
Scrap Your Reprinter
A Datatype Generic Algorithm for Layout-Preserving Refactoring

Harry Clarke
School of Computing
University of Kent
hc306@kent.ac.uk

Vilem-Benjamin Liepelt
School of Computing
University of Kent
vl81@kent.ac.uk

Dominic Orchard
School of Computing
University of Kent

d.a.orchard@kent.ac.uk

ABSTRACT
Refactoring tools are extremely useful in software development:
they provide automatic source code transformation tools for a vari-
ety of laborious tasks like renaming, formatting, standardisation,
modernisation, and modularisation. A refactoring tool transforms
part of a code base and leaves everything else untouched, including
secondary notation like whitespace and comments. We describe a
novel datatype generic algorithm for the last step of a refactoring
tool – the reprinter – which takes a syntax tree, the original source
file, and produces an updated source file which preserves secondary
notation in the untransformed parts of the code. As a result of being
datatype generic, the algorithm does not need changing even if the
underlying syntax tree definition changes. We impose only modest
preconditions on this underlying data type. The algorithm builds
on existing work on datatype generic programming and zippers.
This is useful technology for constructing refactoring tools as well
as IDEs, interactive theorem provers, as well as verification and
specification tools.

1 INTRODUCTION
Refactoring tools act a bit like compilers: they read in source code
and convert it into a machine representation upon which some
transformations are performed. However, they differ from compilers
in that they output textual source code in the language that was
originally input. To be of any use, they must preserve the lexical
style of all untransformed code, such as comments and whitespace
(secondary notation or documentary structure [13]). Compilers on
the other hand discard any parts of the source text that are not
program code. We refer to generation of the output source code
in a refactoring tool as the reprinter–the last step where an AST is
converted back into source text:

source text lex // tokens
parse // AST

transform

�� reprint // source text

As a simple running example, consider an SSA-like language with
variables, integer addition in prefix notation, and constants. The
following is an example program in our source language:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL’17, 30th August-1st September 2017, Bristol, UK
© 2017 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

x = +(1,2)
y = +(x, 0)
// Calculate z
z = +(1, +(+(0,x) ,y))

Note that for demonstration purposes this example deliberately
uses varying amount of white space around the assignments and
operations.

Imagine a refactoring that removes redundant additions of 0,
i.e. performs rewrites +(e, 0) { e and +(0, e) { e for some
expression e . The refactoring and reprinting should produce the
following output source text, preserving whitespace and comments:
x = +(1,2)
y = x
// Calculate z
z = +(1, +(x ,y))

An implementation cannot simply pretty print the transformed
AST as this would destroy the secondary notation.

One solution is to store as much of the secondary notation as
possible in the AST (either via specialised nodes or annotations)
to provide a layout-preserving pretty printing (see, e.g. [6, 7, 14]).
However, this requires a large engineering effort, does not integrate
well with many front-end generation tools (for example, most lexers
readily throw away additional whitespace), and is extremely diffi-
cult when multi-line comments are mixed with multi-line syntactic
elements (see discussion by de Jonge et al. [3]). Another solution
uses text patching, where AST changes are converted to edit in-
structions on the source code (e.g., diffs), coupled with heuristics
about layout adjustments [3].

We propose a new, simple approach that is language agnos-
tic. Our reprinting algorithm combines an updated AST with the
original source text to produce an updated source file. We detail
a datatype generic implementation which can be applied to any
algebraic data type satisfying a minimal interface for providing
source code locations. Genericity means the algorithm does not
need reimplementing even if the underlying AST datatypes are
changed or extended. Furthermore, our reprinting algorithm has
the advantage that an implementer need not write a pretty printer
for all parts of their syntax tree, only for those parts which might
get refactored, requiring fresh source text generation.

Our implementation is based on the datatype generic facilities
provided in GHC (the Glasgow Haskell Compiler) [8, 9] and a
datatype generic zipper construct [1] for simplifying the datatype
generic traversal.

Reprinting is useful not just in refactoring tools but also in IDEs
(for example, with live macro expansions), interactive theorem
provers, or specification systems where a tool might automatically
generate specifications into an existing code base. Our algorithm

https://doi.org/10.1145/nnnnnnn.nnnnnnn

IFL’17, 30th August-1st September 2017, Bristol, UK Harry Clarke, Vilem-Benjamin Liepelt, and Dominic Orchard

is used in the CamFort tool which provides refactoring of Fortran
code [11] and several verification features which use the reprinting
algorithm to insert inferred specifications into source code [2].

Roadmap. We start with an informal overview of the algorithm
(Section 1.1). Section 2 provides some background on zippers and
datatype generic programming. Section 3 outlines the algorithm in
detail, including its GHC/Haskell implementation. Section 4 shows
that reprinting and parsing form a bidirectional lens, which gives a
framework for reasoning about reprinting.

Section 5 generalises the algorithm, weakening its preconditions.
We present this separately to the first algorithm since the first al-
gorithm is conceptually simpler yet still catches a wide range of
situations. Section 6 concludes with some discussion of the impli-
cations of our pre-conditions and some further work.

Our code is available as a package (see http://hackage.haskell.
org/package/reprinter), which includes the examples used here.

1.1 Illustrated example
Consider the expression from the last line of the preceding example,
which is refactored by removing redundant additions of 0:

+(1, +(+(0,x) ,y))
transform & reprint
−−−−−−−−−−−−−−−−−−→ +(1, +(x ,y))

To make the whitespace preservation here clear, the following
shows the column number for the source text before and after
transformation and reprinting:

col # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
pre + (1 , + (+ (0 , x) , y))
post + (1 , + (x , y))

In terms of the abstract syntax trees, the refactoring is represented
as follows, where each AST node is annotated with the source code
span: a pair of column numbers marking the extent of the AST
node’s origin in the original source text.

+
1-22

1
4-5

+
8-20

+
10-16

0
12-13

x
14-15

y
18-19

transform
−−−−−−−−−→

+
1-22

1
4-5

+
8-20

x
10-16

y
18-19

The refactored node on the right is lined in red and notably has the
original source span preserved. For the full algorithm, this source
code span also includes the line numbers, but for simplicity we
elide this here since the example is located on a single line.

The algorithm performs a depth-first traversal of the AST and
applies a pretty printing on any refactored nodes. In the actual im-
plementation (Section 3), the reprinting algorithm is parameterised
by a generic function which we call a reprinting, which may provide
pretty printing for various different types of node.

In the illustration here, we mark the currently visited node in
light green. The depth-first traversal of the AST simultaneously
“traverses” the input text, which is statefully consumed. At each
step we record the state, which comprises the remaining input text

and a source code position (called the cursor) which signifies our
position in the original source text. We also show the partially-built
output source code, which grows as we traverse the tree.

+
1-22

1
4-5

+
8-20

x
10-16

y
18-19

cursor = 1
input = "+(1, +(+(0,x) ,y))"

output = ""

Since the root node is not refactored, the algorithm proceeds to the
first child (actions we refer to as down and enter):

+
1-22

1
4-5

+
8-20

x
10-16

y
18-19

cursor = 1
input = "+(1, +(+(0,x) ,y))"

output = ""

Since the current node is not refactored and it has no children, we
proceed to the next sibling (right and enter actions):

+
1-22

1
4-5

+
8-20

x
10-16

y
18-19

cursor = 1
input = "+(1, +(+(0,x) ,y))"

output = ""

Since this node is not refactored, we proceed to its first child (down
and enter again):

+
1-22

1
4-5

+
8-20

x
10-16

y
18-19

cursor = 1
input = "+(1, +(+(0,x) ,y))"

output = ""

Since this node is marked as refactored, we take the substring of
the input source code from the cursor to the lower-bound position
of this node (column 10) and add it to the output source code,
consuming this part of the input source. The cursor is also updated
to the lower bound of the node:

+
1-22

1
4-5

+
8-20

x
10-16

y
18-19

cursor = 10
input = "+(0,x) ,y))"

output = "+(1, +("

Next, since the node is being refactored, we apply a pretty printing
algorithm to generate a fresh piece of source text for this node
which is then added to the output text. We also delete the portion
of the input source text between the lower and upper bounds of
the node, and update the cursor to the upper bound (column 16):

http://hackage.haskell.org/package/reprinter
http://hackage.haskell.org/package/reprinter

Scrap Your Reprinter IFL’17, 30th August-1st September 2017, Bristol, UK

+
1-22

1
4-5

+
8-20

x
10-16

y
18-19

cursor = 16
input = " ,y))"

output = "+(1, +(x"

This node is now processed so we move to the next right sibling:

+
1-22

1
4-5

+
8-20

x
10-16

y
18-19

cursor = 16
input = " ,y))"

output = "+(1, +(x"

This node is not refactored and it has no children or siblings so we
return to the parent node:

+
1-22

1
4-5

+
8-20

x
10-16

y
18-19

cursor = 16
input = " ,y))"

output = "+(1, +(x"

This node has no siblings so we return to the parent node:

+
1-22

1
4-5

+
8-20

x
10-16

y
18-19

cursor = 16
input = " ,y))"

output = "+(1, +(x"

This node has no siblings and no parent. On returning to the root,
we append to the output text the remaining input source text:

+
1-22

1
4-5

+
8-20

x
10-16

y
18-19

cursor = 22
input = ""

output = "+(1, +(x ,y))"

This concludes the algorithm andwe now have the reprinted output,
preserving all the whitespace in the non-transformed syntax.

Section 3 gives the implementation of this algorithm in detail.
First we provide background on “zippers”, the underlying data
structure used to implement the tree traversal described above.

2 BACKGROUND
A zipper is an alternate representation of a datatype that allows
subparts of a piece of data to be focussed upon, while preserving
the rest of the datatype [5]. The focus can then be shifted around the
datatype, maintaining the rest of the data structure as the context.
The focus is shifted by navigation operations. Our algorithm is
defined in terms of a generic zipper construction [1] to provide
datatype generic traversal.

2.1 Standard Zippers
Zippers facilitate traversing and transforming a data structure and
provide constant-time updates.

A zipper is made up of two parts:
• Focus - the part of the data structure we are currently viewing;
• Context - the rest which is “out-of-focus”.

A zipper for lists can be defined like so:

type ListZipper a = ([a], ListContext a)
type ListContext a = [a]
toListZipper :: [a]→ ListZipper a
toListZipper l = (l, [])

When we first create a zipper, the focus represents the entire data
structure (in our case, the entire list), as we are at the root node,
and the context is the empty list. Note that because lists are one-
dimensional, we can represent the context also as a list; however, as
we will see in our next example, not every data structure exhibits
this symmetry.

Navigation operations shift the focus of the zipper. For the list
zipper we have:

listDown :: ListZipper a→ Maybe (ListZipper a)
listDown (x : xs, ys) = Just (xs, x : ys)
listDown ([], ys) = Nothing

listUp :: ListZipper a→ Maybe (ListZipper a)
listUp (xs, y : ys) = Just (y : xs, ys)
listUp (xs, []) = Nothing

Thus, moving “down” a list navigates into the focus, extending the
context with the element from the top of the focus. If the focus is
empty, then we return Nothing, i.e., there are no children left to
move down into. Moving up unfolds the context, extending the fo-
cus. Once the empty context is reached, we are at the top/beginning
of the list, and there is nowhere left for us to go.

Thus, for toListZipper [1, 2, 3], we get the following navigation
(eliding the Just constructor of theMaybe type in the results):

([1, 2, 3], [])

listDown
��

([2, 3], [1])

listUp
AA

listDown
��

([3], [2, 1])

listUp
AA

listDown
��

([], [3, 2, 1])

listUp
AA

Zippers on trees have a similar structure with the added compli-
cation that the context cannot have the same shape as the focus.
Huet [5] shows how a tree can be converted into a tree zipper,
where the context contains the parent, and the siblings on the left
and right of the focus:

data Tree a = Item a | Section [Tree a]
type TreeZipper a = (Tree a, TreeContext a)
data TreeContext a
= TRoot | TNode (TreeContext a) [Tree a] [Tree a]

IFL’17, 30th August-1st September 2017, Bristol, UK Harry Clarke, Vilem-Benjamin Liepelt, and Dominic Orchard

Navigation operations for the tree zipper allow the focus to be
moved up (to a parent) or down (to child nodes), or left and right
(between siblings). We refer the reader to Huet’s work for the
definitions of the navigation operations for the tree zipper [5].

Fortunately, a zipper representation of a regular datatype can be
calculated from its algebraic representation via Leibniz differenti-
ation [10], thus enabling generic zippers for many common data
types. This technique is leveraged to generate zippers automatically.

2.2 Generic zippers
Scrap Your Zipper (SYZ) [1] is a Haskell library that allows the
programmer to traverse any tree structure with ease by automat-
ically converting a datatype into its zipper representation. The
library provides various operations for navigation, insertion, and
transformation of zippers. The only requirement is that all parts of
the datatype have an instance of Scrap Your Boilerplate’s [8] Data
class, providing datatype generic functionality. This makes it an
excellent starting point for generic AST traversal and, subsequently,
reprinting.

We highlight functions from the SYZ library by formatting them
like this to make clear where they are used in the algorithm.

A function toZipper :: Data a ⇒ a → Zipper a maps any Data
type into the zipper representation, enabling us to use the zipper
navigation operations provided by SYZ.

The down' function of type Zipper a → Maybe (Zipper a)
moves the focus of the zipper to the leftmost child of the current
node (whereas the function down, which we do not use here, moves
to the rightmost child).

For example, in our illustration the light green highlighted node
corresponds to the focus node and down' has the following example
behaviour (returning a Just value) when the focus starts at the root:

+
1-22

1
4-5

+
8-20

x
10-16

2
18-19

down'
−−−−−→

+
1-22

1
4-5

+
8-20

x
10-16

2
18-19

The other zipper navigation function we use is right, also of type
Zipper a → Maybe (Zipper a), which moves the focus of the
zipper to the right sibling. For example, in terms of our illustration:

+
1-22

1
4-5

+
8-20

x
10-16

2
18-19

right
−−−−→

+
1-22

1
4-5

+
8-20

x
10-16

2
18-19

The only other additional part of SYZ we use is the application of a
generic query to the current focus, provided by the query functions:

-- Type of a generic query, from Data.Generics.Aliases
-- of Scrap Your Boilerplate
type GenericQ b = ∀c.Data c ⇒ c → b

-- Applies a generic function to a zipper and outputs the result.
query :: GenericQ b → Zipper a→ b

Thus a generic function, defined for all types c satisfying Data
producing a value of type b, is applied to the current focus of the
zipper to produce a b value. Concretely, in our case, we will query
an AST node for its (potential) refactored output source text.

3 DATATYPE GENERIC REPRINTING;
IMPLEMENTATION

The reprinting algorithm combines an AST of the refactored pro-
gram and the input source text into an output source text by a
simultaneous traversal of both the AST and source text. The AST
is traversed in depth-first order and the input source is traversed
linearly. This relies on the AST containing information about the
origin of its nodes in the original source file, along with some
well-formedness conditions of this location information:

Definition 1. An AST is source coherent if every refactorable node
has a source span associated with it, that is a pair of source code po-
sitions (e.g. line and column number) marking the lower bound and
upper bound extent of the node’s origin within the original source
code. Furthermore, the AST must satisfy the following properties:

(1) Enclosure: the lower-bound position of a parent is less than
or equal to the lower-bound of the first child, and the upper-
bound position of a parent is greater than or equal to the
upper-bound of the last child.

(2) Sequentiality: the upper-bound position of a node with a
right sibling is less than or equal to the lower-bound position
of its sibling.

Corollary 1. A depth-first traversal of a source coherent AST
visits nodes in source-span order, i.e., each visited node has a span
which is greater than or equal to the previously visited node’s span.

The two conditions of source coherence hold for the example here,
which is defined in full below.

Note that usually an AST definition spans many mutually recur-
sive datatypes (e.g., a data type of blocks, statements, expressions,
and so on). Therefore, source coherency must apply to all data types
which represent refactorable parts of the overall AST.

We implicitly restrict ourselves to tree data structures, i.e., data
structures with no cycles. The enclosure property above goes some
way to ruling out cycles. However, there may be cycles of nodes
with the same span, which is not ruled out by enclosure. Therefore,
an acyclic AST is an additional precondition to our algorithm.

We split our description of the algorithm into three parts: the
main types (Section 3.1), the core of the algorithm provided by
the top-level function reprint and the intermediate functions enter
and splice (Section 3.2) and finally helpers for building “reprintings”
(generic functions parameterising reprint) (Section 3.3). Section 3.4
provides two worked examples.

Section 5 gives a slightly more general algorithm which allows
the sequentiality requirement of source coherency to be relaxed.

Scrap Your Reprinter IFL’17, 30th August-1st September 2017, Bristol, UK

3.1 Types
Source text is represented by Text from the module Data.Text.Lazy
which provides efficient operations and supports Unicode. We cre-
ate an alias Source for convenience. The monoidal append operator
<> is used for concatenation and mempty for empty source text.

import qualified Data.Text.Lazy as Text
import Data.Monoid ((<>),mempty)

type Source = Text.Text

The algorithm is not conceptually dependent on this particular
representation of input source text. Other representations of the
source text can be used as long as they are monoidal.

Positions in source code are given by pairs of line number and
column number, which are 1-indexed and wrapped in newtype
constructors to provide type safety:

newtype Line = Line Int deriving (Data, Eq,Ord, Show)
newtype Col = Col Int deriving (Data, Eq,Ord, Show)

type Position = (Line,Col)

initPosition = (Line 1,Col 1)

The span of a node of source text can be represented by a pair of
positions, giving the lower and upper bound positions of the node.

type Span = (Position,Position)

The top-level function reprint has type:

reprint :: (Monad m,Data ast)
⇒ Reprinting m→ ast → Source→ m Source

which is a higher-order function parameterised by a “reprinting”
function: a generic operation for replacing refactored nodes with
fresh output text (e.g., by pretty printing). Reprintings have type:

type Reprinting m = ∀node.Typeable node ⇒
node → m (Maybe (RefactorType, Source, Span))

data RefactorType = Before | After | Replace

Thus, a reprinting maps any Typeable type node to Maybe of a
triple of the refactoring type, the new source text for this node,
and its span. We provide some helper functions for constructing a
Reprinting in Section 3.3.

Note that reprint and Reprinting are parameterised by some
monad m. This provides extra power if an application wishes to
include some side effects as part of the reprint algorithm. For exam-
ple, additional state can be useful when pretty printing refactored
nodes, such as the number of lines deleted or added in order to
balance newlines. We show an example of this in Section 3.4.

3.2 Zipper traversal; core algorithm
The zipper traversal part of the algorithm is performed by the
function enter , of type:

enter ::Monad m⇒ Reprinting m→ Zipper ast
→ StateT (Position, Source) m Source

where Zipper is the zipper for some type ast, provided by the Scrap
Your Zipper library [1]. The implementation is shown in Figure 1.
Recall that the zipper operations are highlighted like this.

enter ::Monad m⇒ Reprinting m→ Zipper ast
→ StateT (Position, Source) m Source

enter reprinting zipper = do
-- Step 1: Apply a refactoring
refactoringInfo ← lift (query reprinting zipper)

-- Step 2: Deal with refactored code or go to children
output ← case refactoringInfo of

-- No refactoring; go to children
Nothing→ go down'
-- A refactoring was applied; splice the text.
Just r → splice r

-- Step 3: Enter the right sibling of the current context
outputSib ← go right

-- Append output of current context/children and siblings
return (output <> outputSib)

where
-- Navigate in a particular direction.
go direction =
case direction zipper of

-- Recursively apply ’enter’ to the new focus
Just zipper → enter reprinting zipper
-- Otherwise return the empty source
Nothing→ return mempty

Figure 1: Core traversal of the reprinting algorithm

The enter function provides the main functionality. It firstly
applies the generic reprinting function of type Reprinting m to
the current node, yielding information about whether a reprint-
ing was performed or not. Recall that the reprinting function re-
turns a value of type m (Maybe...). Now lift in Step 1 raises the
monadic computation in m to StateT s m, so refactoringInfo has
typeMaybe (RefactorType, Source, Span).

The second step matches on the information returned from the
reprinting to determine whether to perform some splicing of the
input source text or to navigate to the children. If refactoringInfo is
Nothing (implying no refactoring) then down' is called via the go
helper function which proceeds to the children if they exist, else
returning the empty source text. Otherwise, we have Just r where r
is a triple of the refactoring type (RefactorType), new output source
output (e.g. from a pretty printer) and a span for the node. The
splice function is applied to this triple, to compute a fragment of
output source text by splicing together existing source text with
any newly produced source text.

The refactoring type controls which part of the input source is
used for the output and how much is discarded by splice. The splice
function is given in Figure 2, which has the following three cases
depending on refactoring type:
• Replace - the output source for the current context is the source
text up to the lower bound of the node (pre) concatenated with
the reprinting output. The input source between the lower and
upper bounds is discarded.

IFL’17, 30th August-1st September 2017, Bristol, UK Harry Clarke, Vilem-Benjamin Liepelt, and Dominic Orchard

• After - the output source is the input source up to the node’s
upper bound (pre), concatenated with the reprinting output.

• Before - the output is the source text up to the lower bound
of the node (pre), concatenated with the reprinting output and
then concatenated with the input source text between the lower
and upper bounds of the node (post).

In each case, the cursor is updated to be the upper bound of the
refactored node. Splicing uses the splitBySpan function of type:

splitBySpan :: Span→ Source→ (Source, Source)

Given a lower bound and upper bound pair of positions, splitBySpan
splits a Source into a prefix and suffix, where the prefix is of the
length of source from the upper bound minus the lower bound. That
is, the lower bound position is taken as the start of the parameter
source and the source is split into two at the upper bound.

The third and final step of enter is to navigate to the right sibling
by go right, producing the source text outputSib. The result of enter
is then the concatenation of the output from the current node or its
children (output) with the output from the right sibling (outputSib).

Thus, enter computes a depth-first traversal of the AST, and
simultaneously a linear traversal of the source text (see Corollary 1).

Top-level. The top-level function of the reprint algorithm con-
verts an incoming data type to the datatype generic zipper, and
enters into the root node, setting the cursor at the start of the file:

reprint :: (Monad m,Data ast)
⇒ Reprinting m→ ast → Source→ m Source

reprint reprinting ast input
-- If the input is empty return empty
| Text.null input = return mempty

-- Otherwise proceed with the algorithm
| otherwise = do
-- Initial state comprises start cursor and input source
let state0 = (initPosition, input)
-- Enter the top-node of a zipper for ‘ast’
let comp = enter reprinting (toZipper ast)
(out, (, remaining)) ← runStateT comp state0
-- Add to the output source the remaining input source
return (out <> remaining)

Note that the final output is the concatenation of the output source
from enter with the remaining input source text.

3.3 Reprinting parameter functions
The well-formedness conditions on an AST (Definition 1) require
refactored nodes to have a source span. This is captured by the
following class, Refactorable:

class Refactorable t where
isRefactored :: t → Maybe RefactorType
getSpan :: t → Span

That is, refactorable data types provide a span, and also information
on whether they have been refactored using the RefactorType (Sec-
tion 3.1), whereNothingmeans that a node has not been refactored.

The reprint algorithm does not directly enforce the Refactorable
constraint since this does not interact well with the datatype generic

splice ::Monad m⇒ (RefactorType, Source, Span)
→ StateT (Position, Source) m Source

splice (typ, output, (lb, ub)) = do
(cursor, inp) ← get
case typ of

Replace→ do
-- Get source up to start of refactored node
let (pre, inp′) = splitBySpan (cursor, lb) inp
-- Remove source covered by refactoring
let (, inp′′) = splitBySpan (lb, ub) inp′

put (ub, inp′′)
return (pre <> output)

After→ do
-- Get source up to end of the refactored node
let (pre, inp′) = splitBySpan (cursor, ub) inp
put (ub, inp′)
return (pre <> output)

Before→ do
-- Get source up to start of refactored node
let (pre, inp′) = splitBySpan (cursor, lb) inp
-- Discard portion consumed by the refactoring
let (post, inp′′) = splitBySpan (lb, ub) inp′

put (ub, inp′′)
return (pre <> output <> post)

Figure 2: Splicing together refactored text and input text.

implementations in GHC Haskell (see discussion in Section 6.2).
Instead, we provide the following builder function for generating a
reprinting for a Refactorable type:

genReprinting :: (Monad m,Refactorable t, Typeable t)
⇒ (t → m Source)
→ t → m (Maybe (RefactorType, Source, Span))

genReprinting f z = do
case isRefactored z of

Nothing → return Nothing
Just refactorType → do

output ← f z
return (Just (refactorType, output, getSpan z))

Given a function f that converts some refactorable type t to some
source text, genReprintingwraps f and themethods of theRefactorable
class to producing a Reprinting-typed function.

A function catchAll provides a default generic query which can
be used to construct a generic reprinting:

catchAll ::Monad m⇒ a→ m (Maybe b)
catchAll = return Nothing

For example, given a monomorphic function repr :: S→ Source on
some syntax type Swhich is Refactorable, then a generic reprinting
can be defined by:

reprinting :: Reprinting Identity
reprinting = catchAll ‘extQ‘ (genReprinting (return ◦ repr))

Scrap Your Reprinter IFL’17, 30th August-1st September 2017, Bristol, UK

where extQ :: (Typeable a, Typeable b) ⇒ (a → q) → (b → q) →
a→ q provides extension of a generic query from the Scrap Your
Boilerplate library [8]. Here we use the Identity monad, i.e., the
reprinting is pure.

3.4 Example
The introduction gave our running example in a simple SSA-like
language with assignments and integer addition which we use to
illustrate the reprinting algorithm. The complete source for the
examples is part of the library on Hackage.1

The example language is defined using the following data types
to capture the AST, providing source code spans in each node and
a boolean flag only in those parts of the AST that are subject to our
refactoring (the Expr type):

type AST = [Decl]
data Decl = Decl Span String Expr

deriving (Data, Typeable)

data Expr =
Plus Bool Span Expr Expr
| Var Bool Span String
| Const Bool Span Int
deriving (Data, Typeable)

Note that the DeriveDataTypeable GHC language extension is
required to derive the Data and Typeable classes which are needed
for the generic zipper.

We define a simple parser for the language (not included here),
providing the function parse::Source→ ASTwhich sets the boolean
flag of expressions to False, indicating no refactoring has been
performed yet.

We thus have an instance of Refactorable for expressions:

instance Refactorable Expr where
isRefactored (Plus True) = Just Replace
isRefactored (Var True) = Just Replace
isRefactored (Const True) = Just Replace
isRefactored = Nothing

getSpan (Plus s) = s
getSpan (Var s) = s
getSpan (Const s) = s

Note that explicit cases have to be written only for those AST nodes
which are subject to refactoring.

Given a simple pretty printer for expressions (not included here)
of type prettyExpr :: Expr→ Source, we define a reprinter for refac-
tored expressions (but not the full AST data type of declarations)
using the genReprinting helper:

exprReprinter :: Reprinting Identity
exprReprinter = catchAll ‘extQ‘ reprintExpr

where reprintExpr x =
genReprinting (return ◦ prettyExpr) (x :: Expr)

The function refactorZero ::AST→ AST performs our desired refac-
toring by removing Plus with one side zero and annotating the
other subexpression as refactored.
1http://hackage.haskell.org/package/reprinter

Finally, we put all the components together to parse, refactor,
and reprint:

refactor :: Source→ Source
refactor input = runIdentity
◦ (λast → reprint exprReprinter ast input)
◦ refactorZero
◦ parse
$ input

We can now run the example as follows:

input = "x = +(1,2)\n"

"y = +(x,0)\n"

"// Calculate z\n"

"z = +(1, +(+(0,x) ,y))\n"

output = (putStrLn ◦ Text.unpack ◦ refactor) input

Running output prints the refactored source to stdout:
*Main> output
x = +(1,2)
y = x
// Calculate z
z = +(1, +(x ,y))

Example using “After”. As a final example, we show the use
of the After reprinting style as well as a monadic reprinter. In our
example language it is possible for every variable declaration to be
calculated beforehand, i.e., all programs are terminating. Using our
reprinter we will pass over the AST, calculate variable values and
comment declarations with the resulting value. For our example,
this produces:

x = +(1,2) // x = 3
y = +(x,0) // y = 3
// Calculate z
z = +(1, +(+(0,x) ,y)) // z = 7

We first define an eval function that takes an expression, an envi-
ronment (map from variables to values) and returns a Maybe Int
wrapped in the State monad:

eval :: Expr→ State [(String, Int)] (Maybe Int)
eval (Plus e1 e2) = do

e1← eval e1
e2 ← eval e2
return (fmap (+) e1 < ∗ > e2)

eval (Const i) = (return ◦ Just) i
eval (Var s) = do

l ← get
return (lookup s l)

If an unassigned variable is used then Nothing is returned, other-
wise Just of the calculated value of the variable is returned (using
the applicative machinery onMaybe).

We then define a reprinting that applies eval on Decl pieces of
syntax, and returns an After refactoring if a value is calculated,
producing a comment after each Decl node:

commentPrinter :: Reprinting (State [(String, Int)])
commentPrinter = catchAll ‘extQ‘ decl

http://hackage.haskell.org/package/reprinter

IFL’17, 30th August-1st September 2017, Bristol, UK Harry Clarke, Vilem-Benjamin Liepelt, and Dominic Orchard

where
decl (Decl s v e) = do
val ← eval (e :: Expr)
case val of

Nothing→ return Nothing
Just val → do
modify ((v, val):)
let msg = " // " ++ v ++ " = " ++ show val
return (Just (After, Text.pack msg, s))

Note that the State monad is also updated (via modify) to record
the variable-value assignment of a declaration.

Using reprint and parse, we now define a Source to Source trans-
formation which parses, refactors, and reprints:

refactor2 :: Source→ Source
refactor2 input = flip evalState []
◦ flip (reprint commentPrinter) input
◦ parse
$ input

output2 = (putStrLn ◦ Text.unpack ◦ refactor2) exampleSource

where output2 prints the refactoring result to stdout:
*Main> output2
x = +(1,2) // x = 3
y = +(x,0) // y = 3
// Calculate z
z = +(1, +(+(0,x) ,y)) // z = 7

4 REPRINTING AND PARSING AS A
BIDIRECTIONAL LENS

A bidirectional transformation is a pair of programs converting data
from one representation to another, and vice versa, often called the
source and the view. A bidirectional lens is a bidirectional transfor-
mation capturing the notion of being able to update a source to
produce a new source based on changes to a view [12].

Definition 2. A bidirectional lens comprises a source type S a view
type V and a pair of view and update combinators typed [4]:

view : S → V

update : V × S → S

A well-behaved lens satisfies the axioms:
view(update(v, s)) ≡ v (update-view)
update(view(s), s) ≡ s (view-update)

The first says: updates to a source with a view should be exactly
captured in the source, such that viewing recovers the original view.
The second says: updating with an unchanged view of a source does
not change the source.

Reprinting and parsing together form a bidirectional lens, which
satisfies the (update-view) axiom.

Proposition 1 (Reprinting-parsing lens). Let the source type S be
the type of source text, and let the view type V = AST – the top-
level type of abstract syntax trees – with lens operations view =
parse : S → AST and update = reprint : AST × S → S . This
assumes that we have already specialised the reprinting algorithm

with some parameter reprinting function. The (update-view) axiom
of well-behaved lenses then holds:

reprint(parse(source), source) ≡ source

i.e., parsing to an AST and then reprinting this (unmodified) AST
with the original source, yields the source. This holds if the parser
satisfies the well-formedness condition (Definition 1).

Reprinting-parsing forms awell-behaved lens if the (view-update)
axiom holds:

parse(reprint(ast, source)) ≡ ast

This implies that any pretty printing used by the reprinting pa-
rameterising the reprinter is the left-inverse of parsing (i.e., pretty
printing then parsing is the identity function). This should hold in
any reasonable situation, so reprinting should form a well-behaved
lens with parsing.

This lens perspective on parsing-reprinting provides program-
mers with a guide as to what properties to test and/or verify for
their parsers and printing algorithms.

In the text-patching approach to reprinting by de Jonge et al., a
similar condition to (update-view) is introduced called preservation
and (view-update) called correctness [3]. They also comment on the
connection to lenses.

Well-behaved lenses are called very well-behaved if an additional
property holds: an update followed by a second update is equivalent
to just the second update. For reprinting, this would equate to the
following axiom, which is unlikely to hold for most reprinters:

reprint(ast2, reprint(ast1, source)) ≡ reprint(ast2, source)

This would imply that any changes made to source by ast1 are
overwritten/subsumed by the changes in ast2. Subsequently, source
spans in ast2 would also need to closely correspond to actual code in
source and reprint(ast1, source) simultaneously–which is unlikely.

5 RELAXING SOURCE COHERENCE
Recall from the definition of source coherence (Definition 1) that
sequentiality requires siblings to have non-overlapping spans in
increasing order. We define here the notion ofweak source coherence
as a generalisation of source coherence without the sequentiality
condition i.e., siblings need not be ordered according to their spans.

This arises when the shape of the AST data structure does not
match the lexical shape of code. Consider, for example, a piece of
infix syntax 1 + 2 which is parsed into a ternary tree node:

Op
1-6

+
3-4

1
1-2

2
5-6

This AST structure violates the well-formedness condition of se-
quentiality, since the left-most child has a span that is greater than
its right sibling. As a consequence, applying the previous reprint-
ing algorithm to such an AST would provide a traversal of the
nodes that is not in the order of source spans (i.e., Corollary 1 no
longer holds). If we refactored one of the first two children, then
the reprinting algorithm would subsequently splice together text
out of order, producing an incorrect output.

Scrap Your Reprinter IFL’17, 30th August-1st September 2017, Bristol, UK

The above example however still provides source span informa-
tion and still satisfies enclosure, and thus is weak source coherent.
This is enough to provide an adapted reprinting algorithm.

We summarise here a variation of the reprinting algorithm of
Section 3 which only requires ASTs to be weakly source coherent.
Whilst this algorithm is more general, it has yet to be determined
whether the adaptation stands up equally well in real-world use
regarding runtime and memory performance. The reprinter library
provides both algorithms.

Alternate algorithm. The essence of the generalised algorithm
is to delay splicing, traversing the AST similarly to before (depth
first) but gathering a list of refactoring and splicing information.
This list is then sorted by the spans, providing a sequentialised list
of refactorings/splicings, that is, in source span order. The splice
function (as defined before in Figure 2) is applied to each of these
and the resulting source fragments are concatenated.

The top-level reprinter function is as before, but we redefine
enter as enter ′ in Figure 3 (both have the same type). This function
proceeds in three steps.

Firstly, an AST zipper traversal is performed by the intermedi-
ate function getRefactorings. This function resembles closely the
definition of enter in the original algorithm (Section 3) which per-
formed the zipper traversal and source splicing in tandem. Instead,
getRefactorings collects a list of results, delaying splicing, of type
[(RefactorType, Source, Span)]. That is, triples of refactoring infor-
mation, newly generated source text fragments, and the span of a
node from which the fresh source text originates.

In the second step, we sort the resulting list of refactorings by
their span (via the function sortBySpan below using sortOn from the
module Data.List), applying splice to each element of the resulting
list. The resulting fragments are then concatenated in the final step.

This algorithm subsumes the former since, for a source coher-
ent AST, the sorting will be superfluous since the traversal of
getRefactorings will produce a list already ordered by spans due
to Corollary 1.

6 DISCUSSION
6.1 Considerations about well-formedness
The well-formedness condition (Definition 1) implies that transfor-
mations to an AST must take care with source span information.
For example, transformations which commute nodes in the tree
will almost certainly violate well-formedness, e.g.

+
1-22

1
4-5

+
8-20

x
10-16

y
18-19

→

+
1-22

+
8-20

y
18-19

x
10-16

1
4-5

The solution here is to swap the nodes, but swap the span infor-
mation back, such that the span information stays in its original
location in the tree, ensuring well formedness. There are other more
complicated situations which might require more involved span
recalculation as part of the transformation.

enter ′ ::Monad m⇒ Reprinting m→ Zipper ast
→ StateT (Position, Source) m Source

enter ′ reprinting zipper = do
-- Step 1: Get refactorings via AST zipper traversal
rs ← lift (getRefactorings reprinting zipper [])
-- Step 2: Do the splicing on the sorted refactorings
srcs ← mapM splice (sortBySpan rs)
-- Step 3: Concatenate fragments
return (Text.concat srcs)

where
sortBySpan = sortOn (λ(, , sp) → sp)

getRefactorings ::Monad m⇒
Reprinting m→ Zipper ast

→ [(RefactorType, Source, Span)]
→ m [(RefactorType, Source, Span)]

getRefactorings reprinting zipper acc = do
-- Step 1: Apply a refactoring
refactoringInfo ← query reprinting zipper
-- Step 2: Deal with refactored code or go to children
acc ← case refactoringInfo of

-- No refactoring; go to children
Nothing→ go down' acc
-- A refactoring was applied, add it to the accumulator
Just r → return (r : acc)

-- Step 3: Enter the left sibling of the current focus
acc ← go right acc
-- Finally return the accumulated refactorings
return acc

where
go direction acc =
case direction zipper of

-- Go to next node if there is one
Just zipper → getRefactorings reprinting zipper acc
-- Otherwise return the empty string
Nothing→ return acc

Figure 3: Generalised algorithm for weak source coherency.

6.2 Constrained generic programming
Section 3.3 defined the genReprinting function to wrap an output
function of type t → m Source where Refactorable t into a func-
tion t → m (Maybe (RefactorType, Source, Span)), wrapping the
methods of Refactorable. However, there is nothing to force the
programmer to use genReprinting to define a Reprinting. Indeed,
the last example of Section 3.4 defined a Reprinting by hand.

An alternate approach would be to define reprint directly in
terms of Refactorable types, e.g.,

type Reprinting m =
∀b.(Typeable b,Refactorable b) ⇒

b → m (Maybe (RefactorType, Source, (Position,Position)))

IFL’17, 30th August-1st September 2017, Bristol, UK Harry Clarke, Vilem-Benjamin Liepelt, and Dominic Orchard

reprint :: (Monad m,Data p,Refactorable p)
⇒ Reprinting m→ p → Source→ m Source

The core of the algorithm (enter , Figure 1, p. 5) could then be de-
fined in terms of the methods of Refactorable directly. However, the
Refactorable constraint must then be pushed into the generic zip-
per and the datatype generic operations, which are unconstrained.
Much of the datatype generic infrastructure for GHC Haskell does
not support this constrained genericity.

A potential solution is to parameterise datatype generic oper-
ations on additional constraint parameters (via GHC’s constraint
kinds). For example:

type GenericCQ (c :: ∗ → Constraint) r =
∀a.(Data a, c a) ⇒ a→ r

and to define a constrained zipper type, e.g., data Zipper (c :: ∗ →
Constraint) a = ... which adds the constraint within the interme-
diate data types of the zipper.

We have done some early exploration and it seems plausible,
though such constraints will need to propagated throughout the
rest of the libraries. This is further work and would be useful far
beyond the topic of this paper.

6.3 Concluding remarks
We have presented a general algorithm that provides core function-
ality for refactoring tools: outputting source text that preserves sec-
ondary notation in untransformed code. The algorithm is relatively
short thanks to the GHC Haskell’s datatype generic programming
facilities. Such an implementation would have been much more
complicated 15 years ago.

We have been using a variant of this algorithm for several years
and it has proven robust in the context of a real tool (CamFort). In
terms of asymptotic performance, the core traversal is O (n). The
absolute performance is degraded somewhat by the use of datatype
generics which are notoriously slow. Recent work suggests how
to improve this considerably via staging [15]. Exploring this, with
performance benchmarks, is further work.

Acknowledgements. This work was supported by the EPSRC
grant EP/M026124/1. Thank you to the rest of CamFort team: Mis-
tral Contrastin, Matthew Danish, and Andrew Rice for input on
the concepts in this paper. We also thank the School of Computing
and Faculty of Sciences at the University of Kent for their financial
support of the first two authors during the summer of 2017.

REFERENCES
[1] Michael D Adams. Scrap Your Zippers: a Generic Zipper for Heterogeneous

Types. In Proceedings of the 6th ACM SIGPLAN workshop on Generic programming,
pages 13–24. ACM, 2010.

[2] Mistral Contrastin, Matthew Danish, Dominic Orchard, and Andrew Rice. Light-
ning talk: Supporting Software Sustainability with Lightweight Specifications.
In Proceedings of the Fourth Workshop on Sustainable Software for Science: Practice
and Experiences (WSSSPE4), University of Manchester, Manchester, UK, September
12–14, volume 1686. CEUR Workshop Proceedings, 2016.

[3] Maartje de Jonge and Eelco Visser. An algorithm for layout preservation in
refactoring transformations. SLE, 11:40–59, 2011.

[4] J Nathan Foster, Michael B Greenwald, Jonathan TMoore, Benjamin C Pierce, and
Alan Schmitt. Combinators for bi-directional tree transformations: a linguistic
approach to the view update problem. ACM SIGPLAN Notices, 40(1):233–246,
2005.

[5] Gérard Huet. The zipper. Journal of functional programming, 7(5):549–554, 1997.

[6] Róbert Kitlei, László Lóvei, Tamás Nagy, Zoltán Horváth, and Tamás Kozsik. Lay-
out preserving parser for refactoring in Erlang. Acta Electrotechnica et Informatica,
9(3):54–63, 2009.

[7] Jan Kort and Ralf Lammel. Parse-tree annotations meet re-engineering con-
cerns. In Source Code Analysis and Manipulation, 2003. Proceedings. Third IEEE
International Workshop on, pages 161–170. IEEE, 2003.

[8] Ralf Lämmel and Simon Peyton Jones. Scrap Your Boilerplate: A Practical Design
Pattern for Generic Programming. In Proceedings of the 2003 ACM SIGPLAN
International Workshop on Types in Languages Design and Implementation, TLDI
’03, pages 26–37, New York, NY, USA, 2003. ACM.

[9] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with class: extensible
generic functions. In ACM SIGPLAN Notices, volume 40, pages 204–215. ACM,
2005.

[10] Conor McBride. The derivative of a regular type is its type of one-hole contexts.
Unpublished manuscript, pages 74–88, 2001.

[11] Dominic Orchard and Andrew Rice. Upgrading Fortran Source Code using
Automatic Refactoring. In Proceedings of the 2013 ACM Workshop on Workshop
on Refactoring Tools, pages 29–32, 2013.

[12] B.C Pierce. The weird world of bi-directional programming, 2006. ETAPS
invited talk, slides available from http://www.cis.upenn.edu/~bcpierce/papers/
lenses-etapsslides.pdf.

[13] Michael L Van De Vanter. Preserving the documentary structure of source code in
language-based transformation tools. In Source Code Analysis and Manipulation,
2001. Proceedings. First IEEE International Workshop on, pages 131–141. IEEE, 2001.

[14] Mark GJ van den Brand and Jurgen J Vinju. Rewriting with Layout. In Proceedings
of RULE, 2000.

[15] Jeremy Yallop. Staging generic programming. In Proceedings of the 2016 ACM
SIGPLANWorkshop on Partial Evaluation and Program Manipulation, pages 85–96.
ACM, 2016.

http://www.cis.upenn.edu/~bcpierce/papers/lenses-etapsslides.pdf
http://www.cis.upenn.edu/~bcpierce/papers/lenses-etapsslides.pdf

	Abstract
	1 Introduction
	1.1 Illustrated example

	2 Background
	2.1 Standard Zippers
	2.2 Generic zippers

	3 Datatype generic reprinting; implementation
	3.1 Types
	3.2 Zipper traversal; core algorithm
	3.3 Reprinting parameter functions
	3.4 Example

	4 Reprinting and parsing as a bidirectional lens
	5 Relaxing source coherence
	6 Discussion
	6.1 Considerations about well-formedness
	6.2 Constrained generic programming
	6.3 Concluding remarks

	References

