
Ypnos: Declarative, Parallel Structured Grid Programming

Dominic A. Orchard
Computer Laboratory, University of

Cambridge, Cambridge, UK
dominic.orchard@cl.cam.ac.uk

Max Bolingbroke
Computer Laboratory, University of

Cambridge, Cambridge, UK
maximilian.bolingbroke@cl.cam.ac.uk

Alan Mycroft
Computer Laboratory, University of

Cambridge, Cambridge, UK
am@cl.cam.ac.uk

Abstract
A fully automatic, compiler-driven approach to parallelisation can
result in unpredictable time and space costs for compiled code. On
the other hand, a fully manual approach to parallelisation can be
long, tedious, prone to errors, hard to debug, and often architecture-
specific. We present a declarative domain-specific language, Yp-
nos, for expressing structured grid computations which encourages
manual specification of causally sequential operations butthen al-
lows a simple, predictable, static analysis to generate optimised,
parallel implementations. We introduce the language and provide
some discussion on the theoretical aspects of the language seman-
tics, particularly the structuring of computations aroundthe cate-
gory theoretic notion of acomonad.

Categories and Subject Descriptors D [3]: 2—Applicative (func-
tional) languages, Concurrent, distributed, and parallellanguages,
Specialised application languages; D [3]: 3—Concurrent pro-
gramming structures

General Terms Design, Languages, Theory

1. Introduction
Structured grids, or meshes, are a key computational pattern in
parallel programming [2]. In structured grid computations, astencil
function, or kernel, is applied to each element in an array-like
structure (which we call agrid) representing a discretised real-
world space. A stencil function computes a new element value
from the current element value and neighbouring cells. Typically
many iterations of a stencil function are performed, producing a
time series of data, until some convergence condition is reached.
Structured grid programs are highly data-parallel due to limited
dependencies between applications of a stencil function.

Many applications employ a structured grid model of computa-
tion, particularly highly graphical programs and applications in sci-
entific computing. Typical applications compute approximations to
systems of differential equations using finite difference methods to
simulate the behaviour of natural phenomena such as fluid motion,
stress, heat, or other dynamic systems.

Given the complexity of modern software and ever chang-
ing (parallel) hardware,domain-specific languages(DSLs) offer
problem or implementation specific expressivity and optimisation
which cannot be achieved with more general-purpose languages.

This is a minor revision of the work to appear at DAMP’10. Thisis the author’s version
of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version will appear at DAMP’10.

DAMP’10, January 19, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-859-9/10/01. . . $10.00

Embedding DSLs within general-purpose languages providesan
inexpensive technique for implementing new languages, as ele-
ments of of the host language, such as syntax, semantics, andim-
plementation, can be reused [27].

This paper introduces a domain-specific declarative, functional
language, Ypnos, for expressing structured grid computations, and
compiling such programs to parallel implementations. Ypnos is
currently implemented as anembedded domain-specific language
(EDSL) in the Haskell programming language and consists of a
novel syntactic extension for expressing data access patterns, a
central grid data structure, and a library of primitive operations.

Underlying Ypnos is the category theoretic notion of acomonad
(the formal dual of a monad), which characterises structured grid
computations and gives a framework for organising such com-
putations. In its implementation, Ypnos is parameterised by a
comonadic data structure, from which its primitive operations are
derived. Different instances of the comonadic structure provide
different back-ends to the language.

Compared to current approaches to parallel structured gridpro-
gramming, Ypnos has the following advantages:

• Ypnos is a pure, functional, declarative language, thus theab-
sence of side effects prevents the programmer writing programs
which are incorrect when parallelised.

• Ypnos does not require manual expression of parallelisation,
distribution, or communication like some techniques such as
using C with MPI for parallelisation [26]. Parallelisationin Yp-
nos is handled by its primitive operations, thus the description
of a problem is not obscured by implementation details.

• Ypnos does not require complex, and in general undecidable,
dependency analyses, such as the polyhedral analysis [1], to
facilitate automatic parallelisation due to its novel approach to
data access pattern expression and its strongly-typed primitives.

• Ypnos has a predictable cost model as its compilation does not
require aggressive analyses and transformations. Rather,par-
allelisation and optimisation are available through guaranteed
program properties and primitive operations.

• Ypnos is not tied to a particular hardware implementation,
unlike more low-level GPU frameworks such as CUDA [11],
OpenCL [22], and Cg [19].

• Due to its restrictions, Ypnos is more simple to program with
for non-programming experts than many existing approaches.

In this introduction we characterise the computational pattern
of structured grids, introduce its parallelisation, and discuss issues
with current solutions for parallelising structured grid problems.
Section 2 introduces the core elements of the Ypnos language,
including thesingle, independent writesproperty of Ypnos pro-
grams. Section 3 gives further Ypnos primitives, followed by a
discussion of the optimisation and parallelism provided byYpnos

primitives. Small examples are given throughout, with somefur-
ther examples in Section 5. Section 6 gives some informationon
the proof-of-concept implementation, followed by a discussion of
the comonadic structure of Ypnos and its back-end in Section7.

An in-depth knowledge of Haskell is not required.

1.1 Structured Grid Computations

The crux of the structured grid model of computation is the applica-
tion of a stencil function to all elements of an array-like data struc-
ture. A stencil function computes a new value for a grid element
based on the current value and the values of a fixed set of neigh-
bouring elements.Figure 1 gives an example of a C-style program
with a 5-point stencil access pattern (as illustrated inFigure 2),
computing the mean of an element’s neighbours.

while (condition) {
for (int i=0;i<N;i++){
for (int j=0;j<M;j++){

Atemp[i][j] = (A[i][j]+A[i+1][j]+A[i-1][j]+
A[i][j-1]+A[i][j+1])/5.0; } }

swap(Atemp, A); }

Figure 1. An example stencil computation in an imperative C-like
language, computing the mean of surrounding elements in arrayA.

Note that results are written to a temporary array,Atemp, such
that computation proceeds without interference between newly
computed values and the values of the previous iteration. After
each iterationA andAtemp are swapped (perhaps by exchanging
pointers), so that the next iteration reads from the array written to
in the previous iteration, and vice-versa.

1.1.1 Parallelisation

Structured grid programs have been parallelised for decades on
symmetric-multiprocessor systems (SMPs), clusters, and now
multi-core systems by the domain decomposition technique of par-
titioning grids into subgrids, which are distributed to processing el-
ements for independent parallel computation. The size of a stencil
function’s data access pattern is usually small relative tothe overall
size of a grid thus dependencies between subgrids are minimal.

On a distributed memory architecture, each subgrid residesin
the local memory of a processor. Where data dependencies lie
outside a subgrid, data from neighbouring subgrids is replicated
at the boundaries and updated after each iteration by inter-process
communication (illustrated inFigure 2). For multiple iterations,
data persists in local memory until the full data set is required.

With a shared memory model, a grid is partitioned by defining
subsets of the iteration space for each processor. Values can be
accessed from the shared memory in other iteration spaces where
dependencies exist between subcomputations.

(a) Before decomposition (b) After decomposition

Figure 2. 2D domain decomposition with a 5-point stencil

1.2 Problems with Current Approaches

We motivate our language design by looking at a number of issues
with current methods of parallel structured grid programming.

(Issue 1) Manual parallelisation is difficult to express, error prone,
and hard to debug.

A common manual parallelisation approach to structured grid pro-
gramming uses C or FORTRAN with the Message Passing In-
terface (MPI) [26]. Partitioning, distribution, and communication
must be programmed by hand, often resulting in mixing of algo-
rithmic parts of a program with parallelisation code. The manual
approach becomes increasingly difficult with higher-dimensional
grids, increasing numbers of grids, and more algorithmic stages,
sometimes taking many days or weeks of programming [21].

(Issue 2) Imperative programming languages have a high potential
for producing incorrect parallel programs.

Imperative programming languages are popular and attractive as
they typically offer very good sequential performance and apre-
dictable cost model for execution. However unrestricted side effects
can result in programs which, when parallelised, are incorrect.

(Issue 3) Some approaches are too hardware specific.

Frameworks such as CUDA [11], OpenCL [22], and Cg [19] ex-
press stencil computations asshaders for execution on GPUs.
Manual partitioning and distribution is generally not necessary as
shaders are automatically scheduled on GPU cores with chunks
of an input data stream. These frameworks are specific to GPU
implementation thus cannot be executed on non-GPU hardware.
Another example, OpenMP, is specific to shared-memory systems
[7]. A complete rewrite is required for execution on other hardware.

(Issue 4) Automatic parallelisation in general-purpose languages
is usually undecidable & can lead to unpredictable compiledcode.

Automatic parallelisation requires sufficient information to be com-
municated to the compiler about the structure and dependencies
of a program. The compiler must ascertain whether a program
fits a specified model of computation before it can parallelise the
program. Automatic parallelisation of a structured grid program
requires sufficient information about which arrays have stencil-
like functions applied, data access patterns, how much boundary
communication is required between processors, and how different
stages of a computation interact.

A fully automatic approach to parallelisation, even if successful,
can lead to discontinuous compiler behaviour i.e. a small change in
a program can result in a significant change in the topology ofthe
computation and its efficiency because a small change can render
an analysis or transformation intractable. This unpredictability can
lead to much frustration for the programmer who must fathom how
to appease the compiler.

(Issue 5) Random-access operations on arrays and arbitraryin-
dexing renders analysis and automatic compilation difficult.

There is much work on loop dependency analysis, encompassing
array access, for loop restructuring optimisations and parallel com-
pilation. Given unrestricted pointer operations, aliasing, and arbi-
trary array indexing, it is in general undecidable to infer exact de-
pendency information for all programs. Therefore, many analyses
require that programs adhere to a number of constraints, such as
affine indices (indices computed from just scalar multiplicationof
indices and addition of constants).

For example, a polyhedral analysis models the iteration spaces
of nested loop structures as geometric objects. A polyhedral model
is built from static control partsof a program which adhere to a

number of restrictions: constant loop step size, affine loopbounds,
if-statement predicates based on affine expressions, affineindices,
and use of functions that do not communicate using side effects.
[1]. Many scientific computing applications do however conform
to these analysis requirements [5], although the problems of (Issue
4) apply, and can be especially frustrating for novice programmers.

2. Ypnos
Ypnos is a declarative, functional,domain-specific languagefor
structured grid programming. Currently, Ypnos is implemented
as anembeddeddomain-specific language (EDSL) in the pure,
functional programming language Haskell, benefiting from exist-
ing language syntax, semantics, abstractions, implementation, and
libraries. Ypnos extends Haskell with some its own syntax, and
benefits Haskell by providing an EDSL for parallel structured grid
programming. Other host-language embeddings may be given,but
we find Haskell the most convenient for our purposes.

The restricted, domain-specific nature of Ypnos means its pro-
grams fit the structured grid model of computation. Additionally,
syntactic extensions provide decidable compile-time information
about a program’s data access and dependencies. Thus, Ypnosdoes
not require complex analyses and transformations to identify the
structured grid pattern in a program and to parallelise its execution
(addressingIssue 4and5). Ypnos does not require manual parti-
tioning and communication code because its restricted operations
and constructions handle parallelism (addressingIssue 1). Further-
more, the Ypnos EDSL is parameterisable by different back-end
implementations, permitting execution on different architectures
and platforms (addressingIssue 3). We use Haskell’s strong typing
to reject programs not matching the correct computational pattern,
and to enforce absence of side effects beyond those permitted in
the back-end of Ypnos, which can hinder parallelisation (address-
ing Issue 2).

This introduction to Ypnos commences with the centralGrid
data structure.

2.1 Grids

The Grid data structure represents a finiten-dimensional discrete
space of values, and is parameterised by adimensionandelement
type. The dimension defines the number ofaxesbelonging to a grid,
giving distinct identifiers to each. For example, a two-dimensional
grid of floating point values of dimensionX × Y has type:

Grid (X × Y) Float

akin to a C array typefloat[][]. We use identifiersX, Y , andZ
to denote particular dimensions,dim to range over all dimension
identifiers, andD to range over all dimension terms. A dimension
term is a type-level construction that is formed from a number of
dimension identifiers and a tensor product operation× i.e:

D := dim | D × D

Unlike C, Ypnos has an infinite number of two-dimensional grid
types for some element typea because dimension identifiers are
not equal e.g.X × D 6= Y × D. The tensor product operation is
however associative and commutative, hence:D1×D2 ≡ D2×D1

andD1 × (D2 × D3) ≡ (D1 × D2) × D3.
The primitive functiongrid, constructs grids from a vector of

finite dimension sizes and a list of elements, e.g.

grid 〈X = 2, Y = 2〉 [1, 2, 3, 4]

In the type of a function, the dimension parameter of a grid
type may be universally quantified. In the primitive operations,D
denotes a universally quantified dimension term.

2.2 Stencil Functions

Programs in Ypnos are written mostly in terms of user-definedsten-
cil functions. Consider the example C program inFigure 1. This
program can be abstracted on its stencil function, parameterising
the computation by a stencil functionf:

...
Atemp[i][j] = f(A,(i,j));

...

f has the following type, whereArray a is an array of element type
a and (Int, Int) is a two-dimensional index:

(Array a × (Int × Int)) → a

In Ypnos, stencil functions have type:

Grid D a → b

In the type off, (Int, Int), is the index for the current position
at which the stencil function is being applied. In Ypnos, thecurrent
index of application is hidden inside theGrid structure, which we
call thecursor or focal pointof the stencil. Instead of using array
indexing operations, values are accessed from the grid using a novel
pattern matching construction called agrid pattern.

2.3 Grid Patterns

A grid pattern consists of a number of sub-patterns which are
matched to the elements of a grid based on their lexical orderin
relation to a central point. The following is an example of a one-
dimensional grid pattern:

X : | l @c r |

This pattern binds the variablesl, c, andr to consecutive el-
ements in a grid along the dimensionX. The variable which is
bound to thefocal point of the grid is delineated by the@ sym-
bol. This grid pattern is analogous to following bindings ina C-like
language whereA is an array andi is the current index:

l = A[i-1]; c = A[i]; r = A[i+1];

The cursor (equivalent to the above index,i) is used by the
implementation to give correct bindings to grid patterns, as the
cursor denotes the position of the focal element in a grid during
a stencil computation.

One-dimensional grid patterns can be nested inside one an-
other to given-dimensional patterns. Alternatively, variables can
be bound in one dimension and passed to another stencil function.
For example, if the above one-dimensional stencil was applied to a
grid of dimensionsX × Y each bound variable would correspond
to an array slice of dimensionY which could be further matched
upon by a separate stencil function.

As a syntactic convenience we provide an additional two-
dimensional grid pattern whose concrete syntax spans multiple
source lines; a change in line corresponds to an increment inthe
second dimension’s index. For example, the following pattern is
the standard 5-point stencil in dimensionsX × Y :

(X × Y) :

˛

˛

˛

˛

˛

t
l @c r

b

˛

˛

˛

˛

˛

As an example of concrete syntax, the following is a complete
stencil function with a grid pattern that matches elements in dimen-
sionsX × Y and computes the mean:

ave2D :: Grid (X * Y) Double -> Double
ave2D (X * Y): | _ t _ | = (t+l+c+r+b)/5.0

| l @c r |
| _ b _ |

Grid patterns directly express data access as part of a computa-
tion, they are not simply annotations given to purportedly describe
the access pattern of a separate piece of low-level code. Because
the grid patterns are static they provide decidable compile-time in-
formation. If conditional expressions are used to choose between
stencils then a decidable over-approximation calculates the union
of all possible data access patterns for the outer stencil function.

At compile time a bounding box of a grid pattern is constructed,
capturing the amount of boundary communication and overlapre-
quired between subgrids when parallelising via domain decompo-
sition. The maximum distance of subpatterns from the focal point,
in each dimension, defines a bounding matrix. In the case of the
ave2D example, a single row and column of data is required to be
replicated at subgrid boundaries in each direction, thus the follow-
ing bounding matrix is inferred:

Jave2DKaccess=

»

−1 −1
1 1

–

2.4 Applying Stencil Functions

Therun primitive applies a stencil function to a grid, and has type:

run :: (Grid D a → b) → Grid D a → Grid D b

The run primitive takes a stencil function as its first parameter
and a grid as its second, applying the stencil function to thegrid,
once for every possible grid position, instantiating the grid’s cursor
to the index of each element. A value of typeb is returned for every
position in the grid whichrun returns in a new grid of element type
b. Figure 3(a) illustrates a stencil, andFigure 3(b) illustratesrun
once it has been partially applied to a stencil function.

(a) Illustration of a stencil
functionf :: Grid a → b

(b) Illustration of
run f :: Grid a → Grid b

Figure 3. Illustrations stencil function application to a grid.

Note that the stencil function is applied to every element inthe
grid, therefore applications of a stencil applied at, or near, the edge
of the grid may attempt to bind values outside of the grid. Default
values outside of a grid can be specified, as well as more complex
behaviours (see Section 3.4).

2.5 Comparingrun to the map function on lists

Applying a stencil function with a grid pattern matching just the
focal point is equivalent to amapfunction over grids. i.e.

run (λ|@c| . f c) g ≡ mapGf g

Recall the standard definition ofmapover lists:

mapf [x1, . . . , xn] ≡ [f x1, . . . , f xn]

Consider a functionmap2, which applies a binary function to con-
secutive pairs of elements from a list, of type

map2 :: ((a × a) → b) → [a] → [b]

The operation ofmap2may be something like:

map2f [x1, . . . , xn] ≡ [f(x1, x2), . . . , f(xn−1, xn)]

The number of elements in the results list is one fewer than the pa-
rameter list. A defaultboundaryvalued remedies this discrepancy:

map2f [x1, . . . , xn] ≡ [f(x1, x2), . . . , f(xn−1, xn), f(xn, d)]

An alternate version ofmap2might use the default value at the
beginning of the list instead of at the end:

map2’f [x1, . . . , xn] ≡ [f(d, x1), f(x1, x2), . . . , f(xn−1, xn)]

The Ypnos equivalent stencil computation ofmap2on grids is:

run (λ|@x y| . f(x, y)) g

The equivalent stencil computation ofmap2’ is:

run (λ|x @y| . f(x, y)) g

map2andmap2’ show the effect of two subtly different stencils,
one binding the current element and the element one positionto the
right, the other binding the current element and element to the left.

2.6 Summary

We have introduced the centralGrid data structure and the type-
level concept of dimensions to differentiate between different di-
mensional grids. Stencil functions in Ypnos have type:Grid D a →
b. Therun combinator applies stencil functions to grids:

run :: (Grid D a → b) → Grid D a → Grid D b

TheGrid data structure contains acursor which is instantiated
by therun combinator to each position in the grid. The hidden cur-
sor is required by the implementation to give the correct bindings
of grid patterns. Grid patterns bind values from the grid to vari-
ables where thefocal point, or current element, is delineated with
an @ symbol. Grid access is defined statically with no dynamic
index expressions and thus is known statically at compile time.

Grid patterns restrict stencil functions to locally dense,glob-
ally sparse, access patterns. That is, the neighbourhood ofelements
accessed from the grid around the focal point is relatively small
in comparison with the problem size. Therefore dependencies be-
tween subgrids are minimal, reducing expensive inter-process com-
munication under parallelisation via domain decomposition. It is
syntactically inconvenient to write overly large stencils(greater
than about 5 elements in each direction), thus communication re-
quirements are kept relatively small.

Ypnos’ programs have what we call thesingle, independent
writes(SIW) property: that application of a stencil function makes
a single write to the focal position, thus writes never overlap. This
property is enforced by the types of stencil functions (producing
a single value), therun combinator (applying the stencil function
once per element), and the absence of random-access write opera-
tions. The guaranteed SIW property is leveraged for optimisation
and parallelisation in Section 4.

3. Further Ypnos
Ypnos’ primitive operations, of whichrun andgrid have already
been seen, are listed along with their types inFigure 4.

3.1 Tuples of values

Thezip, and complementaryunzip, operations respectively pair the
elements of two grids and split a grid of pairs into a pair of grids.
These operations are especially useful when performing stencil
operations on several parameter grids. There are corresponding
operations for 3-tuples, 4-tuples etc.

Extra syntactic sugar allows grid patterns on grids of tuples to
be written as a tuple of grid patterns e.g.

f | lA @cA rA |,| lB @cB rB |

instead of

f | (lA, lB) @(cA, cB) (rA, rB) |

Note each grid pattern must be equal in size and have the focal
element in the same position.

3.2 Reductions

A common part of structured grid computations is thereductionof
grids to a single result such as the mean, maximum value, or sum.
Ypnos provides a simple reduction primitive:reduce, which takes
an associative reduction operator of type(a → a → a) and applies
the operation in parallel to all elements and partial results.

Some reductions generate values of a different type to the ele-
ment type of a grid. A structure called aReducer packs together
a number of functions for parallel reduction under reduction oper-
ators of this type. ThemkReducer constructor builds aReducer,
taking four parameters:

• A function reducing an element and partially-reduced valueto
another partially-reduced value:(a → b → b)

• A function combining two partially-reduced values, possibly
from two reduction processes on subgrids:(b → b → b)

• An initial partial result:b

• A final conversion function that converts the partial-result to a
final value:(b → c).

There are a number of built-in reducers:max, min, sum, and,
or, andmean. A Reducer structure can be applied to a grid using
the reduceR primitive. The iterate and iterateT operations also
take aReducer as a parameter.

3.3 Iterative stencil application

Similar to run, the iterate primitive iteratively applies the stencil
function over a grid until a stop condition is reached. Theiterate
operation takes a stencil function, aReducer of boolean result for
the stop condition, and a parameter grid. Theiterate operation can
be derived fromreduce and run, although the primitive provided
uses local mutable state for optimisation (see Section 4.1):

iterate f r g = if (reduceR r g)

theniterate f r (run f g)

elseg

i.e. if the stop condition is not reached then applyrun and recurse
on the result, if the stop condition is reached then return the current
result. Note that the parameter grid and return grid must have the
same element type for iterative stencil function application, as the
result of one application is passed to the next.

3.4 Boundaries

Stencil functions applied near or at the edge of a grid may case
out-of-bounds data access. One approach to handling boundaries in
Ypnos is to manually account for boundary conditions via theuse a
pattern in a grid pattern which binds the indices of the focalpoint
(cursor) to a variable. For example, the following pattern bindsi to
the index of the current focal point:

X : | l @c#i r |

An out-of-bounds check can be performed on the index, providing
values to otherwise undefined variables. This feature can beused to
implement a type of random access on grids, but the function must
still be applied to a grid usingrun, thus would be vastly inefficient.
The index checking technique has the added caveat that each ap-
plication of a stencil requires extra index-testing control flow. Ex-
tra control flow can be especially undesirable when compiling to a
GPU, which often has more costly control flow operations.

An alternative, more efficient, solution is provided bylift which
lifts a finite grids to an infinite grid, allowing out-of-bounds access.
The lift primitive takes a grid and afacetsstructure (essentially a
record) which describes boundary behaviour for each facet (edge,

grid :: 〈D Int〉 → [a] → Grid D a

zip :: Grid D a → Grid D b → Grid D (a, b)

unzip :: Grid D (a, b) → (Grid D a,Grid D b)

reduce :: (a → a → a) → Grid D a → a

reduceR :: Reducer a b → Grid D a → b

mkReducer :: ∃b (a → b → b) → (b → b → b) → b

→ (b → c) → Reducer a c

run :: (Grid D a → b) → Grid D a → Grid D b

iterate :: (Grid D a → a) → Reducer a Bool

→ Grid D a → Grid D a

iterateT :: (Grid (T × D) a → a) → Reducer a Bool

→ Grid D a → Grid D a

lift :: Grid D a → Facet D a → Grid
∞

D a

unlift :: Grid
∞

D a → Grid D a

defaults :: Grid D a → a → Grid
∞

D a

run
∞ :: (Grid

∞
D a → b) → Grid

∞
D a → Grid D b

Figure 4: Key primitive operations on structured grids

face, etc.) of a grid. Possible boundary behaviours include: default
values,wrapping(reading a value from the opposite side of a grid),
or reflecting. A complementaryunlift primitive returns a finite grid
from an infinite grid. For space reasons, we omit a discussionof the
exact nature of the facets structure.

All but one of the primitive operations can be called with lifted
grids, returning a lifted grid. The exception isrun, which is unable
to return a lifted grid when applied to a lifted grid becauserun
allows the element type of the returned grid to be different to that
of the parameter grid, thus a facet structure of the correct element
type is unavailable. The type ofrun∞ reflects this behaviour.

A simple lifting operation,defaults, provides support for adding
default values infinitely outside the boundaries of a grid.

3.5 Other considerations

In numerical analysis there are a number of techniques that speed
up convergence, such asGauss-Seidel iterationsand relaxation
methods such asSuccessive Over Relaxation(SOR). These tech-
niques can be applied in practice to speed up computations.

Gauss-Seidel iterations compute results based on already com-
puted results in the current iteration [9]. For example:

for(i=0;i<N;i++){
A[i] = (A[i-1] + A[i+1])*0.5;

}

Ypnos provides Gauss-Seidel support withiterateInplace which
causes a stencil function to read and write the same grid in memory.

In the SOR technique, grids are often processed in a checker-
board fashion, first computing values for odd elements, and then
for even elements. There is currently no support for this in Ypnos,
although a system of executionmasksis under consideration.

4. Optimisation and Parallelisation
The guaranteedsingle, independent writes(SIW) property, and the
static data access information provided by grid patterns, means op-
timised and parallel implementations can be given to Ypnos primi-
tives, which are safe, i.e. do not alter program correctness, and are
guaranteed to be applicable. Parallel and/or optimised implemen-
tations ofrun, iterate, anditerateT are provided by the back-end
grid structure parameterising the Ypnos EDSL (see Section 6).

4.1 Optimisation by Destructive Update & Allocation Reuse

It is well known that the absence of side effects and the immutabil-
ity of data structures is advantageous for parallelism but disadvan-
tageous for updating large data structures, such as arrays,as time
is spent copying, allocating, and deallocating data [13]. Ypnos pro-
vides optimised primitives,iterate and iterateT, which use local
destructive array updates to reduce execution time spent inalloca-
tion, deallocation, and garbage collection.

The iterate operation (introduced in Section 3.3) can be given
an optimised implementation where a pair of auxiliary mutable
grids store intermediate results. One mutable grid stores the values
of the previous iteration, the other is destructively updated as the
current iteration is computed. At the end of an iteration therole
of each allocation is swapped (illustrated inFigure 5(a)), similar
to theswap operation ofFigure 1. Due to the SIW property, write
operations never interfere, thus destructively writing toa temporary
grid structure is safe. When the stop condition ofiterate is satisfied,
all local effects are applied and a pure grid is returned, thus the
effects of the destructive update are hidden insideiterate.

The iterateT primitive extends the (internally) destructive be-
haviour ofiterate to computations involving past versions of a grid,
without the programmer having to alias grids between calls to run.
The iterateT primitive embeds a grid into a reserved temporal di-
mensionT over which grid patterns are reused to define the exact
number of previous grid versions required in a computation.Given
this information,iterateT keeps in memory enough copies of the
grid to satisfy thishistoric grid pattern. When previous grid allo-
cations can no longer be accessed by the stencil function,iterateT
safely reuses these allocations cyclically. For example, the follow-
ing temporal stencil matches the two preceding iterations1:

T : | g
′′

g
′ @ |

Subsequently,iterateT creates three mutable grid allocations
which are cyclically written to in-place (illustrated inFigure 5(b)).
Because of the static guarantees of grid patterns,iterateT obviates
the need for an alias analysis, or a system such aslinear types[31],
to ensure that intermediate grids are not aliased and then used later
once destructively updated, reallocated, or deallocated.

Neitheriterate nor iterateT extend the expressive power of Yp-
nos, they are merely optimised forms of operations which could be
derived usingrun and reduces. The use of either primitive commu-
nicates to the compiler that the programmer wishes to use theopti-
misation of mutable state. ForiterateT, the programmer also com-
municates to the compiler the exact number of previous grid allo-
cations required. Thus, these optimisations are not fully-automatic
(i.e. they are not result of a compiler analysis and transformation)
and are not manual either, buthuman-driven, with predictable gains
thanks to the static guarantees of Ypnos.

4.2 Parallelisation

Due to thesingle, independent writesproperty, individual applica-
tions of a stencil function to a grid may be safely performed in any
order or in parallel, as read and write operations do not interfere.

1 Note, the focal point matching the current version must be a wildcard
pattern, asiterateT marks the current grid version as undefined

(a) iterate (b) iterateT (λT : |g′′g′@ | . . .)

Figure 5. Allocation reuse patterns of optimised primitives

Applying each stencil function in parallel over a grid wouldhow-
ever incur a large overhead from each thread creation. Instead, we
can perform domain decomposition (described in Section 1.1.1),
factoring a grid into subgrids for independent parallel computation.

Because of the static data access information afforded by grid
patterns, the exact amount of boundary communication required
between subgrids is known. Thusrun, iterate, anditerateT prim-
itives can be given parallel implementations which are guaranteed
to be safe (by SIW) with the correct, and minimal, amount of com-
munication between processes as specified by the programmer. We
informally describe the parallel implementation ofrun for a stencil
functionf, applied to a gridg, with access patternacc = JfKaccess

(see bounding matrix in Section 2.3), whereacc[D] means the vec-
tor at theD-th column of the bounding matrix, representing the
data access pattern in dimensionD.

1. Splitg into subarraysgs, adding boundaries of sizeacc[D] for
dimensionsD from g or from the associated facets structure
if at the grid edge. Prefer splitting along a dimension where
P

acc[D] = 0 i.e. no boundary communication required.

2. Spawn threads ofrunSeq f g”, for each subgridg” ∈ gs, where
runSeq is a sequentialrun operation.

3. Join the computed subgrids into a single gridg’, removing
boundaries, and return.

For iterate and iterateT we apply a similar scheme, where se-
quential, optimised versions ofiterate anditerateT are applied to
each subgrid in independent threads. After step 2, boundarycom-
munication between subgrids takes place, where boundary data is
swapped with neighbouring processes, before testing the stop con-
dition, moving to step 3 if true or iterating if false.

5. Further Examples
Solving The Laplace Equation The following example solves the
Laplace equation using a Gauss-Seidel method over a grid.

laplace (X*Y):| _ a _ | = (a+b+d+e)*0.25
| b @_ d |
| _ e _ |

g’ = iterateInplace laplace (ntimes 1000) (defaults g 0.0)

A special impure reduction operator,ntimes, counts the number
of iterations, reducing totrue when a specified limit is reached.

Conway’s Game of Life It has been noted online by Piponi that
cellular automata are comonadic [24]. In a similar vein, thefollow-
ing example computes Conway’s Game of Life in Ypnos.

life (X*Y):| a b c | = let local = (a+b+c+d+e+f+g+h+i)
| d @e f | in if (e==1) then
| g h i | if (local<2 || local>2)

then 0 else 1
else

if (local==3)
then 1 else 0

-- Create environment

initalState = grid <X=10, Y=10> randomConfiguration

untilMostlyDead = Reducer (+) (+) 0.0 (\x -> (x<10))
stopCondition = (untilMostlyDead ‘orReducer‘ (ntimes 100))

intialState’ = (defaults 0.0 initialState)
finalState = iterate life stopCondition initialState’

The above code makes use of a special reduction combina-
tor, orReducer, which creates a disjunction of two reducers with
boolean results. There is a similar combinator for conjunction.

Writing Non-Structured Grid Applications The following, slightly
contrived, example does not fit the structured grid programming
pattern because it uses random-access writes to an array. Weshow
the implementation of the program first in C and then show an
implementation in Ypnos.

int A[5] = {1,4,2,3,0}; int Atemp[5];

for (int i=0;i<5;i++){
int x = A[i];
Atemp[x] = i;

}

A five element one-dimensional array is initialised with integers
from 0 to 4. In the loop, each array value is used to indexAtemp,
where the current indexi is written. The computation is∈ O(n).

The equivalent Ypnos code uses a stencil function to emulate
random writes, comparing the focal point index to the write index;
if equal, the write element is returned, else the current grid value.

g = grid <X=5> [1,4,2,3,0]
g’ = grid <X=5> [0,0,0,0,0]

randomWrite grid x i = run randomWrite’ grid
where

randomWrite’ | @c#j | = if (i==j) then x else c

reArrange | @c#i | = randomWrite g’ i c

run reArrange g

The program is certainly inelegant to write in Ypnos, is slow(∈
O(n2)), and returns a grid of grids, using more memory and pre-
senting difficult-to-compile code for a GPU target. The infelicity of
the programming task reflects its non-structured grid pattern.

6. Implementation
The current Haskell EDSL implementation of Ypnos is parame-
terised by a number of data structures which provide a semantics
to Ypnos, with Haskell as the meta language (see Section 7). In
this way, different back-end implementations can be given,such
as a parallelising back-end, or one that generates C with MPIor
CUDA. Section 7.2.1 gives a simple, pure, sequential semantics.

Syntactic extensions for grid patterns are implemented using the
quasiquoting extension to Template Haskell [18] which are parsed
into an AST using the Parsec parser combinator library [17].The
use of the quasiquoting technique adds some extra syntacticburden
which we omitted in our examples for clarity. The following is an
example stencil function in the current implementation:

ave2D = [$fun| X*Y:| _ t _ |
| l @c r |
| _ b _ | -> (t+l+c+r+b)/5.0 |]

wherefun preprocesses the grid pattern and generates grid access
code, taking the expression after-> as Haskell code which is trans-
lated verbatim as the stencil function body. The macro generates
a tuple of the stencil function with a vector of grid’s data access
pattern and dimension information.

7. Mathematical Structure
The core of Ypnos is structured around theGrid type which mod-
els acomonadstructure from category theory. The operations of
the comonad correspond to, or are used to derive, the core primi-
tive features of our language. The optimised primitives using mu-
tability (iterate and iterateT) combine a comonad with a monad,
describing their effects, via adistributive law(as in [25]).

The category theory structures used to organise the language
give a clear separation of the concepts underlying Ypnos andfa-
cilitates modular back-end implementations. Abstractly,the asso-
ciated coherence laws of comonads, monads, and distribution give
properties that the back-end implementer should be mindfulof if
correct execution is expected. Although Haskell does not support
the encoding of these properties, they can be checked by hand.

We briefly introduce the abstract structures used by Ypnos, and
describe a sequential, pure instantiation of theGrid comonad that
provides a simple semantics to the language.

7.1 Comonad

Until recently comonads have received less attention in program-
ming than their dual:monads, traditionally used to describe com-
putational effects [20]. Uustalu and Vene showed that the stream-
based dataflow computations of the Lucid programming language
can be described with a comonad [28]. Their thesis: comonadscap-
ture theessenceof dataflow. The Lucid programming language,
originally purposed for declarative iteration, can be understood as a
language of context-dependent computations, where computations
are modelled as streams mapping discrete time contexts to values
[30]. Lucid was later extended to multi-dimensional streams, where
contexts are Cartesian coordinates [3]. Multi-dimensional streams
are akin to array structures. Our hypothesis is that comonads also
capture the essence of structured grid computations.

Definition For a categoryC and an endofunctorD : C → C, a
comonadis a triple(D, ε, δ) of D and two natural transformations,
where:

[C1] ε : D → 1C

[C2] δ : D → D2

[C3] associativity and identity laws hold for objects inC

If we interpret the comonad’s endofunctorD as a data structure in a
functional language, theε operation corresponds to a polymorphic
function that extracts a value from the comonad (counit), and δ
corresponds to a polymorphic function that expands a comonad into
a nested comonad inside a comonad (cojoin):

counit :: ∀a . D a → a

cojoin :: ∀a . D a → D (Da)

The functional programming interpretation of functor application
to morphisms is a higher-order function calledfmap, which lifts a
function to operate over a data structure:

fmap:: ∀a . (a → b) → (D a → D b)

Comonads are defined above in thecomonoidform, from which
thecoextensionform can be derived. In the coextension form, aco-
extensionnatural transformation, often calledcobind in functional
programming2, takes a function from a comonad(D a) to an ob-
ject(b) and lifts it to a function from(D a) to a comonad(D b). It
can be derived by composition of functor application withcojoin:

cobind :: (D a → b) → (D a → D b)

cobindf = (fmapf) ◦ cojoin (1)

2 The extension form of a monad is often calledbind in functional program-
ming, hence the namingcobind.

The first parameter ofcobindis known as acoKleislimorphism, or
arrow. Given a comonadD in categoryC, acoKleisli categoryCD

has morphismsf, g : D A → B from C. Thecobind operation
allows such coKleisli arrows to be composed:

(g ◦D f) = g ◦ (cobindf)

7.2 Grids as Comonads

We briefly describe the derivation of Ypnos primitives from the
comonadic, parameterGrid structure:

• Grid comonads are parameterised by a dimensionD, i.e.
(Grid D) is the comonad.

• Therun operation of Ypnos is exactly thecobindoperation.

• Stencil functions are the coKleisli arrows of the comonad.

• Grid comonads arecopointed, having acursor (focal point);
counit returns the grid value pointed to by its cursor.

• Grid comonads aresymmetric semi-monoidal comonads[29]
thus are equipped with the natural transformation:

zipA,B : D A × D B → D (A × B)

providing zip; unzip is provided by a pair of the left and right
tuple projections lifted to grids byfmap:

unzipx = (fmapπ1 x, fmapπ2 x)

• Grid comonads require additionalshiftoperations (like the nav-
igation principles of azipper[14]) to modify the cursor, allow-
ing grid patterns to access elements relative to the focal point
of a grid. A grid comonad must provideshiftLeftandshiftRight,
parameterised by the dimensionD′ in which to navigate:

shiftLeft :: D
′ → Grid D a → Grid D a

shiftRight :: D
′ → Grid D a → Grid D a

• Reduction (reduce, etc.) and lifting operations (lift, etc.) must
be supplied as additional operations specific to theGrid comonad.

7.2.1 A Pure, Sequential Grid Comonad

The following comonadicGrid data structure provides a pure, se-
quential semantics to Ypnos. The grid structure is a pair of acursor
and a function from indices to values, where indices are Cartesian
products of integers:

Grid D A = N
|D| × (N|D| → A)

Such grids are infinite. TheGrid functor’s operation on morphisms
applies the parameter function to each element of the grid:

fmap :: (a → b) → (Grid D a → Grid D b)

fmapf (c, g) = (c, (λn . f(g n)))

Thecounitoperation returns the value at the location pointed to by
the cursor. Thecobind operation can be derived fromcojoin and
fmaponGrid as in (1), but we give a specialised version here.

counit :: Grid D a → a

counit (c, g) = g c

cobind :: (Grid D a → b) → Grid D a → Grid D b

cobindf (c, g) = (c, (λn . f (n, g)))

Thezipoperation is defined:

zip :: Grid D a → Grid D b → Grid D (a, b)

zip (c, g) (c′, g′) = (c, λn . (g n, g
′
n))) wherec = c

′

Shifting operations alter the focal point, where[d 7→ 1] is an index
where thed-th element is 1 and all other elements are 0:

shiftLeft :: D
′ → Grid D a → Grid D a

shiftLeftd (c, g) = (c − [d 7→ 1], g)

shiftRight :: D
′ → Grid D a → Grid D a

shiftRightd (c, g) = (c + [d 7→ 1], g)

Lifting and reduction operations are omitted for spaces reasons.

7.3 Effectful Primitives

The optimised primitives,iterate anditerateT, generate and apply
side effects internally thus the effects cannot “escape” and produce
global effects. Conceptually, and ideally, the effectful primitives
would be implemented using a statemonad[20], and a distributive
law to combine the state monad andGrid comonad [25].

The distribution operation, corresponding to the distributive
law, has the following type (D is a comonad,T is a monad):

dist :: D (T a) → T (D a)

Thus, local effects in the elements of the comonad are distributed
outside of the comonad. Usingdist we derive an operation that we
calledbibind, allowing morphisms in abiKleisli category, of type
(D a → T a), to be composed:

bibind : (D a → T a) → T (D a) → T (D a)

bibind f = bind (dist◦ cobindf)

Stencil functions of coKleisli arrow type are wrapped in an effect
producing write operation to destructively update the gridstructure,
thus giving a biKleisli arrow which is applied usingbibind.

The current implementation of Ypnos uses a slightly different
structure to the monad and distributive law approach because the
mutable array structures in Haskell cannot be given pure comonadic
operations. Instead we use aneffectful comonad-style structure.
Unfortunately there is not time to discuss the issues here, but there
is certainly future work in looking at how mutable data structures
in functional programming, such as mutable arrays, can be de-
scribed purely as a comonad, and then impurely by generatinglocal
monadic effects which are made global by a distributive law.

8. Related Work
There is a multitude of work on parallelisation of languages, both
automatic and manual. We mention just a couple here.

The Chapel language, developed at Cray, has the similar aim
to Ypnos, of separating problem and parallelisation code. Chapel
can be used for stencil computations and distribution of arrays
[4]. Arrays in Chapel are typed by adomain, a finite space of
indices, and are accessed by aforall iterator which visits each
element, similar to therun operation of Ypnos. Stencils are defined
by offset tuples (akin to basis vectors) added to a current index
tuple. Stencils can also be defined as an array of tuples whichis
applied with areduce function to an array. The reduction-based
approach conveys the intent of the stencil and the domains tothe
compiler for possible efficient computation, although there are no
static guarantees of efficient execution.

The CAPTools toolkit for FORTRAN provides analmostauto-
matic transformation tool for parallelising structured grids, featur-
ing a powerful symbolic dependence analysis augmented by user
interaction to attain a more accurate dependence graph [8].Our
own approach mitigates the need for interaction by communicating
data dependencies statically via grid patterns.

Piponi noted the comonadic structure of structured grid-like
computations in his superlative blog [24], giving a small example
in Haskell of a one-dimensional cellular automata.

The Lucid dataflow language, already mentioned in Section 7.1,
and the work of Uustalu and Vene, who described comonads as
the “essence of dataflow” [28] inspired the comonadic structuring
of Ypnos. Lucid is often described as anintensional programming
language, or acontext-dependent language. Lucid expressions can
be understood as describing histories of computations, which can
be modelled in the language semantics as streams. Special oper-
ations navigate forwards and backwards inside streams to access
elements. The language looks and feels very different to Ypnos be-
cause in Lucideverythingis implicitly a stream; in Ypnos, grids are
explicit, and scalar non-grid expression coexist with gridexpres-
sions. Ypnos grids are however similar in flavour to the multidi-
mensional streams of Multidimensional Lucid and its descendants
[3], where operations that manipulate and navigate throughstreams
are replaced with grid patterns. In Multidimensional Lucid, the cur-
rent context of a stream can be accessed via the# operator, and the@
operator provides random-access into a stream. These operators in-
fluenced our syntax in the index accessor pattern # in grid patterns,
and@ to denote which variable is bound to the current context.

Recent work by Lee, Chakravarty, Grover, and Keller targets
GPU programming with an EDSL in Haskell that constrains the
programmer to code suitable for GPU execution [16]. Their ap-
proach has some similarities to our own, using the strong static typ-
ing of Haskell to guide the programmer. In their EDSL, the types
of operations are sufficiently restricted such that it is notpossible to
write code that would not be executable on a GPU. Their approach
uses array types similar to our grids types, but stencil computa-
tion is not addressed in the same way. Our work is more general
in terms of implementation, but is more specific in the computa-
tional pattern supported. There are a number of important issues
addressed by their language which Ypnos does not address because
it aims to be implementation agnostic. For example, array element
types are constrained to those which can be efficiently handled by a
GPU, and nested parallelism and recursion are disallowed. There is
much that is similar in motivations of both our designs, eachwith
slightly different focus. Such work could provide an implementa-
tional back-end for execution of Ypnos programs on GPUs.

9. Further Work
There are certainly many possible extensions to Ypnos. In the
current implementation we plan to implement efficient back-
ends for parallel GPU execution and parallelisation via domain-
decomposition, and hope to have performance measures soon.Here
we describe possible further extensions to the Ypnos language.

9.1 Mixing Sequential and Parallel Code

The current Ypnos EDSL implementation permits different back-
ends, thus allowing sequential or parallel implementations of prim-
itive operations. However, a compiler that always producesparallel
implementations may produce inefficient solutions as some minor
computations may be more efficient when implemented sequen-
tially [21]. Thus, we hope to extend Ypnos to include both sequen-
tial and parallel primitives:run andrunSeq, iterate anditerateSeq,
etc. Thus the back-end requires modification, perhaps to be param-
eterisable by sequential and parallelcobindoperations on the same
grid structure, or parameterisable by some other structurerepre-
senting distributed grids which interacts with theGrid comonad.

Furthermore, there are some useful programs that are currently
difficult to get efficient executions of using Ypnos. One example:
using parallel reductions during application ofiterateT, which
are not used as stop conditions. Currently such reductions cannot
be made. Instead, such code must be written usingrun, thus the
iterateT optimisations of mutable state cannot be used, and the
persistence of subgrids on process-local memory during domain
decomposition is lost. We hope to rectify this inflexibilitysoon.

9.2 Cost Model and Predictability

A cost model for execution is provided to the user by the static
guarantee of optimisation byiterate and iterateT, and no optimi-
sation byrun; there are no unpredictable automatic analyses and
transformations. However, there is no control over implementation
properties such as the size of subgrid tiles, affecting execution time
and memory requirements. We would like to extend Ypnos with
configuration variables, a form of compiler directive, for express-
ing numerical parameters for decomposition and parallelisation.

9.3 Multi-scale Grids

Multigrid methodsuse different levels of discretisation (essentially
different resolutions or scales), to speed up convergence by using
coarse grained approximations of a grid to guide computation on
fine grained versions of the grid [10]. The type of interaction
between levels of discretised grids is often problem dependent.

Adaptive mesh refinementsare a more general technique for
speeding up convergence by approximating regions of a grid which
have reached a fixed point, hence for which computation wouldbe
unnecessary [6]. Regions in equilibrium arerefinedby representa-
tion as a unit at a different scale to the rest of the grid, resulting in a
grid with tessellating rectangles of different sizes (or resolutions).

Both techniques are valuable when performing intensive com-
putations with large data sets, but it is not clear to us how either
technique could be achieved in a language similar to Ypnos.

9.4 Vertex Shaders: the Formal Dual of Fragment Shaders

Earlier GPUs had a fixed execution pipeline, with computations
largely split between two types of processors:vertex and frag-
mentprocessors, handling respectivevertexandfragment(or pixel)
shaders. Vertex shaders are capable of random-access writes (scat-
ters) but only perform single reads from the current stream position.
Conversely, fragment shaders are capable of random-accessreads
(gathers) but can only perform single writes to the current stream
position [12]. Fragment shaders correspond to the structured grid
computations seen in this paper. Newer architectures have no dif-
ferentiation between types of processor, offering many general pro-
cessors that can handle either type of computation. [23]

It is conceivable that the scatter operations of vertex processors
could be parallelised in the same way as structured grid operations
assuming the domain of writes was sufficiently local so as to permit
efficient execution under domain decomposition.

We have already described fragment shader computations, cor-
responding to stencil functions, as coKleisli arrows:Grid D a → b.
However, vertex shader computations, which read a single value
and produce several write operations, are more suitably typed:
a → Grid D b, corresponding toKleisli morphisms: the mor-
phisms of a Kleisli category formed from amonad. Gather op-
erations are therefore the dual of scatter operations, thusvertex
computations are the dual of fragment computations, which can be
structured by the dual of comonads: monads!

A larger language, perhapsYpnos++, might have two classes
of application primitives: the standard comonadic coextension op-
erations (run, iterate, etc.) for stencil computations and monadic
extension operations (mayberunVertex) for mould computations:

runVertex :: (a → Grid D b) → Grid D a → Grid D b

Such a language could encompass a larger class of algorithms, al-
lowing both stencil and mould functions to be expressed, with their
interaction mediated by a comonadic/monadic grid data structure.

10. Conclusions
There are many different parallel programming patterns [2]. No
single programming language can be suitable for programming all

such patterns. We have introduced the domain-specific language
Ypnos, targeted at parallel structured grid programming.

Ypnos is restricted to the single application domain of struc-
tured grid programming by its primitive operations, its novel syn-
tactic forms, and its embedding into a pure, functional language.
All programs satisfy thesingle, independent writesproperty, thus
correct optimised and parallel executions can be provided by its
primitives. Furthermore, aggressive and unpredictable analyses and
transformations are not required as data access patterns are encoded
in grid patterns, which have a simple translation to compile-time
data access information. Ypnos’ restricted forms provide an easier
approach to structured grid programming for those unfamiliar with
(parallel) programming.

Ypnos employs category theoretic abstractions to organisecom-
putations. The Ypnos EDSL implementation can be instantiated
with different instances of the underlying abstract structures. In
this way, Ypnos is hardware- and implementation-agnostic,allow-
ing different back-ends for different implementations, even code
generation for further compilation.

Just as assembly programming can result in faster code than
that produced by compilers, we expect that Ypnos code will often
be slower than that programmed manually by an expert. The gain,
however, is in ease of programming, low development times, and
high portability.

We would be interested to see if other restricted syntactic forms,
like grid patterns, could be applied in further domain-specific lan-
guages to facilitate parallelisation of other computational patterns.

In the late 1980s and early 90s there was much interest in apply-
ing dataflow languages to parallel architectures (such as Connec-
tions Machines). Besides the GLU (Granular Lucid) parallelpro-
gramming system [15] the application of dataflow programming to
parallel architectures never gained momentum. Now, 20 years later,
there is a veritable renaissance in parallel architectureswith multi-
core general purpose CPUs abounding, and many-core machines
now a commodity through GPUs. Ypnos is child of modern func-
tional programming and multi-dimensional Lucid, targeting, as its
dataflow ancestors were primed to target, parallel computation.

Acknowledgments
This work has been generously supported by an EPSRC DTA.
Many thanks to Tom Schrijvers for various insights and help with
paper, and to Marcelo Fiore for many interesting discussions.

References
[1] ACE Associated Compiler Experts bv. Parallelization using Polyhe-

dral Analysis, 2008, last accessed September 2009.https://www.
opencosy.org/node/37.

[2] K. Asanovic, R. Bodik, Demmel, et al. The Parallel Computing Lab-
oratory at U.C. Berkeley: A research agenda based on the Berkeley
view. Technical Report UCB/EECS-2008-23, EECS Department, Uni-
versity of California, Berkeley, Mar 2008.

[3] E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. W. Wadge.
Multidimensional programming. Oxford University Press, Oxford,
UK, 1995. ISBN 0-19-507597-8.

[4] R. F. Barret, P. C. Roth, and S. W. Poole. Finite Difference Stencils
Implemented Using Chapel. Technical Report TM-2007/119, 2007.

[5] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. Putting
Polyhedral Loop Transformations to Work. Research Report RR-
4902, INRIA, 2003.

[6] M. J. Berger. Adaptive mesh refinement for hyperbolic partial differ-
ential equations. PhD thesis, Stanford, CA, USA, 1982.

[7] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for
Shared-Memory Programming.IEEE Comput. Sci. Eng., 5(1):46–55,
1998. ISSN 1070-9924.

[8] E. W. Evans, S. P. Johnson, P. F. Leggett, and M. Cross. Automatic and
effective multi-dimensional parallelisation of structured mesh based
codes.Parallel Comput., 26(6):677–703, 2000. ISSN 0167-8191.

[9] C. Gerald and P. Wheatley.Applied Numerical Analysis. Pearson
Education, Addison Wesley, San Francisco, 2004.

[10] W. Hackbusch. Multi-grid methods and applications. Volume 4 of
Springer series in computational mathematics. Springer, 1985.

[11] T. Halfhill. Parallel Processing with CUDA.Microprocessor Report,
Januray 2008.

[12] M. Harris. Mapping computational concepts to GPUs. InSIGGRAPH
’05: ACM SIGGRAPH 2005 Courses, page 50, New York, NY, USA,
2005. ACM.

[13] P. Hudak and A. Bloss. The aggregate update problem in functional
programming systems. InPOPL ’85: Proceedings of the 12th ACM
SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, pages 300–314, New York, NY, USA, 1985. ACM.

[14] G. Huet. The Zipper.J. Funct. Program., 7(5):549–554, 1997. ISSN
0956-7968.

[15] R. Jagannathan, C. Dodd, and I. Agi. GLU: A high-level system
for granular data-parallel programming.Concurrency: Practice and
Experience, 9(1):63–83, 1997.

[16] S. Lee, M. M. Chakravarty, V. Grover, and G. Keller. GPU Kernels as
Data-Parallel Array Computations in Haskell. 2009.

[17] D. Leijen and E. Meijer. Parsec: Direct style monadic parser combi-
nators for the real world. Technical Report, 2001.

[18] G. Mainland. Why It’s Nice to be Quoted: Quasiquoting for Haskell.
In Haskell ’07: Proceedings of the ACM SIGPLAN workshop on
Haskell workshop, pages 73–82, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-674-5.

[19] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard.Cg: a
system for programming graphics hardware in a C-like language. In
SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages 896–907, New
York, NY, USA, 2003. ACM. ISBN 1-58113-709-5.

[20] E. Moggi. Notions of computation and monads.Inf. Comput., 93(1):
55–92, 1991. ISSN 0890-5401.

[21] N. Mukherjee and J. R. Gurd. A comparative analysis of four paral-
lelisation schemes. InICS ’99: Proceedings of the 13th international
conference on Supercomputing, pages 278–285, New York, NY, USA,
1999. ACM. ISBN 1-58113-164-X.

[22] A. Munshi. OpenCL: Parallel computing on the GPU and CPU. pre-
sentation at SIGGRAPH 2008http://s08.idav.ucdavis.edu/
munshi-opencl.pdf.

[23] S. Patidar, S. Bhattacharjee, J. M. Singh, and P. J. Narayanan. Exploit-
ing the Shader Model 4.0 Architecture, March 2007. Technical Report
IIIT/TR/2007/145, 2007

[24] D. Piponi. Evaluating cellular automata is comonadic,December
2006, Last retrieved September 2009.http://blog.sigfpe.com/
2006/12/evaluating-cellular-automata-is.html.

[25] J. Power and H. Watanabe. Combining a monad and a comonad.
Theor. Comput. Sci., 280(1-2):137–162, 2002. ISSN 0304-3975.

[26] M. Snir and S. Otto.MPI-The Complete Reference: The MPI Core.
MIT Press, Cambridge, MA, USA, 1998. ISBN 0262692155.

[27] D. Stewart. Domain Specific Languages for Domain Specific Prob-
lems. In Workshop on Non-Traditional Programming Models for
High-Performance Computing, LACSS, 2009.

[28] T. Uustalu and V. Vene. The Essence of Dataflow Programming.
Lecture Notes in Computer Science, 4164:135–167, November 2006.

[29] T. Uustalu and V. Vene. Comonadic Notions of Computation. Elec-
tron. Notes Theor. Comput. Sci., 203(5):263–284, 2008. ISSN 1571-
0661.

[30] W. Wadge and E. Ashcroft.LUCID, the dataflow programming lan-
guage. Academic Press Professional, Inc., San Diego, CA, USA, 1985.
ISBN 0-12-729650-6.

[31] P. Wadler. Linear Types Can Change the World! InProgramming
Concepts and Methods. North, 1990.

