientists, and mathemati-
cians has greatly improved understanding through computational analyses,
modelling, and simulation.

We present here the µCell modelling and simulation tool for multi-
cellular environments where spatial behaviours can be simulated from mod-
els of biochemical signalling pathways interoperated with abstract procedural
models of cell components, such as flagella. The models are procedural in
the sense that they describe the operations of a component in the form of
a program procedure. This model-interoperation approach contrasts with
the approach of deriving spatial simulations purely from abstract statistical
models, such as in the Cellular Potts Model [7]. The aim of µCell is to
improve understanding of the mediating role of cell biochemistry to spatial
behaviour.

This paper introduces µCell and, as an example, discusses the modelling
and simulation of flagella-based chemotaxis, a form of cell motility, in E. coli
bacteria using µCell.

µCell is the result of interdisciplinary research undertaken by a group
of six final year undergraduate students in the Department of Computer
Science at the University of Warwick during 2007/2008 for the fulfilment
of the final-year group project requirement for the MEng Computer Sci-
ence course1. The University of Warwick is a leading university in inter-
disciplinary biological research with the Warwick Systems Biology Centre2,
Warwick Complexity Complex3, and the Molecular Organisation and As-
sembly in Cells Centre4. Furthermore the University of Warwick is a fore-
runner in undergraduate research with the Undergraduate Research Scholar-
ship Scheme5, Re:Invention Center for Undergraduate Research6 and jour-
nal7, with opportunities for research-based projects in many undergraduate

1http://www2.warwick.ac.uk/fac/sci/dcs/teaching/modules/cs407
2http://go.warwick.ac.uk/systemsbiology, 3http://go.warwick.ac.uk/complexity
4http://go.warwick.ac.uk/moac, 5http://go.warwick.ac.uk/urss
6http://go.warwick.ac.uk/reinvention, 7http://go.warwick.ac.uk/reinventionjournal
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courses. This work is an example of the intersection of interdisciplinary and
undergraduate research.

The project was supervised by Sara Kalvala, a computer scientist in the
field of computational biology and conducted under the advisement of David
Whitworth, a biologist involved in systems biology research. Central aims
of the MEng group project are to:

• promote experience in collaborative team work on substantial projects,

• improve communication skills,

• improve skills in team and project management, raising awareness of
the issues involved in group projects,

• and to gain experience in coauthoring a sizeable project report.

Students are encouraged to tackle projects with scope for interdisci-
plinary work.

This paper is structured as follows. Section 2 describes the materials
and methods, including the computer science methods and software devel-
opment techniques employed in developing µCell, the key components of
the µCell software, and the example models used to simulate chemotaxis.
Section 3 describes the results of chemotaxis simulations in µCell and the
learning outcomes of the project. Section 4 describes related work, followed
by a discussion of further work and conclusions.

2 Materials and Methods

2.1 Materials and Methods for Development of µCell

The team had a diverse range of software development and computer sci-
ence skills that were employed in developing µCell, incorporating 2D and
3D graphical programming, XML data handling, parsing and handling syn-
tax trees, object-oriented data patterns, and functional programming. The
biological aspect of the project presented the team with a significant chal-
lenge due to insufficient understanding of the problem domain as no member
of the team had a biological background. The agile software development
methodology (in particular extreme programming (XP) [3]) was therefore
employed to minimise the risk of not satisfying the requirements of the soft-
ware. Agile methodologies such as XP promote multiple, short development
iterations throughout a project with frequent evaluation phases. Change is
facilitated as the team develops a deeper conceptual understanding of the
task informed by their own development and exploration.

Time was spent learning the biological background and exploring the core
component requirements of µCell via prototyping. Learning was enhanced
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through enrolment in a fourth year computational biology course1 by all
team members.

The foundational components of the µCellprogram (such as the data
structures, data parser, formula parser, and simulator) were developed us-
ing the test-driven development approach, where the design process for a
program component’s functionality is followed by development of test code,
giving a procedural specification for the intended functionality of a compo-
nent prior to implementation. Extensive tests form a basis for testing func-
tional equivalence of code between development iterations, thus enabling
safe refactoring and reimplementation.

The team used the object-oriented language C# for its speed and cross-
platform capabilities. The team employed standard collaborative develop-
ment tools such as Subversion for source code and documentation version
control, BaseCamp project management for online collaborative design and
decision making, and the Eventum bug tracking system for collecting bugs
and assigning members to resolve the issues. The Visual Studio integrated
development environment and the MonoDevelop environment were used as
development platforms.

2.2 µCell overview

The µCell software comprises three main components: the editor, simulator,
and analyser. Included in this section are screenshots of µCell. The software
can be downloaded from the µCell Wiki2 along with the µCell manual.

2.2.1 Editor

The editor provides an interface for the construction and configuration of a
cell models and experiments. An experiment consists of a set of cell models,
called cell definitions, and a set of simulations. Simulations consist of an
environment, a configuration of cells instantiated from cell models, and vari-
ous parameters governing data capture for analysis. Cell models are defined
in terms of signalling pathways that model the biochemical reactions within
a cell, and in terms of a set of predefined cell component models. These pre-
defined procedural cell component models may have some parameters but
are atomic: the user cannot deconstruct them or modify them directly.

Signalling pathways are constructed in the cell definition editor by draw-
ing graphs of reactions and molecules (called species) (Figure 1) where reac-
tion rates are described in mass action form. Pathways can be imported and
exported using the Systems Biology Markup Language (SBML) [9] standard.
The procedural cell component models can be integrated into a signalling
pathway as nodes in the pathway graph where input and output points of

1http://www2.warwick.ac.uk/fac/sci/dcs/teaching/material/cs904/
2http://github.com/dorchard/mucell/wikis/
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Figure 1: µCell cell model editor - Editing an imported SBML model.

the components are linked to species. Thus the procedural cell component
models can be placed in signalling pathway and can affect changes or be
affected. Procedural models linked into a pathway cannot be exported to
the SBML format as they are not part of the SBML standard.

Simulations are constructed by configuration of an initial state, including
the size and shape of the environment (box, tube, petri-dish, or sphere/orb
Figure 2), spatial arrangement of cells, staining of cells (as is standard prac-
tice in real-world experimental biology) (Figure 3), concentration gradients
(Figure 4), and other global parameters regarding the environment or sim-
ulation. For statistical analysis and data logging time-series can be defined
in terms of formulae associated with the simulation to be calculated at user-
defined time intervals (Figure 5).

2.2.2 Simulator

The simulator runs a simulation from a given experiment. Cells are instan-
tiated from cell definitions (models) each having their own set of internal
chemical concentrations used in the signalling pathway, spatial properties
(such as velocity and orientation), and parameterised components belong-
ing to the cell as described by the procedural models.

Signalling pathways are simulated using finite difference methods such
as Runge-Kutta and Euler methods for the approximation of differential
equations. Approximations are computed iteratively using the time step
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Figure 2: µCell spatial environment editor - Defining the size and shape of
the simulation environment.

Figure 3: µCell spatial editor for cells - Defining initial cell placement.
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Figure 4: µCell concentration gradients editor - Defining concentration fields
and diffusion.

Figure 5: µCell time series editor - Defining formulae for time-series data to
be generated by a simulation.
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Figure 6: µCell Analyser - The 3D simulation environment shows the spatial
position of cells. A 2D planar view of the concentration scans over the
environment.

interval specified in the simulation configuration.
All formulae ascribed to the simulation, time-series formulae and reaction

rates, are parsed from their user-specified form into an abstract syntax tree.
The abstract syntax tree is “folded” into a C# function during initialization
of the simulation using C#’s functional programming concepts. The folded
function provides an efficient representation for calculating formulae at each
iteration of the simulation.

Whilst pathways are simulated via approximations of differential equa-
tions, the procedural models of cell components are hard-coded as C# classes
with “step” methods run at each iteration of the simulation which may in-
teract with local chemical constituents, either within the cell, or in the
environment at the current spatial position. Procedural models can affect
other parameters of the cell such as spatial properties.

An additional spatial simulator, which resembles a classic physics simula-
tor, maintains cell locations, collisions, and boundaries within a continuous
Cartesian space, as opposed to quantising locations into a grid as in cellular
automata. In the current simulator, cells reaching a boundary are simply
deflected without loss of energy. By default the cells are represented as
points in the space but can be given a size and mass via the “cell body”
component for simulating collisions.
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Figure 7: µCell Analyser - Plots showing concentration of attractant during
chemotaxis and run duration for 5 sampled cells.

2.2.3 Analyser

The analyser provides an interface for viewing data collected during and
after a simulation, and provides feedback on simulation progress. The anal-
yser provides a 3D representation of the spatial environment and the cells
within it (Figure 6). Concentration gradients are shown via a 2D planar slice
that moves through the environment showing a coloured representation of
the concentration in that plane where a lighter colouring corresponds to
a low molar concentration and a darker colouring corresponds to a high
concentration.

The analyser also provides access to time-series data generated during
simulation in the form of plots (Figure 7). The raw numerical data for the
plots can be viewed and exported to CSV format for importing into other
tools, spreadsheets, or analysis tools. We developed a few small external
tools for analysis of flagella run and tumble duration data, written in Haskell,
which will later be incorporated into µCell.

2.3 Modelling and Simulating Chemotaxis

The following section explains the features of µCell that allow the mod-
elling and simulation of more complex behaviours in cells that bring to-
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gether signalling pathways and cell components. In particular, we explain
how µCell can be used for the modelling and simulation of flagella-based
chemotaxis in E. coli towards an arbitrary attractant by a biased random
walk.

In the simulation, the random walk effect of the chemotaxis is induced
by the interoperation of signalling pathway models with procedural models
of receptor and flagella, and simulations of concentration gradients. The
simulated random walk behaviour of chemotaxis is not encoded explicitly in
any of the models but is an emerging behaviour of the system.

2.3.1 Introduction to Chemotaxis

Chemotaxis is a form of cell motility that is promoted by chemical concen-
trations in an environment. Chemicals promoting chemotaxis may act as
attractants or repellents, affecting the average directional movement of a
cell. Remarkably, chemotaxis allows a cell to move up an attractant concen-
tration gradient (or down a repellent gradient) despite the fact that a cell is
too small to measure a concentration gradient in space. This cell overcomes
its size limitation by measuring the concentration gradient temporally [18].

There are many modes of transport for a cell performing chemotaxis.
Here we focus on chemotaxis facilitated by flagella. Motile force is pro-
vided by a bundle of flagella which rotate either clockwise or anticlockwise.
Anticlockwise rotation of the flagella produces a force directed towards the
centre of the cell, propelling the cell forwards in a straight line called a
run. Clockwise rotation of the flagella produces a force directed away from
the centre of the cell resulting in the cell tumbling3 randomly on the spot.
The cell alternates between the two phases of either tumbling or running
with some tumble probability affecting the tumble frequency. A temporal
increase in attractant, or decrease in repellent, reduces the flagella tumble
probability, thus reducing the tumble frequency (on average), resulting in
longer runs when moving up a concentration gradient of attractant or down
a concentration gradient of repellent. Conversely a decrease in attractant, or
an increase in repellent, increases the tumble probability, thus runs become
shorter [4]. Thus, the cell performs a random walk with a bias towards a
high concentration of attractants and a low concentration of repellents.

The cell adapts its internal biochemistry to the new level of attractants
in the environment as it moves in a straight line so that the cell converges
to a stable tumble frequency in both extremely high and extremely low
levels of concentration. In effect, the tumble frequency is independent of the
magnitude of concentration; a temporal gradient of concentration is required
to stimulate the cell to alter its tumble frequency.

The link between chemotaxis and flagellar motion has been the subject of
much interest over the last 30 years, and E. coli has been a very commonly

3Some older literature refers to this action as twiddling.
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used model for the study of this mechanism. The signalling pathway for
sensing is well understood [15], however “much remains to be understood”
about the flagellar motor [19]. The extensive knowledge of E. coli motility
has been derived from wet experiments and biophysical modelling; a spatial
simulation linking the flagellar motor’s effect with the signalling pathways
could be a useful addition to the arsenal of tools available to bacteriologists.

Our chemotaxis model is derived from a simple metabolic network of
just three molecules and procedural models of receptors and flagella. The
procedural model for a receptor is extremely simple in µCell, taking a sample
of a specified molecule’s concentration at the cell’s current spatial position.
The model of a receptor thus resembles the very entry point of a molecule
into a cell – there are no methylation bindings for controlling reception in
the model. Concentration gradients and diffusion are simulated in µCell by
a lower resolution approximation of the spatial environment. We describe
the method for simulating concentrations first, followed by the signalling
pathway used in the chemotaxis model, and finally the flagella bundle model.

2.3.2 Simulating concentration gradients and diffusion

µCell discretises the concentration gradients in the spatial environment by
approximating the environment as a set of discrete cubes of uniform volume
that describe a uniform molar quantity of some molecule. The size of the
cubes, hence the resolution of the approximation, can be configured in the
simulation parameters to suit available system resources; higher precision
approximations result in greater memory usage. A mapping from points in
the continuous spatial environment to corresponding discrete cubes returns
the concentration of a molecule at a point in the environment. Diffusion is
simulated across each face of a cube at a constant diffusion rate specified by
the user.

The initial distribution of a concentration can be specified either uni-
formly or as a densely centred sphere that approximates an initial diffusion
from a fixed point. An initial quantity is set by the user specifying the
concentration of the molecule that will be added to the environment.

The discretisation process poses a problem for chemotaxis as it intro-
duces sudden, sharp changes in concentration between cubes and uniform
concentrations inside a cube. Chemotaxis relies on continuous changes in
the concentration gradient. The discretisation problem is overcome by in-
terpolation using Gaussian weighting (see Appendix A).

2.3.3 Signalling pathway for Chemotaxis

The metabolic pathway for the chemotaxis model is derived from the known
chemotaxis pathway of E. coli with some simplifications; Figure 8 shows
the metabolic pathway. We focus on the molecules: CheA, CheB, CheR,
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Figure 8: Pathway for bacterial chemotaxis in E. Coli taken from the KEGG
database. [11, 12]

CheW, CheY, and CheZ. Attractants and repellents are bound to specific
transmembrane receptors (chemoreceptors) (on the left hand side of Fig-
ure 8) which are coupled with a scaffolding protein (CheW) and a histidine
kinase (CheA) to form complexes within the cell. CheA phosphorylates itself
modifying the rate at which a messenger protein (CheY) is phosphorylated.
The phosphorylated form of CheY (CheYp) modulates the flagella bundle’s
tumble probability. Binding of attractants to receptors decreases the rate
of CheA phosphorylation, which decreases phosphorylation of CheY, result-
ing in a lower probability of tumbling, explaining why higher concentrations
of attractants produce longer runs. The pathway adapts to high and low
concentrations so that the chemotaxis behaviour is solely dependent on tem-
poral changes in concentrations, independent of magnitude.

Adaption to a concentration’s magnitude occurs via methylation of the
chemoreceptors controlled by CheBp which demethylates the receptor and
CheR which methylates the receptor. CheAp inversely promotes the phos-
phorylation of CheB. In low concentrations of attractant and high concen-
trations of repellent the amount of CheAp is high resulting in less CheB
phosphorylation thus less demethylation of the receptor. This increases
the methylation effect of CheR, which increases the amount of CheA phos-
phorylation, which increases the phosphorylation of CheY. Thus, in lower
concentrations of attractant the tumble probability increases. CheY is de-
phosphorylated rapidly by CheZ. For more details see [2, 6].

We use a simplified version of this pathway where methylation through
CheR is removed by using only CheB to directly affect adaption. Because
the receptor models are extremely simple without adaption through methy-
lation, the methylation of receptors must be approximated within a single
reaction which mediates the phosphorylation of CheA. Thus, the adaption
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Figure 9: The chemotaxis pathway in the µCell cell definition editor.

process is simplified in our model to allow it to be more easily expressed in
a single reaction. The implication of this simplification is that adaption is
faster acting and has a greater effect as it is not mediated through a fine bal-
ance of methylation by CheR and demethylation by CheBp. Additionally,
we eliminate the scaffold molecule CheW, due to the simplified receptors,
and the promoter of CheY dephosphorylation, CheZ, as it is a constant
that can be expressed in the reaction. These pathway simplifications fit our
simplified receptor model giving a smaller model that is quicker to simulate
than a full adaption process.

Figure 9 shows the chemotaxis pathway defined in µCell. Reaction rates
are defined in µCell in mass action form. For the chemotaxis pathway the
reactions are:

Ap
50×Ap
−−−−→ A

A

50×(Repellent+1)
1+Bp+Attractant×400×Bp
−−−−−−−−−−−−−−−−→ Ap

B
8×(Ap−1)×Bp
−−−−−−−−−→ Bp

Bp

Bp

800×Ap+1
−−−−−−→ B

Y
10×Ap
−−−−→ Y p

Y p
10×Y p
−−−−→ Y

(1)
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2.3.4 Modelling Flagella

As described above, the tumble probability of a cell is controlled by the ef-
fects of the phosphorylated CheY molecule on the flagella bundle. Figure 10
informally describes the procedural model of the flagella bundle. The flag-
ella bundle model consists of two alternating states: running and tumbling.
Each state has a duration of time spent performing the action of that state.
The tumble duration is determined by the maximum tumble duration spec-
ified in the flagella parameters minus a random scaling, between 0 and 0.5,
of the maximum tumble duration. During tumbling, the cell re-orients itself
randomly. The run duration is a multiple of the reciprocal of the tumble
update frequency, i.e. tumble update time (specified in the cell definition
editor), which acts as a minimal unit of running time. The concentration of
CheYp is tested in each iteration of the run state and changes the likelihood
of switching back to tumble. When CheYp is high the likelihood of switching
is high (0.9), when it is low the likelihood of switching is low (0.1). During
a run the cell is propelled forwards in the current orientation.

This model is hard-coded in C# into µCell. In the future, we hope
to provide an abstract procedural modelling language for modifying and
defining new components (see Further Work).

Figure 10: Informal description of the tumble and run behaviours in the
flagella bundle model.

2.4 Chemotaxis Experiment

In order to test whether µCell was able to capture the link between mod-
els for flagella and receptors and a known signalling pathway controlling
chemotaxis, we carried out simulated experiments testing the operation of
the models.
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2.4.1 Experiment 1

The first experiment tests the average run duration of chemotaxis in the
presence of an attractant. A chemotaxis-enabled cell was placed in an envi-
ronment with an attractant concentration gradient; the average run duration
was measured and compared with the average run duration for a control cell
in an environment where no gradient was present. The tumble durations
were also measured, with the understanding that they would be approxi-
mately the same in both cases, as, in our model, the tumble duration is
independent of the attractant concentration.

The spatial environment of the experiment was a cuboid of size 80 ×

80 × 80mm3. Into the environment we placed a single cell whose model
contained the chemotaxis pathway described previously, a single attractant
receptor model, and a flagella bundle model, configured with the default mo-
tive strength 0.8, tumble update frequency 0.5, and max tumble duration 2.
The cell was placed near the edge of the environment at co-ordinates (-25, 0,
0), 15mm from the boundary and 25mm from the centre of the environment.
In the control test there was no attractant present. In the main test, we
specified a densely centred sphere of attractant concentrated at the centre
of the environment, with radius of 30mm and central concentration of 10.0
micromoles in total – equivalent to injecting a 10.0 micromoles attractant
concentration at the centre of the environment and allowing it to evenly
diffuse before the start of the experiment up to a radius of 30mm from the
centre in each direction. The constant rate of diffusion we used was low, at
0.001.

The experiment was run for 400s with a temporal resolution of 0.05s.
The control test and main test were repeated 5 times each with 5 cells
tracked each time. The mean run duration of a cell was measured. The
results are shown in Section 3.1.1.

2.4.2 Experiment 2

The second experiment tested whether the average run durations of a cell
eventually decrease when a high concentration is reached, thus allowing
cells to congregate at the highest concentration of an attractant and remain
in the vicinity. The second experiment also tested whether cells actually
move up the concentration gradient towards the higher concentration of the
attractant.

The spatial setup was the same as the first experiment, although here
we used 100 cells uniformly distributed in the spatial environment. In the
control test we placed no attractant and in the main test we again added
a 30mm radius densely centred sphere concentration gradient of 10 micro-
moles in total. The constant rate of diffusion used was low at 0.001. The
experiment was run for 800s with a resolution of 0.05s and observed 3 times.
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The average attractant within the cell population was measured during
the experiment, and we hypothesized that it would steadily increase as the
cells congregate in the centre, but that the first derivative of the cell pop-
ulation curve would eventually decrease as cells reach the relatively stable
region of the high concentration. The results are shown in Section 3.1.3.

3 Results

Described in this section are the results from the two chemotaxis experi-
ments in µCell and a brief note on the results of the project in terms of the
µCell tool and the learning outcomes for the team.

3.1 Chemotaxis Experiment

The general behaviour observed in these simulations matched the experi-
mental behaviour of E. coli chemotaxis reported in the literature.

3.1.1 Experiment 1

The results for the first experiment are tabulated in Figure 11. When cells
were placed in the environment with an increasing concentration gradient
towards the centre, the mean run duration increased to just over twice that
of the control group with no attractant present. This matches the expected
behaviour of cells performing chemotaxis towards an attractant. The mean
maximum run duration was much higher in the main experiment than in
the control experiment.

As predicted, the mean tumble time was roughly the same (up to 2
decimal places) in the control and the main experiment, with a very slight
difference in the mean deviation, as the tumble duration is independent of
the attractant concentration. The maximum tumble durations are identical,
as they are fixed in the flagella model at 2s as stated in the experiment
method (the 0.05 extra represents one extra time step that can elapse before
switching state).

Control Main

Concentration (moles ×10−6) 0 10 densely centered sphere

Mean tumble duration (s) 1.52 ± 2.77 1.52 ± 2.73
Mean run duration (s) 2.25 ± 6.25 4.55 ± 0.42

Max run duration (s) 5.82 ± 1.10 29.68 ± 6.76
Max tumle duration (s) 2.05 ± 1.33 2.05 ± 1.33

Figure 11: Experiment 1 results (to 2 decimal places) ± mean deviation
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3.1.2 Comparing Results of Experiment 1 to Real Experimental

Data

We compared the results from experiment 1 with real-world experimental
data for chemotaxis of an E. coli “wild type” of in a capillary tube with a
concentration gradient of 10 micromoles of serine from [17]:

Control Gradient

Concentration (moles×10−6) 0 10

Mean run duration (s) 0.83 ± 0.88 1.67 ± 2.56

Although these real-world measurements differ from our simulation re-
sults, both exhibit the same behaviour of run duration roughly doubling
in the presence of a gradient. In fact, we can use experimental data such
as this to adjust the model parameters. In this case, the tumble update
frequency can be scaled according to the magnitude difference between the
µCell results and the real-world results. Using a tumble update frequency
of 1.355 instead of the previous 0.5, µCell measures the following:

Control Gradient

Concentration (moles×10−6) 0 10

Mean run duration (s) 0.83 ± 1.44 1.74 ± 0.33

Note, however that the average deviation is very different between the
experimental data and the data collected from µCell. We conjecture that
this is a result of the approximated adaption pathway in our pathway model
for chemotaxis. The approximated adaption pathway results in overly quick
adaption to the magnitude of the relevant concentration. Therefore, the
mean deviation of a cell’s tumble duration when in a gradient is lower than
expected as the pathway adapts more quickly to a higher concentration,
thus less deviation occurs. The probability weightings of the flagella model
may also require further tuning. Further collaboration with biologists would
be needed to tune the models based on results from real-world, in vivo
experiments.

3.1.3 Experiment 2

Figure 12 shows that in our simulation the mean attractant over all cells, in
all three experiments, increased in the presence of a concentration gradient
and the first derivative of the curve decreased as the cells reached the area
of greatest nutrient concentration. The curve is irregular at its limit due to
tumbling and short runs resulting in occasional forays into areas of slightly
lower concentration.

Figure 13 shows one set of visual results from the 3D spatial environment
for the first 400 seconds of the simulated time. In the control situation
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(Figure 13(b)), the cells wander randomly with no attractant to promote
directed movement. Conversely, in the presence of a concentration gradient
(Figure 13(a)) almost all the cells converge in the high concentration area
in the environment’s centre. There are a few cells that have not reached the
centre due to the fact that chemotaxis, even though it is a biased walk, is a
random walk and can therefore be unsuccessful for a long time.
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Figure 12: Mean attractant across all cells increased as they moved up the
concentration gradient, eventually reaching a plateau as the cells converge
at the area of highest concentration.

3.2 The µCell software

The µCell tool developed during the project was successful in its goal to be
practical and usable for modelling and simulation of cell behaviour in spatial
environments. The tool is (we hope) easy to use and may also be useful as
a teaching tool in biology. The tool is now freely available as open-source
software and has a public code repository and Wiki4. A video is available
showing µCell being used in a chemotaxis experiment5. Development of the
tool has continued, albeit slowly, since the formal end of the project, and
we expect to collaborate further with biologists to improve its usefulness.
The µCell tool will be discussed in the context of related work in the next
section.

4http://github.com/dorchard/mucell/wikis
5http://github.com/dorchard/mucell/wikis/screenshots-and-videos
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Figure 13: Screen captures of the 3D spatial environment shown from the
front during simulation at approximately 100 second intervals.
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3.3 Learning outcomes

The team’s study of the undergraduate computational biology course and
the work on the µCell project were mutually beneficial, promoting research
as learning, and providing domain-specific knowledge for interdisciplinary
research. Biological insights were developed parallel to computer science
skills acquired and developed during the project, including: collaborative
software development, use of the C# language, and the use of collaborative
tools for software development, version control, and bug tracking. Addition-
ally, skills in project management, communication, writing, and collabora-
tion were learnt and reinforced.

The team thoroughly enjoyed the project and benefited greatly from
being involved in a different area of scientific research from computer sci-
ence. The team was exposed to biological research, and more generally
to methodologies and common practices in another scientific field. Group
members gained an understanding of common cell processes, biochemistry,
signalling pathways, diffusion mechanics, flagella mechanics, SBML, and of
the issues in computational modelling and simulation of cells.

The project was deemed to have satisfied the requirements for the MEng
group project and all students received a first class grade for the work.

4 Related Work

There are numerous tools that provide modelling and cell design abilities
and/or simulation features to aid research in biology. A few projects that
share some commonality with µCell will be discussed here.

The modelling and simulation of signalling pathways can be performed
with many existing tools; the SBML website provides an extensive list of
software supporting SBML models 6. µCell does not claim to improve upon
these tools in terms of speed of simulation or SBML-support but is novel,
as far the authors are aware, in providing a tool for combining pathway
models with pre-defined models of cell components for the simulation of
spatial behaviour.

Virtual Cell, an advanced tool for cell simulations based on layers of
models, performs complex spatial simulations of compartments and mem-
branes within a single cell derived from real geometric data [16]. The spa-
tial simulations within a cell in Virtual Cell are at a finer granularity than
µCell’s spatial simulations at the multi-cellular level. Virtual Cell provides
some similar features to µCell, such as the simulation of diffusion of con-
centrations, although Virtual Cell employs more advanced fluid dynamics
techniques. Virtual Cell uses a system for compiling user formulae into code
for simulation, similar to our own approach of folding abstract syntax trees

6http://sbml.org/SBML Software Guide/SBML Software Summary
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for formulae into functions.
The BioSPICE open source framework for modelling and simulation in

systems biology is an extendable framework with a multitude of pluggable
modules that can be configured to interoperate [14]. Systems Biology Work-
bench (SBW) is a grand effort to combine the best tools from all aspects
of biological modelling into a single complete framework to enable interop-
eration between tools via standardisation [8]. The SBML standard is at
the heart of this endeavour, originally introduced by the same organisation.
BioSPICE and SBW are both formidable systems that are at times diffi-
cult to use, with a high barrier of entry for inexperienced users. µCell is
more specific and succinct in its purposes and features, although the spirit
of interoperation is shared at a smaller scale of model interoperation.

Another approach to modelling and simulation of spatial behaviours
is through the programming of custom models, either through generalised
modelling tools or programming languages. For example, NetLogo [20] pro-
vides a generalised programmable modelling environment into which µCell-
like models and simulations could be programmed. Other spatial models
have been implemented using custom programming languages, such as the
simulation of aggregation in Dictyostelium molds using a specially devel-
oped “cell” programming language [1]. µCell provides specialised modelling
and simulation tools for emerging behaviours of cells without requiring any
programming experience from the user.

The CompuCell3D modelling environment provides 2D and 3D visuali-
sations of various cell models [5], including cellular Potts model simulations
of morphogenesis – the shaping of cells. CompuCell3D is also capable of
simulating other processes such as clustering, cell death, cell haptotaxis (di-
rectional growth of cells), and chemotaxis. CompuCell3D uses custom mod-
ules written in C++ and Python, requiring programming expertise from the
user and custom rules bases to produce models and simulations, as opposed
to providing pre-defined models and using lower-level biochemical dynamics
to drive these processes as in µCell.

Spatial behaviours have been modelled and simulated using statistical
models, such as extended Potts models [7], whose behaviours are not medi-
ated by signalling pathways as in µCell.

5 Further Work

There is a considerable amount of potential further work. A more extensive
list with outlined research proposals for student projects, is available on the
µCell Wiki7. We discuss a few areas of work briefly.

Currently, the numerical accuracy of measurements within µCell is cor-
rect up to the definition of the models, but measurements taken from simula-

7http://github.com/dorchard/mucell/wikis/further-work
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tions may not match measurements from in vivo experiments. As suggested
in Section 3.1.2, the parameters of models can be tweaked to give data that
matches experimental data to an extent, but further collaboration with bi-
ologists is required if more realistic measurements are to be achieved. An
example usage of µCell in research may be the modification of a signalling
pathway due to a genetic fault and to test the effects of this modification on
the emerging behaviours of the cell. For example, in E. coli chemotaxis, if
CheY can not phosphorylate quickly enough due to some unusual inhibition
relation, will chemotaxis occur?

Currently, there are only procedural models for flagella bundles, recep-
tors, and cell bodies (which facilitate cell collisions). This set should be
extended to include components for modelling further processes such as cell
growth, death, mitosis and cytokinesis (cell division), haptotaxis, and cell
excretion. Furthermore, there should be tools for the user to develop their
own procedural models of cell components. This may involve some form of
synthetic language, or construction tool, that should be sufficiently flexible
to allow definition of current and future models.

Additionally there are still plenty of improvements that can be made to
µCell within current requirements to improve the user experience, such as
more comprehensive error messages, improved saving and loading facilities,
and the fixing of known bugs in the user interface.

6 Conclusions

This paper has introduced the µCell software tool for modelling and simu-
lation of multi-cellular environments with a particular focus on the spatial
behaviour of cells. The spatial behaviour of cells can be modelled in µCell via
the interoperation of signalling pathway models (defined in the SBML data
format) with pre-defined procedural models of cell components, such as flag-
ella bundles. Thus spatial behaviours are controlled by a cell’s signalling
pathway. This, approach to spatial simulations differs from stochastic ap-
proaches or cellular automata based approaches. The capabilities of this tool
were demonstrated with two experiments showing µCell’s ability to model
and simulate E. coli chemotaxis. A user of µCell is not required to do any
programming of their own as the procedural models of cell components are
built-in and configurable.

At a meta-level, this paper has also presented a case study of interdis-
ciplinary research at undergraduate level. The research project was under-
taken by a group of six fourth year computer science at the University of
Warwick. Their inital lack of biological knowledge required them to un-
dertake their own learning, through courses, books, papers, and discussions
with biologists in order to understand the problem domain. Thus an out-
come of this project, apart from the µCell software, has been the increase
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in the students’ scientific knowledge, and proliferation of skills in research.
It is our hope that the successful development of µCell and the outcomes

descbribed in this paper inspire further students to take on interdisciplinary
research at both undergraduate and postgraduate level.
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A Interpolation using Gaussian Weighting

The discretisation of the continuous simulation environment into cubes pro-
duces discontinuous changes in concentration between cubes and a constant
concentration inside a cube. Chemotaxis relies on continuous changes in the
concentration gradient thus the discontinuity and quiescence poses a signif-
icant problem for the chemotaxis simulation. The problem is overcome by
interpolation using Gaussian weighting.

A co-ordinate (x, y, z) in the simulation environment has a mapping to
a cube with co-ordinates (i, j, k) in the approximated concentration space.
Each cube has 26 neighbours that are connected either by an edge, face, or
vertex. The 27 cubes surrounding (i, j, k), including itself, are sampled, tak-
ing a weighted average of each where the weighting is based on the distance
from the (x, y, z) to the centroid of each cube (illustrated in Figure 14 with
5 cubes as opposed to 27). A Gaussian function is applied to each distance
to provide smooth interpolation:

f(P ) =

27∑

i=1

(
e

−di
cL

27∑

i=1

e
−di
cL

) × qi (2)

Where di is the distance from the point P to the centre of the ith cube
centre in the array of 3×3×3 cubes surrounding point P , qi is the quantity
in the ith cube, and finally cL is the length of the cube’s side. Note that in
general:

i∑

n=0

(
f(n)
i∑

n=0

f(n)

) =

i∑

n=0

f(n)

i∑

n=0

f(n)

= 1 (3)

Hence the weighting kernel will always sum to 1. For performance rea-
sons the nested summation is computed separately in an initial pass of the 27
cubes, stored, and then used in a second pass to avoid nested computation.

Figure 14: Nutrient field sampling interpolation scheme

25


