
Formalising Algebraic Effects with Non-Recoverable
Failure

Timotej Tomandl
University of Kent

Dominic Orchard
University of Kent

Abstract
Algebraic effects are one approach to tackling modularity is-
sues arising in structuring side effects. One such application
area is in (formalised) programming language semantics. We
observe that in this setting, there is a need to separate the
model of effects of the language being formalised from the
effects arising as incidental artefacts of the formalisation. In
this work, we focus on failure as such an incidental effect. We
thus seek an extension to the usual underlying mathemati-
cal structures for capturing algebraic effects to incorporate
(non-handleable) failure. We show how the MaybeT monad
transformer over a free monad construction can be used,
studying the implications on the underlying theory via a
(work in progress) mechanisation in type theory. Our aim is
to host both the language formalisation and its associated
theory within one mechanised framework. Along the way,
we also give a graded monadic view of algebraic effects.

1 Motivation
Consider the situation of a writing a verified compiler with
a reference interpreter where initial typing information has
been erased. This necessitates some error handling cases
which are known to not occur (assuming that the typing
procedure for this language is sound):
... UnOpNegate e -> case eval env e of

Num n -> Num (- n)

_ -> error "Impossible"

The error expression here represents a failure side-effect
that is non-recoverable; once it is evaluated, failure prevents
the rest of the interpretation.
In Haskell, the above code pattern can be abstracted via

the do-notation and the use of the MonadFail type class which
provides an operation fail :: String -> m a which is used
to desugar pattern matches which may fail. In this style, the
above code could be written as:
... UnOpNegate e -> do

Num n <- eval env e

return (Num (- n))

Since the (Num n) pattern is ‘refutable’ this desugars into:
eval env e >>= (\v -> case v of

Num n -> return (Num (- n))

_ -> fail "Incomplete pattern match")

This failure acts as a kind of exception. Exceptions, and their
handling, are generalised by notions of algebraic effects and
0Extended abstracted presented at HOPE’21

handlers which can be used to give a modular semantics to
side effects. The language being modelled may also have
other notions of side effect, like state, which could then
be captured via an algebraic effect approach. However, the
above notion of failure is not a side effect of the language but
rather an incidental feature of the formalisation. Therefore,
it should not be conflated with the model of exception side
effects in the language being modelled/formalised.
In this work, we capture the idea of MonadFail in the al-

gebraic effects approach, but where failure is an intrinsic
non-handleable effectful operation, seen as orthogonal to
the usual effect operations.
Failure of this form has been a staple feature of monad

transformer frameworks [Liang et al. 1995], which can express
the above pattern. Monad transformers do not provide as
much flexibility as algebraic effects [Kiselyov and Ishii 2015]
and need more complex code to express many patterns. We
explore how to combine these two ideas.

Our development is formalised in dependent-type theory
(we use Agda [Tomandl 2021]) capturing mathematical re-
sults of the key constructions. As part of this, we contribute
our own type theoretic rendering of free monads (based on
a variation of Kiselyov and Ishii [2015]’s ‘freer’ monads)
which is indexed by the effect operations captured within
the computation tree describe by a free monad value. Our
approach yields a graded monad, which provides a way to
reason about the compositional nature of effects with failure.

2 Underlying model for algebraic effects
Algebraic effects in theory consist of a signature of opera-
tions and their equations. The collection of operations can
be represented type theoretically by a parametric data type
𝐹 combined with the free monad construction (𝜇𝑋 .𝐴 + 𝐹𝑋 )
to capture computations trees of effect operations which can
be ‘handled’ later. However, this free monad definition is
not amenable to formalisation in type theory, because its
type-level fixed point can lead to inconsistency. Most tools
disallow this free monad definition via positivity checks.
However, the free endofunctor generated by the left Kan

extension on any type constructor avoids this positivity issue.
This is captured by Kiselyov and Ishii [2015]’s ‘freer’ monad
construction, defined (in Haskell) as:
data FFree (f :: Type -> Type) (a :: Type) where

Pure :: a -> FFree f a

Impure :: f x -> (x -> FFree f a) -> FFree f a



The Impure constructor captures effectful operations described
by the type constructor f. Thus these effect operations cap-
tured by f must be determined globally for the computation.

We use a more compositional generalisation, allowing sub-
computations to use different type constructors to capture
their effect operations. A type index gathers these various
type constructors as a list. This is an intermediate design
between the constructions FFree and Eff in Kiselyov and
Ishii [2015]. In Agda, we define this as:
data Eff (E : List (Set -> Set)) (A : Set) : Set1 where

Pure : A -> Eff E A

Impure : {F : Set -> Set} {X : Set} {prf : F ∈ E}

-> F X -> (X -> Eff E A) -> Eff E A

where prf witnesses that F is in the indexing list E.
Proposition 2.1. For all E, Eff E is a monad.

We expose the compositionality of this approach via a
graded monad construction. Graded monads comprise an
indexed family of endofunctors {𝑀𝑥 }𝑥 ∈𝑋 , whose indices are
the elements of a monoid (𝑋, 𝐼, •), with unit 𝜂 : Id → 𝑀𝐼

and multiplication 𝜇 : 𝑀𝑥 ◦ 𝑀𝑦 → 𝑀 (𝑥 • 𝑦) operations
akin to monad operations (with analogous equations to a
monad) [Katsumata 2014; Orchard et al. 2014]. Thus the
monoid explains that 𝜂 captures pure computations and 𝜇 se-
quentially composes computations, combining their effects.
Proposition 2.2. Eff is a graded monad indexed by the list
monoid with 𝜂 : Id → 𝑀 [] and 𝜇 : 𝑀𝑒 ◦𝑀𝑓 → 𝑀 (𝑒 ++𝑓 ).
The graded monad construction suggests combinators for
raising and handling effects where grades give an account of
what needs handling (where E - F deletes F from the list E):
raise : F a -> Eff [F] a

handle : (∀ x -> F x -> x) -> Eff E a -> Eff (E - F) a

We can also ‘run’ a computation once all effects are handled:
run : Eff [] a -> a

3 MonadFail and exceptions
In Haskell, if a do-expression performs a pattern matching
‘bind’ that may fail, then the monad being used must also
have an instance of the MonadFail class:
class MonadFail m where

fail :: String -> m a

where, for all monadic computations x :: m a:
fail >>= x ≡ fail

i.e., failure is global and non-recoverable.
We give an abstract mathematical definition, ignoring the

String aspect in favour of a map from the terminal object 1.
Definition 3.1 (Failing monad). For a category C with ter-
minal object 1, a failing monad for endofunctor 𝑇 : C → C
is a monad with a natural transformation fail𝐴 : 1 → 𝑇 𝐴

such that for all 𝑔 : 1 → 𝑇 𝐵 then:
𝜇 ◦𝑇 (𝑔◦!𝐴) ◦ fail𝐴 = fail𝐵

Exceptions are the prototypical example of an effect han-
dler [Plotkin and Pretnar 2009]. We can instantiate Eff E

to yield a failing monad with the following effect operation
(where Void is the empty type):
data Error : Set -> Set where Raise : Error Void

fail : {A : Set} {E : List (Set -> Set)}

.{prf : Error ∈ E} -> Eff E A

fail {A} {E} {prf} =

Impure {F = Error} {X = Void} {prf} Raise (\())

Proposition 3.2. Eff E where Error in E with the above
definition of fail is a failing monad.

However, we want to make failure an intrinsic part of un-
derlying appartus of algebraic effects, that is part of the free
monad, such that it is not handleable. If we attempt to give
a MonadFail instance for the free monad, we get stuck imme-
diately: the free monad, is the monad for which exactly the
monad equations hold and nothing more, i.e., not the extra
MonadFail axiom above. Therefore, we seek to have both the
benefits of the free monad structure for capturing computa-
tion trees (for the purposes of effect handling) but also the
property of non-recoverable failure captured by MonadFail.

4 MaybeT for non-handleable failure
The simplest construction to support the failing monad law
generally is provided by the “MaybeT”monad transformer [Liang
et al. 1995], in Haskell defined as:
newtype MaybeT m a = MaybeT (m (Maybe a))

That is, a MaybeT is a monad homomorphism, mapping𝑀−
to𝑀 (1 + −). We can think of MaybeT as an extension by an
arbitrary, single option failure case. The MaybeT transformer
gives a lawful instance of MonadFail for all monads:

instance Monad m => MonadFail (MaybeT m) where

fail _ = MaybeT (return Nothing)

We can thus apply this idea to our Eff construction, yielding
a failing monad MaybeT (Eff F). We call this construction
EffectFail F. However, we still require freeness of EffectFail
in order to yield a suitable semantic core for handling al-
gebraic effects (augmented with non-recoverable failure).
EffectFail.We thus ask, is EffectFail the free failingmonad?.

To accomodate the failure case, we have to modify the no-
tion of handling. In standard form initiality gives us a notion
of interpreting a monad Free f by giving a way to iterate
over f. In other words given a function of type f x -> x

we get a function Free f x -> x. Thus, we state a different
form of initiality. Initiality can be thought of as a principle,
(𝐹 𝐴 → 𝐴) → (Free 𝐹 𝐴 → 𝐴), which allows us to write a
fold over the abstract syntax of monads given a fold over the
underlying datatype. However, the correct handling for free
EffectFail is (𝐹 𝐴 → 𝐴) → EffectFail 𝐹 𝐴 → Maybe𝐴. As
much as effects are inspired by initiality, we provide a type-
theoretic motivation for our definition. To provide handling

2



of EffectFail, we interpret the results and embed them into
Maybe and propagate the underlying failure. Thus this is ini-
tiality not for EffectFail, but for Eff itself after expanding
the MaybeT monad transformer. This should be correct not
by some appeal to category theory, as initiality is normally
stated, but by appealing to the API we would expect from
our system. To run EffectFail we either want to extract the
underlying result or propagate the failure of an underlying
Pure result.
This construction shouldn’t be too much of a surprise

since MaybeT is known to provide the underlying monad for
an algebraic theory adding exceptions [Hyland et al. 2006].
What is new here is that we consider this failing monad as
the underlying apparatus for algebraic effects, rather than
arising for a particular kind of algebraic effect theory.

Algebraic freeness. Being able to interpret effects is not
the only property of interest for free monads, we also want
to characterise the algebras of the free monad with respect to
the underlying functor. Where initiality, also called freeness,
gives us a way to handle effects, its namesake algebraic
freeness gives us a way to obtain this characterisation.

A monad 𝑇 is algebraically free on an endofunctor 𝐹 if the
category of𝑇 -algebras (monad algebras) is isomorphic to the
category of 𝐹 -algebras. An algebraically-free monad is itself
a free monad [Kelly 1980; nLab authors 2021]. We conjecture
that some (perhaps extended) notion of algebraic freeness
can also be established for EffectFail F showing that it is
the “free” structure here.

5 Future directions
We have constructed the Effmonad in Agda and verified the
various monad / graded monad laws. For practical purposes
of reasoning there needs to be more than just a monadic
structure: we want to reason about the code using the epony-
mous algebraic laws. Therefore, we would like to attach to
the monad the equations that the handlers should satisfy
and thus provide correct-by-construction handlers. One so-
lution for attaching equations to a datatype are Quotient
Inductive Types [Altenkirch and Kaposi 2016]. This should
abstract away from the concrete choices when reasoning, yet
force us to prove satisfiability of the algebraic equations by
some handler. To extend the proofs from our current work
to the quotient case, we need to prove the type-theoretic
formulation of algebraic freeness (discussed above) in or-
der to prove that the free monad constructions preserve all
equations. Algebraically-free monads are free, and all free
monads are algbraically-free in locally small and complete
categories [nLab authors 2021]. This result should hold in
(homotopy) type theory as we should have all colimits and
right Kan extensions, which are used in such proofs as con-
sequences of the locally small and complete structure.

These lemmas apply only to the freemonadwith respect to
a forgetful functor𝑀𝑛𝑑 (C) → 𝐸𝑛𝑑𝑜 (C). We suggest a gen-
eralisation to the forgetful functor 𝑀𝑛𝑑 (C) → [𝑜𝑏 (C), C]
where [𝑜𝑏 (C), C] is the category of functors mapping from
the discrete category of C to C, matching more closely the
left Kan construction used by Eff. However, there is no ob-
vious generalisation, which would let us talk about algebras
over an arbitrary [𝑜𝑏 (C), C]. We thus take a more type the-
oretic view to extend the isomorphism in the definition of
algebraic freeness to the freer construction.
The semantics of a type constructor 𝐹 is thought as an

initial object in some category 𝐴𝑙𝑔(𝐹 ) corresponding to its
algebraic description. Homotopy type theory generalizes this
to quotient types (and other more general higher inductive
types), thus we should be able to present 𝐹 -algebras, includ-
ing their equations, using quotient types. Informally the left
Kan extension, 𝐿𝑎𝑛(𝐹 ), of a datatype 𝐹 should give us an
endofunctor, which just accumulates functions applied to it
without actually applying them, postponing their interpre-
tation. We propose that the algebras of 𝐹 are isomorphic to
the algebras of the left Kan extension of 𝐹 :

Conjecture 5.1 (Algebras of Left Kan extensions). Given a
type family 𝐹 : 𝑆𝑒𝑡 → 𝑆𝑒𝑡 with a homotopy-initial algebra
semantics 𝐴𝑙𝑔(𝐹 ), the family of 𝐿𝑎𝑛(𝐹 )-endofunctor algebras
is isomorphic to 𝐴𝑙𝑔(𝐹 ).

If this conjecture holds, then the ‘freer’ monad 𝑇 over 𝑋
would have𝑇 -algebras isomorphic to the initial algebras of𝑋 .
This follows by chaining this conjecture with the statement
of algebraic freeness. We expect the formal statement of this
conjecture to be provable with some appropriate container
[Altenkirch et al. 2015] or generic levitated presentation
[Chapman et al. 2010], because this would allow us to con-
nect the Lan(𝐹 )-algebra of an endofunctor with the algebra
of the underlying datatype 𝐹 .

Another direction of future research is to construct an iso-
morphism between continuations and the fast type-aligned
queues of Kiselyov and Ishii [2015]; Ploeg and Kiselyov
[2014], quotiented by their composition, thus providing a
more efficient implementation of effects without the over-
heads to reasoning this entails as we focus on semantic con-
structions instead of executable code, this is not our primary
concern. We would expect this to then transport by univa-
lence, but as discussed in [Tabareau et al. 2018] we would
need some form of representation independence coming
from parametricity, for this to be actually efficient.
Lastly, we have yet to connect the graded monad story

with failing monads. There is a straightforward extensions
of MaybeT to a graded setting, e.g., transforming the grading
monoid 𝑋 to a product monoid 𝑋 × B where B represents
whether a computation is defined or possibly undefined.
Exploring this and richer alternatives is ongoing work.

3



References
T. Altenkirch and A. Kaposi. Type theory in type theory using quotient

inductive types. ACM SIGPLAN Notices, 51(1):18–29, 2016.
T. Altenkirch, N. Ghani, P. Hancock, C. McBride, and P. Morris. Indexed

containers. Journal of Functional Programming, 25, 2015.
J. Chapman, P. Dagand, C. McBride, and P. Morris. The gentle art of levi-

tation. In P. Hudak and S. Weirich, editors, Proceeding of the 15th ACM
SIGPLAN international conference on Functional programming, ICFP 2010,
Baltimore, Maryland, USA, September 27-29, 2010, pages 3–14. ACM, 2010.
doi: 10.1145/1863543.1863547.

M. Hyland, G. Plotkin, and J. Power. Combining effects: Sum and tensor.
Theoretical computer science, 357(1-3):70–99, 2006.

S. Katsumata. Parametric effect monads and semantics of effect systems. In
S. Jagannathan and P. Sewell, editors, The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014, pages 633–646. ACM, 2014. doi:
10.1145/2535838.2535846. URL https://doi.org/10.1145/2535838.2535846.

G. Kelly. A unified treatment of transfinite constructions for free al-
gebras, free monoids, colimits, associated sheaves, and so on. Bul-
letin of the Australian Mathematical Society, 22(1):1–83, 1980. doi:
10.1017/S0004972700006353.

O. Kiselyov and H. Ishii. Freer monads, More Extensible Effects. SIGPLAN
Not., 50(12):94–105, Aug. 2015. ISSN 0362-1340. doi: 10.1145/2887747.
2804319. URL https://doi.org/10.1145/2887747.2804319.

S. Liang, P. Hudak, and M. P. Jones. Monad transformers and modular
interpreters. In R. K. Cytron and P. Lee, editors, Conference Record
of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Francisco, California, USA, January 23-25,
1995, pages 333–343. ACM Press, 1995. doi: 10.1145/199448.199528.

nLab authors. free monad. http://ncatlab.org/nlab/show/free%20monad,
May 2021. Revision 15.

D. A. Orchard, T. Petricek, and A. Mycroft. The semantic marriage of
monads and effects. CoRR, abs/1401.5391, 2014.

A. v. d. Ploeg and O. Kiselyov. Reflection without remorse: revealing a
hidden sequence to speed up monadic reflection. In Proceedings of the
2014 ACM SIGPLAN Symposium on Haskell, pages 133–144, 2014.

G. Plotkin and M. Pretnar. Handlers of algebraic effects. In European
Symposium on Programming, pages 80–94. Springer, 2009.

N. Tabareau, E. Tanter, and M. Sozeau. Equivalences for free: Univalent
parametricity for effective transport. Proc. ACM Program. Lang., 2(ICFP),
July 2018. doi: 10.1145/3236787. URL https://doi.org/10.1145/3236787.

T. Tomandl. effect-fail: Agda implementation. https://github.com/formrre/
effect-fail/tree/HOPE, 2021.

4

https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/2887747.2804319
http://ncatlab.org/nlab/show/free%20monad
http://ncatlab.org/nlab/revision/free%20monad/15
https://doi.org/10.1145/3236787
https://github.com/formrre/effect-fail/tree/HOPE
https://github.com/formrre/effect-fail/tree/HOPE

	Abstract
	1 Motivation
	2 Underlying model for algebraic effects
	3 MonadFail and exceptions
	4 MaybeT for non-handleable failure
	5 Future directions
	References

