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Syntax directed
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• e.g. (untyped) λ-calculus to reduction relation

(λx . e1) e2  ⤳ e1 [x/e2 ]

e1  ⤳ e1’
e1  e2 ⤳ e1’ e2



Syntax-and-type directed
• e.g. simply-typed λ-calculus to CCCs
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[ Γ ⊢ e : 𝜏 ] ∈ C([Γ], [𝜏 ])  

 with  [Γ] ∈ C   [𝜏 ] ∈ C

i.e.  : [Γ] → [𝜏 ]   

[[� ` e1 : � ! ⌧ ]] = f : [[� ]] ! ⌧�

[[� ` e2 : �]] = g : [[� ]] ! �

[[� ` e1 e2 : ⌧ ]] = app � hf, gi : [[� ]] ! ⌧

[[�, v : � ` e : ⌧ ]] = f : [[� ]]⇥ � ! ⌧
[[� ` �v.e : � ! ⌧ ]] = ⇤f : [[� ]] ! ⌧�

Fig. 1. Fragment of the Cartesian-closed semantics for the simply-typed �-calculus

The homomorphic property means that there is a simple correspondence between
analysis information and denotations, which aids reasoning in both directions.

This class of analysis provides the following benefits:

– motivates the design of both semantics and analysis
– provides a co-soundness result: if the semantics is sound wrt. the equational

theory of the language then the analysis is sound; conversely, if the analysis
is sound wrt. the semantics then the analysis is sound.

– provides a pathway to shallow embeddings in existing languages, where anal-
ysis information is represented via type terms of the host language.

1.1 Example: music programming

Consider a simple command language for music comprising sequences of play
and sleep commands, with syntax:

P,Q := P;Q | playN | sleepT | " N 2 {A . . . G} T 2 R�0

where P,Q range over programs, N over notes, T time terms, and " denotes the
empty program (usually omitted in concrete examples). For example, the follow-
ing program plays a sequences of uniformly timed notes (a C major arpeggio):

play C; sleep 0.5; play E; sleep 0.5; play G; sleep 0.5 (1)

Let a denotational semantic of this language be defined in terms of the free
monoid, i.e., lists, over the generating set G = N [ T of symbols denoting all
possible notes and sleep times. That is, ([G],++ , [ ]), where the binary operation
++ appends lists and models sequential composition, the identity element is the
empty list [ ] modelling empty programs.

This denotational semantics of the language is thus defined by the following
simple syntax-directed interpretation on terms [[�]] :: [G]:

[[✏]] = [ ] [[P;Q]] = [[P ]] ++ [[Q]] [[playN ]] = [N ] [[sleepT ]] = [T ]

In a similar style, we now define a program analysis to calculate the duration of
programs via an abstract interpretation [�]

t

: R�0 on terms:

[✏]
t

= 0 [P;Q]
t

= [P ]
t

+ [Q]
t

[playN ]
t

= 0 [sleepT ]
t

= T

[[� ` e1 : � ! ⌧ ]] = f : [[� ]] ! ⌧�

[[� ` e2 : �]] = g : [[� ]] ! �

[[� ` e1 e2 : ⌧ ]] = app � hf, gi : [[� ]] ! ⌧

[[�, v : � ` e : ⌧ ]] = f : [[� ]]⇥ � ! ⌧
[[� ` �v.e : � ! ⌧ ]] = ⇤f : [[� ]] ! ⌧�

Fig. 1. Fragment of the Cartesian-closed semantics for the simply-typed �-calculus

The homomorphic property means that there is a simple correspondence between
analysis information and denotations, which aids reasoning in both directions.

This class of analysis provides the following benefits:

– motivates the design of both semantics and analysis
– provides a co-soundness result: if the semantics is sound wrt. the equational

theory of the language then the analysis is sound; conversely, if the analysis
is sound wrt. the semantics then the analysis is sound.

– provides a pathway to shallow embeddings in existing languages, where anal-
ysis information is represented via type terms of the host language.

1.1 Example: music programming

Consider a simple command language for music comprising sequences of play
and sleep commands, with syntax:

P,Q := P;Q | playN | sleepT | " N 2 {A . . . G} T 2 R�0

where P,Q range over programs, N over notes, T time terms, and " denotes the
empty program (usually omitted in concrete examples). For example, the follow-
ing program plays a sequences of uniformly timed notes (a C major arpeggio):

play C; sleep 0.5; play E; sleep 0.5; play G; sleep 0.5 (1)

Let a denotational semantic of this language be defined in terms of the free
monoid, i.e., lists, over the generating set G = N [ T of symbols denoting all
possible notes and sleep times. That is, ([G],++ , [ ]), where the binary operation
++ appends lists and models sequential composition, the identity element is the
empty list [ ] modelling empty programs.

This denotational semantics of the language is thus defined by the following
simple syntax-directed interpretation on terms [[�]] :: [G]:

[[✏]] = [ ] [[P;Q]] = [[P ]] ++ [[Q]] [[playN ]] = [N ] [[sleepT ]] = [T ]

In a similar style, we now define a program analysis to calculate the duration of
programs via an abstract interpretation [�]

t

: R�0 on terms:

[✏]
t

= 0 [P;Q]
t

= [P ]
t

+ [Q]
t

[playN ]
t

= 0 [sleepT ]
t

= T

e.g.



Syntax-and-type directed
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    [ Γ1 ⊢ e1 : t1 ] = [ Γ2 ⊢ e2 : t2 ] ⇒  t1 = t2   ∧  Γ1 = Γ2

[_] : (e : term) * ((Γ, 𝜏) : ty(e)) → C([Γ ],[𝜏 ]) 
syntax type analysis

see signature of interpretation



(Syntax-and-)analysis directed
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[_] : (e : term) * (i : analysis(e)) → D i

• e.g. simple-typed λ-calculus with effect system

[ Γ ⊢ e : 𝜏, F ]  ∈ (Γ → T F 𝜏)



Constructing analysis-
directed semantics

• Analysis domain A, semantic domain D 	


• Define F : A → D  to be structure preserving 
(homomorphism) between A and D  

• Gives a design framework for A and D 	


• Equations in A map to equations in D

6



Context
• Work on coeffects (with Tomas Petricek & Alan Mycroft)
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[ Γ ? R ⊢ e : 𝜏 ] ∈ C(DR[Γ], [𝜏 ])  

• Work on effects (Shinya Katsumata, ‘parametric effect monads’)

[ Γ ⊢ e : 𝜏 ! F ] ∈ C([Γ], MF[𝜏 ])  

• “A core quantitative coeffect calculus” (Brunel, Gaboardi, 
Mazza, Zdancewic), ESOP 2013	


• “Bounded linear types” (Ghica and Smith), ESOP 2013

• All define analysis-directed semantics (and leverage this for soundness)



Effect systems

Γ ⊢ e : 𝜏, F

Γ, x : σ ⊢ e : 𝜏, F

Γ ⊢ λx . e : σ → 𝜏, ∅F
[abs]

x : σ ∈ Γ
Γ ⊢ x : σ, ∅

[var]

Γ ⊢ e1 : σ → 𝜏, G
Γ ⊢ e1 e2 : 𝜏, G ⊔ H ⊔ F

F Γ ⊢ e2 : σ, H[app]

Γ ⊢ e : 𝜏, F
Γ ⊢ x := e : (), F ∪ {W(x)}

(x : ref 𝜏) ∈ Γ
[write] Γ ⊢ !x : 𝜏, {R(x)}

(x : ref 𝜏) ∈ Γ
[read]

(F,⊔,∅)monoid

8



Effect systems married to 
monads

Γ ⊢ e : T F 𝜏

Γ, x : σ ⊢ e : T F 𝜏
Γ ⊢ λx . e : T ∅ (σ → T F 𝜏)

[abs]
x : σ ∈ Γ

Γ ⊢ x : T ∅ σ
[var]

Γ ⊢ e1 : T G (σ → T F 𝜏)
Γ ⊢ e1 e2 : T (G ⊔ H ⊔ F) 𝜏

Γ ⊢ e2 : T H σ[app]

(F,⊔,∅)monoid

9 “The marriage of effects and monads” (Wadler & Thiemann, 2003)
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F ⇥ F

T⇥T

✏✏

t // F

T

✏✏

4<

µ

[C, C]⇥ [C, C] �
// [C, C]

1
; //

id ++

F

T

✏✏
⌘

9A

[C, C]

Unifying effect-analysis and 
semantics

μF,G : TF ￮ TG → T(F ⊔ G) η∅ : 1 → T∅  

T : F → [C, C ]

μ : M ￮ M → M 
η : 1C → M

seq
id

M : [C, C ]
⊔ : F ⨉ F → F 
∅ : 1 → F

F : Set
T F ￮ T G = T (F ⊔ G)

1C  = T ∅

monoid homomorphism

 Katsumata, Parametric Effect Monads and Semantics of Effect Systems, POPL 2014



Equations
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T F = T (F ⊔ ∅) = T F ￮ T∅ = T F ￮ 1 = T F
• Identities preserved (trivial)

F ⇥ F

T⇥T

✏✏

t // F

T

✏✏

4<

µ

[C, C]⇥ [C, C] �
// [C, C]

1
; //

id ++

F

T

✏✏
⌘

9A

[C, C]

T
R

µR,I //

µ;,R
✏✏

[M2]
T
R

T;

TR⌘;
✏✏

T;TR

[M1]

⌘;TR

// T
R

T
RtStT

[C3]µR,StT

✏✏

µRtS,T// T
RtS

T
T

µR,STT
✏✏

T
R

T
StT

TRµS,T

// T
R

T
S

T
T

T
Ft (StT )

µF,StT

✏✏

oo
T↵F,S,T

T(FtS)tT

µFtS,T

✏✏
T
F

� T
StT

(TF )�µS,T

✏✏

T
FtS

� T
T

µF,S�(TT )

✏✏
T
F

� (T
S

� T
T

) oo
↵TF ,TS,TT

(T
F

� T
S

) � T
T

T
Ft;OO

µF,;

T
F

T⇢oo

⇢

✏✏
T
F

� T; oo
TF �⌘;

T
F

� 1C

T;tF

µI,F

✏✏

T�

// T
F

T;�TF
⌘;�TF

// 1C � T
F

�

OO• For lax, have the diagram:

• For strict monoids…

F ⇥ F

T⇥T

✏✏

t // F

T

✏✏

4<

µ

[C, C]⇥ [C, C] �
// [C, C]

1
; //

id ++

F

T

✏✏
⌘

9A

[C, C]

T
FOO

µF,;

T
F

T; oo
TF ⌘;

T
F

T
R

µR,I //

µ;,R
✏✏

[M2]
T
R

T;

TR⌘;
✏✏

T;TR

[M1]

⌘;TR

// T
R

T
RtStT

[C3]µR,StT

✏✏

µRtS,T// T
RtS

T
T

µR,STT
✏✏

T
R

T
StT

TRµS,T

// T
R

T
S

T
T

T
Ft (StT )

µF,StT

✏✏

oo
T↵F,S,T

T(FtS)tT

µFtS,T

✏✏
T
F

� T
StT

(TF )�µS,T

✏✏

T
FtS

� T
T

µF,S�(TT )

✏✏
T
F

� (T
S

� T
T

) oo
↵TF ,TS,TT

(T
F

� T
S

) � T
T

T
Ft;OO

µF,;

T
F

T⇢oo

⇢

✏✏
T
F

� T; oo
TF �⌘;

T
F

� 1C

T;tF

µI,F

✏✏

T�

// T
F

T;�TF
⌘;�TF

// 1C � T
F

�

OO

analogues of monad laws



Corresponding equations
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    [ Γ1 ⊢ e1 : t1, F] = [ Γ2 ⊢ e2 : t2, G ]  
                          ⇒  t1 = t2   ∧  Γ1 = Γ2 ∧ (F = G) 

    [ Γ1 ⊢ e1 : t1, F] = [ Γ2 ⊢ e2 : t2, G ] 
?

proof tree for (F = G) implies semantic laws

    [ Γ1 ⊢ e1 : t1, F ⊔ ∅] = [ Γ2 ⊢ e2 : t2, F ] 

• When considering equations on semantics

• e.g.

⇒

F ⇥ F

T⇥T

✏✏

t // F

T

✏✏

4<

µ

[C, C]⇥ [C, C] �
// [C, C]

1
; //

id ++

F

T

✏✏
⌘

9A

[C, C]

T
FOO

µF,;

T
F

T; oo
TF ⌘;

T
F

T
R

µR,I //

µ;,R
✏✏

[M2]
T
R

T;

TR⌘;
✏✏

T;TR

[M1]

⌘;TR

// T
R

T
RtStT

[C3]µR,StT

✏✏

µRtS,T// T
RtS

T
T

µR,STT
✏✏

T
R

T
StT

TRµS,T

// T
R

T
S

T
T

T
Ft (StT )

µF,StT

✏✏

oo
T↵F,S,T

T(FtS)tT

µFtS,T

✏✏
T
F

� T
StT

(TF )�µS,T

✏✏

T
FtS

� T
T

µF,S�(TT )

✏✏
T
F

� (T
S

� T
T

) oo
↵TF ,TS,TT

(T
F

� T
S

) � T
T

T
Ft;OO

µF,;

T
F

T⇢oo

⇢

✏✏
T
F

� T; oo
TF �⌘;

T
F

� 1C

T;tF

µI,F

✏✏

T�

// T
F

T;�TF
⌘;�TF

// 1C � T
F

�

OO

if η is the only way to 	

introduce ∅
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Bounded linear logic analysis

x : σ ? 1 ⊢ x : σ
[var]

Γ1 ⊢ e1 : σ → 𝜏
Γ1, s * Γ2 ⊢ e1 e2 : 𝜏

Γ2 ⊢ e2 : σ
[app]

s

Γ, x : σ ? s ⊢ e : 𝜏
Γ ⊢ λx.e : σ → 𝜏

[abs] s

Γ1, x : σ ? a, y : σ ? b, Γ2  ⊢ e : 𝜏

Γ1, z : σ ? a+b, Γ2 ⊢ e[z/x,z/y] : 𝜏
[contr]

Γ ⊢ e : 𝜏
[weak]

Γ, x : σ ? 0 ⊢ e : 𝜏

• Specialised structural rules

• Core rules (with sub-coeffects)

Reuse bounds on free-variables   x : σ ? n
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Bounded linear logic analysis

2.1 Background, scalars and vectors

The �-calculus is asymmetric – it maps a context with multiple
variables to a single result. An expression with n free variables of
types ⌧i can be modelled by a function ⌧1 ⇥ . . . ⇥ ⌧n ! ⌧ with a
product on the left, but a single value on the right. Effect systems
attach effect annotations to the result ⌧ . In coeffect systems, we
attach coeffects to the context ⌧1 ⇥ . . .⇥ ⌧n and we often (but not
always) have one coeffect per variable. We call the overall coeffect
a vector consisting of scalar coeffects. This asymmetry explains
why coeffect systems are not trivially dual to effect systems.

It is useful to clarify how vectors are used in this paper. Suppose
we have a set C of scalars. A vector R over C is a tuple hr1, . . . , rni
of scalars. We use letters like R,S, T for vectors and r, s, t for
scalars.1 We also say that the shape of a vector [R] (or more
generally any container) is the set of positions in a vector. So, a
vector of length n has shape {1, 2, . . . , n}.

Just as in scalar-vector multiplication, we lift any binary opera-
tion • on scalars into a scalar-vector one: s•R = hs•r1, . . . , s•rni.
Given two vectors R,S of the same shape, containing partially or-
dered scalars, we write R  S for the pointwise extension of  on
scalars. Finally, the associative operation ⇥ concatenates vectors.

We note that an environment � containing n uniquely named,
typed variables is also a vector, but we continue to write ‘,’ for the
product, so �1, x :⌧,�2 should be seen as �1 ⇥ hx :⌧i ⇥ �2.

2.2 Bounded reuse

Bounded linear logic provides a modality that limits the number
of times a proposition (variable) can be reused [7]. A type system
corresponding to this logic can be used, for example, to restrict
well-typed terms to polynomial-time algorithms. A proposition !kA
means that A can be used at most k times. For uniformity with
later notation, we write propositions A as ⌧ . Our work attaches a
vector of annotations to sets of assumptions, using the @ operator,
i.e., ⌧1, ..., ⌧n@hk1, ..., kni, rather than writing bounds for each
assumption as in !k1A1, ..., !knAn.

Bounded linear logic includes explicit weakening and contrac-
tion rules that affect the multiplicity. Following the original logical
style (but with our notation), these are written as:

(weak)
�@R ` ⌧

�, ⌧0@R⇥h0i ` ⌧

(contr)
�1, ⌧0, ⌧0,�2@R⇥hs, ti⇥Q ` ⌧

�1, ⌧0,�2@R⇥hs+ ti⇥Q ` ⌧

The context �@R includes a coeffect annotation R which is a vec-
tor hr1, . . . , rni of the same length as � (a side-condition omitted
for brevity). In weakening, unused propositions are annotated with
0 (no uses), while in contraction, multiple occurrences of a propo-
sition are joined by adding the number of uses.

Bounded linear coeffects. The system in Figure 1 fleshes out the
idea into a simple calculus. Variable access (var) has a singleton
context with a singleton coeffect vector h1i. Weakening (weak)
extends the free-variable context with an unused variable and the
coeffect with an associated scalar 0. Explicit contraction (contr)
and exchange (exch) rules manipulate variables in the context and
modify the annotations accordingly – adding the number of uses in
contraction and switching vector elements in exchange.

For abstraction (abs), we know the number of uses of the pa-
rameter variable x and attach it to the function type ⌧1

s�! ⌧2 as a
latent coeffect. The remaining variables in � are annotated with the
remaining coeffect vector R, specifying immediate coeffects.

Application (app) describes call-by-name evaluation. Applying
a function that uses its parameter t-times to an argument that uses
variables in �2 S-times means that, in total, the variables in �2 will

1 For better readability, the paper distinguishes different structures using
colours. However ignoring the colour does not introduce any ambiguity.

(var)
x :⌧@h1i ` x : ⌧

(weak)
�@R ` e : ⌧

�, x :⌧0@R⇥h0i ` e : ⌧

(sub)
�@R ` e : ⌧
�@R0 ` e : ⌧

(R  R0) (abs)
�, x :⌧1@R⇥hsi ` e : ⌧2

�@R ` �x.e : ⌧1
s�! ⌧2

(app)
�1@R ` e1 : ⌧1

t�! ⌧1 �2@S ` e2 : ⌧2
�1,�2@R⇥(t ⇤ S) ` e1 e2 : ⌧2

(contr)
�1, y :⌧0, z :⌧0,�2@R⇥hs, ti⇥Q ` e : ⌧

�1, x :⌧0,�2@R⇥hs+ ti⇥Q ` e[z, y � x] : ⌧

(exch)
�1, x :⌧1, y :⌧2,�2@R⇥hs, ti⇥Q ` e : ⌧

�1, y :⌧2, x :⌧1,�2@R⇥ht, si⇥Q ` e : ⌧

Figure 1: Bounded reuse: Type & coeffect system in the �-calculus

be used (t⇤S)-times. Recall that t⇤S is a scalar multiplication of a
vector. Meanwhile, the variables in �1 are used just R-times when
reducing the expression e1 to a function value.

Finally, the sub-coeffecting rule (sub) safely overapproximates
the number of uses by the pointwise  relation. We can view any
variable as being used a greater number of times than it actually is.

Example. To demonstrate, consider a term (�v.x+v+v) (x+y).
According to the call-by-name intuition, the variable x is used three
times – once directly inside the function and twice via the variable v
after substitution. Similarly, y is used twice. Eliding the derivation
of the function body’s coeffect, abstraction yields:

(abs)
x :Z, v : Z@h1, 2i ` x+ v + v : Z

x :Z@h1i ` (�v.x+ v + v) : Z 2�! Z
To avoid name clashes, we ↵-rename x to x

0 and later join x and x

0

using contraction. Assuming (x0 + y) is checked in a context that
marks x0 and y as used once, the application rule yields a judgment
that is simplified as follows:

x :Z, x0 :Z, y :Z@h1i⇥(2 ⇤ h1, 1i) ` (�v.x+ v + v) (x0+ y) : Z

(contr)
x :Z, x0 :Z, y :Z@h1, 2, 2i ` (�v.x+ v + v) (x0+ y) : Z

x :Z, y :Z@h3, 2i ` (�v.x+ v + v) (x+ y) : Z
The first step performs scalar multiplication, producing the vector
h1, 2, 2i. In the second step, we use contraction to join variables x
and x

0 from the function and argument terms respectively.
It is worth pointing out that reduction by substitution yields

x+(x+y)+(x+y) which has the same coeffect as the original. We
return to evaluation strategies in Section 4, and show that structural
coeffect systems preserve types and coeffects under �-reduction.

2.3 Dataflow and data access

Dataflow languages, such as Lucid, describe computations over
streams [20]. An expression is re-evaluated when new inputs are
available (push) or when more output is demanded (pull). In causal
dataflow, programs can access past values of a stream. We consider
a language where prev e returns the previous value of e. In the
language, prev (prev e) returns the second past value and so on.

An implementation of causal dataflow may cache past values of
variables as an optimisation. The question is, how many past values
should be cached? This can be approximated by a coeffect system.

Dataflow coeffects. The coeffect system for dataflow is similar to
the one for bounded reuse, tracking a vector of natural numbers R
as part of the context �@R. Here, coeffects represent the maximal
number of past values (causality depth) required for a variable.

(app)
�1?R ` e1 : �

t�! ⌧ �2?S ` e2 : �

�1,�2?R n(t~S) ` e1 e2 : ⌧

⇤R�1 ` ⇤t� ! ⌧ ⇤S�2 ` �
⇤R n(t~S)�1,�2 ` ⌧

(var)

v : ⌧ 2 �

� ` v : ⌧ !? (const) � ` c : ⌧ !? (let)

� ` e1 : ⌧1 !F �, x : ⌧1 ` e2 : ⌧2 !G

� ` letx = e1 in e2 : ⌧ 0 !F tG

(abs)

�, v : � ` e : ⌧ !F

� ` �v.e : � F�! ⌧ !?
(app)

� ` e1 : �
H�! ⌧ !F � ` e2 : � !G

� ` e1 e2 : ⌧ !F tG tH

[write]
� ` e1 : ref ⇢ ⌧ !F � ` e2 : ⌧ !F 0

� ` set e1 e2 : () !F [ F 0 [ {(write, ⇢})
[read]

� ` e : ref ⇢ ⌧ !F

� ` get e : ⌧ !F [ {(read, ⇢)}

(abs)

J�, v : � ` e : ⌧ !F K : J�K! TF J⌧K

J� ` �v.e : � F�! ⌧ !?K : J�K! T?(J�K! TF J⌧K)

� : C(DRuS(X ⇥ Y ), Z)! C(DRX,DSY ) Z)

 : C(DRtS(X ⇥ Y ), Z) C(DRX,DSY ) Z)

� : C(X ⇥ Y,TZ)

⇠
=

C(X,T(Y ) TZ))

� : C(DR⇥S(X ⇥ Y ), Z)

⇠
=

C(DRX,DSY ) Z)

Does the following signature make sense? Not sure- because how to put

coe↵ects in a particular order without knowing to which free variables they

map to?

�?R ` e : ⌧

�?R ` (e : R) ⌧) : ⌧

Maybe it only makes sense to have signatures for functions... because then

we have a firm anchor for a single coe↵ect? Then it just equates to a type

signature I think?

(sig)

�?R ` e : ⌧

�?R ` (e : ⌧) : ⌧

(abs)

x :Z, v : Z?h1, 2i ` x+ v + v : Z

x :Z?h1i ` (�v.x+ v + v) : Z 2�! Z

1

(app)

(⌘)

x :Z, x0
:Z, y :Z?h1i⇥(2 ⇤ h1, 1i) ` (�v.x+ v + v) (x0

+ y) : Z

(contr)

x :Z, x0
:Z, y :Z?h1, 2, 2i ` (�v.x+ v + v) (x0

+ y) : Z
x :Z, y :Z?h3, 2i ` (�v.x+ v + v) (x+ y) : Z

.

.

.

x0
: Z, y : Z?h1, 1i ` x0

+ y : Z

2

(app)

(⌘)

x :Z, x0
:Z, y :Z?h1i⇥(2 ⇤ h1, 1i) ` (�v.x+ v + v) (x0

+ y) : Z

(contr)

x :Z, x0
:Z, y :Z?h1, 2, 2i ` (�v.x+ v + v) (x0

+ y) : Z
x :Z, y :Z?h3, 2i ` (�v.x+ v + v) (x+ y) : Z

.

.

.

x0
: Z, y : Z?h1, 1i ` x0

+ y : Z

2

(app)

(⌘)

x :Z, x0
:Z, y :Z?h1i⇥(2 ⇤ h1, 1i) ` (�v.x+ v + v) (x0

+ y) : Z

(contr)

x :Z, x0
:Z, y :Z?h1, 2, 2i ` (�v.x+ v + v) (x0

+ y) : Z
x :Z, y :Z?h3, 2i ` (�v.x+ v + v) (x+ y) : Z

.

.

.

x0
: Z, y : Z?h1, 1i ` x0

+ y : Z

x :Z, y :Z?h3, 2i ` x+ (x+ y) + (x+ y) : Z

2

(app)

(⌘)

x :Z, x0
:Z, y :Z?h1i⇥(2 ⇤ h1, 1i) ` (�v.x+ v + v) (x0

+ y) : Z

(contr)

x :Z, x0
:Z, y :Z?h1, 2, 2i ` (�v.x+ v + v) (x0

+ y) : Z
x :Z, y :Z?h3, 2i ` (�v.x+ v + v) (x+ y) : Z

.

.

.

x0
: Z, y : Z?h1, 1i ` x0

+ y : Z

x :Z, y :Z?h3, 2i ` x+ (x+ y) + (x+ y) : Z

(�v.x+ v + v) (x+ y)  � x+ (x+ y) + (x+ y)

2
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BLL-directed semantics
• Bounded reuse (exponent) Dn A = An = <A1,..,An>

Γ1 ⊢ e1 : σ → 𝜏
Γ1, s * Γ2 ⊢ e1 e2 : 𝜏

Γ2 ⊢ e2 : σ
s

s * (x1 : t1 ? r1, …, xn : tn ? rn) = x1 : t1 ? s * r1, …, xn : tn ? s * rn

will treat as a vector s * <r1, …, rn> = <s * r1, …, s * rn>

D : N → [C,C]

* : N ⨉ N →  N

• Monoid and scalar-vector multiplication (monoid action) on N
+ : N ⨉ N →  N contraction
0 : 1 →  N weakening

composition* : N ⨉ Nn →  Nn

1 : 1 →  N variables
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BLL-directed semantics

N ⨉ Nn * 
Nn

• Structure preserving  D : N → [C,C]  

Dn

[C,C]n

D ⨉ Dn

[C,C] ⨉ [C,C]n
￮n

s * <r1, …, rn> <s * r1, …, s * rn>

<D(s * r1), …, D(s * rn)>

Ds ⨉ <Dr1, …, Drn> <DsDr1, …, DsDrn>

δn

δn

δn : (D(s * r1) ⨉ … ⨉ D(s * rn)) → (DsDr1 ⨉ … ⨉ DsDrn)
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BLL-directed semantics

• Coeffect-parameterised comonad

δ : Ds*r A → DsDr A   
“s*r copies turned into s copies of r copies” 

δn : (D(s * r1) ⨉ … ⨉ D(s * rn)) → (DsDr1 ⨉ … ⨉ DsDrn)

𝜀 : D1 A→ A

“use one copy”
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Coeffect-directed semantics

D

(N ⨉ N)
D ⨉ D 

[C,C] ⨉ [C,C] 

[C, C]

<-, ->m

Δr,s : D (r + s) A  → Dr A ⨉ Ds A

N 

+

Γ1, x : σ ? a, y : σ ? b, Γ2  ⊢ e : 𝜏

Γ1, z : σ ? a+b, Γ2 ⊢ e : 𝜏
[contr]
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Coeffect-directed semantics
Γ, x : σ ? s ⊢ e : 𝜏
Γ ⊢ λx.e : σ → 𝜏

[abs] sBLL analysis

Γ, x : σ ? R╳⟨s⟩ ⊢ e : 𝜏
Γ? R ⊢ λx.e : σ → 𝜏

[abs] s… as coeffect analysis

e.g. distributed resources

Γ, x : σ ? R⊓⟨s⟩ ⊢ e : 𝜏
Γ? R ⊢ λx.e : σ → 𝜏

[abs] sin general
one ‘shaped’ annotation

Γ, x : σ ? {gps, db} ⊢ e : 𝜏
Γ? {db} ⊢ λx.e : σ → 𝜏

[abs] gps
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Coeffect-directed semantics

D’

(I ⨉ C) ⨉ (I ⨉ C)
D’ ⨉ D’

C ⨉ C

C

⨉m

mr,s : Dr A ⨉ Ds B → D (r ⊓ s) (A ⨉B) 

Γ, x : σ ? R⊓⟨s⟩ ⊢ e : 𝜏
Γ? R ⊢ λx.e : σ → 𝜏

[abs] s

I ⨉ C

⊓ ⋈ ⨉

⋈ composes binary opslet D’ = uncurry D i.e. D’ : I ⨉ C → C



Constructing analysis-
directed semantics

• Analysis domain A, semantic domain D 	


• Define F : A → D  to be structure preserving 
(homomorphism) between A and D  

• Gives a design framework for A and D 	


• Equations in A map to equations in D

21



Corresponding equations

• Use algebraic solver on analysis domain A (e.g., I use 
Prover 9)	


• Rest of proof not corresponding to A usually naturally 
and universality	


• Tactic generator!	


• Build into theorem prover?
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Thanks!
http://dorchard.co.uk

http://dorchard.co.uk

