Effect systems revisited —
control-flow algebra and semantics e
Nielson-Nielson Festschrift 2016

Alan Mycroft! Dominic Orchard’?> Tomas Petricek!

LUniversity of Cambridge

?Imperial College London

1 UNIVERSITY OF Imperial College
» CAMBRIDGE London

/20

Simple set-based effects 2 la (Gifford, Lucassen 1986)

2/20

Simple set-based effects 3 la (Gifford, Lucassen 1986)

(PLAY)

I+ play(N, L) : void, {/N}

/20

Simple set-based effects 3 la (Gifford, Lucassen 1986)

(PLAY)

I+ play(N, L) : void, {/N}

' e : bool, Py lFe :7,® e 7, ®)

(ir) I if ey then eg else e; : 7, g U D7 U Dy

/20

Simple set-based effects 3 la (Gifford, Lucassen 1986)

(PLAY)

I+ play(N, L) : void, {/N}

' e : bool, Py lFe :7,® e 7, ®)

(ir) I if ey then eg else e; : 7, g U D7 U Dy

I'I—elzn,d)l rl—egiTg, (DQ
Fep;e0:m, &1UD,

(SEQ)

/20

Simple set-based effects 3 la (Gifford, Lucassen 1986)

(PLAY)

I+ play(N, L) : void, {/N}

' e : bool, Py lFe :7,® e 7, ®)

(ir) I if ey then eg else e; : 7, g U D7 U Dy

I'I—elzn,d)l rl—egiTg, (DQ
Fep;e0:m, &1UD,

(SEQ)

Ik e:void, ®
I for i = ny to ny do e : void, ®

(FOR)

/20

Simple set-based effects 3 la (Gifford, Lucassen 1986)

(PLAY)

I play(N, L) : void, {/N}

' e : bool, Py lFe :7,® e 7, ®)

(ir) I if ey then eg else e; : 7, g U D7 U Dy

Meer:m, & NFe:m, ®
Fep;e0:m, &1UD,

(SEQ)

Ik e:void, ®
I for i = ny to ny do e : void, ®

(FOR)

for our example we get {G3, F3, A3, B3, C4, D4, E4, G4}

20

.in POPL'94, richer effect systems for concurrency

Higher-Order Concurrent Programs
with
Finite Communication Topology

(Extended Abstract)

Hanne Riis Nielson

Flemming Nielson

Computer Science Department
Aarhus University, Denmark.

e-mail: {hrnielson,fnielson}@daimi.aau.dk

Abstract

Concurrent ML (CML) is an of the ional

1 Introduction

language Standard ML (SML) with primitives for the
dynamic creation of processes and channels and for the
communication of values over channels. Because of (.he

High der concurrent languages as CML (8] and Faci-
le [2] offer mechanisms for the dynamic creation of chan-
nels and processes in addition to the possibility of send-
ing and receiving values over channels. To obtain an

powerful abstraction h the

topology of a given program may be very complex and
therefore an efficient implementation may be facilitated
by knowledge of the topology.

This paper presents an analysis for determining when
a bounded number of processes and channels will be
generated. The analysis proceeds in two stages. First
we extend a polymorphic type system for SML to de-
duce not only the type of CML programs but also their

ication behavi d as terms in a new

process algebra. Next we develop an analysis that given

efficient impl ion of in such |
we would need information about their communication
topology:

® Does the program only spawn a finite number of
processes?
o Does the program only create a finite number of

channels?

If the answer to the first question is yes we may load the
processes on the available processors and dispense with

3/20

...in POPL’94, richer effect systems for concurrency

/20

...in POPL’94, richer effect systems for concurrency

» Causality of operations (from sets to lists of effects)

/ 20

...in POPL’94, richer effect systems for concurrency

» Causality of operations (from sets to lists of effects)

I'I—el:n, d)l Fl—e2:7-2, CDQ
Fe;e:m, ®;d

(SEQ)

/ 20

...in POPL’94, richer effect systems for concurrency

» Causality of operations (from sets to lists of effects)

I'I—el:n, d)l Fl—e2:7-2, ¢2
Fe;e:m, ®;d

(SEQ)

» Branching control-flow (from lists to trees)

20

...in POPL’94, richer effect systems for concurrency

» Causality of operations (from sets to lists of effects)

I'I—el:n, d)l Fl—e2:7-2, ¢2
Fe;e:m, ®;d

(SEQ)

» Branching control-flow (from lists to trees)

rl—eoib00|,¢0 rl—eliT,CDl I'I—egzr,d>2

(1F) [+ if ey then e; else e 1 7, $p; (D1 + Dy)

20

...in POPL’94, richer effect systems for concurrency

» Causality of operations (from sets to lists of effects)

I'I—el:n, d)l Fl—e2:7-2, ¢2
Fe;e:m, ®;d

(SEQ)

» Branching control-flow (from lists to trees)

rl—eoib00|,¢0 Fl—el:r,d>1 I'I—egzr,d>2

(1F) [+ if ey then e; else e 1 7, $p; (D1 + Dy)

» Parallel control-flow

20

...in POPL’94, richer effect systems for concurrency

» Causality of operations (from sets to lists of effects)

I'I—el:n, d)l Fl—e2:7-2, ¢2
Fe;e:m, ®;d

(SEQ)

» Branching control-flow (from lists to trees)

rl—eoib00|,¢0 Fl—el:r,d>1 I'I—egzr,d>2

(1F) [+ if ey then e; else e 1 7, $p; (D1 + Dy)

» Parallel control-flow

Fl—e:unitﬂw',e
I forke : 7, FORK®q

(FORK)

20

...in 1999, rich general effect-system structure

Type and Effect Systems

Flemming Nielson and Hanne Riis Nielson

Department of Computer Science, Aarhus University, Denmark.

Abstract. The design and implementation of a correct system can ben-
efit from employing static techniques for ensuring that the dynamic be-
haviour satisfies the specification. Many pr ing languages incor-
porate types for ensuring that certain operations are only applied to data
of the appropriate form. A natural extension of type checking techniques
is to enrich the types with annotations and effects that further describe
intensional aspects of the dynamic behaviour.

Keywords. Polymorphic type systems, effect annotations, subeffecting
and subtyping, semantic correctness, type inference algorithms, syntac-
tic soundness and completeness. Analyses for control flow, binding times,
side effects, region structure, and communication structure.

1 Introduction

Static analysis of programs comprises a broad collection of techniques for pre-
dicting safe and computable approximations to the set of values or behaviours
arising dynamically during computation; this may be used to validate program ,
transformations, to generate more efficient code or to increase the understanding 5/20

in 1999, rich general effect-system

Torben Amtoft

structure

6/20

...in 1999, rich general effect-system structure

/20

...in 1999, rich general effect-system structure

(Ordered) Semiring of effects (F,e,1,+,C)

/20

...in 1999, rich general effect-system structure

(Ordered) Semiring of effects (F,e. 1, +,)

» (F,e, 1) for sequential composition (monoid)

/ 20

...in 1999, rich general effect-system structure

(Ordered) Semiring of effects (F,e. 1, +,)

» (F,e, 1) for sequential composition (monoid)

» (F,-+) for alternation (semigroup)

20

...in 1999, rich general effect-system structure

(Ordered) Semiring of effects (F,e. 1, +,)

» (F,e, 1) for sequential composition (monoid)
» (F,-+) for alternation (semigroup)
» [for subeffecting

20

...in 1999, rich general effect-system structure

(Ordered) Semiring of effects (F,e. 1, +,)

v

(F,e.1) for sequential composition (monoid)

v

(F,+) for alternation (semigroup)

v

C for subeffecting

v

.. with fixed-point rec/3.®

20

...in 1999, rich general effect-system structure

(Ordered) Semiring of effects (F,e. 1, +,)

v

(F,e.1) for sequential composition (monoid)

v

(F,+) for alternation (semigroup)

v

C for subeffecting

v

.. with fixed-point rec/3.®

v

.. subeffecting axioms provide semiring equations, e.g.

(O1 + D3); D3 T (Pg; P3) + (P1; d2)
(®1; ®3) + (P1; o) T (P11 + $2); d3

20

For our musical example...

Two example instances:

/20

For our musical example...

Two example instances:

» Song structure via term-algebra:

¢:C,D,E,...,rest]¢1+¢2|<D10<D2|<D*

20

For our musical example...

Two example instances:

» Song structure via term-algebra:
®=C,D,E,... ,rest| ®; + Py | P @ Oy | OF

with I F play(N, L) : void, N

20

For our musical example...

Two example instances:

» Song structure via term-algebra:
®=C,D,E,... ,rest| ®; + Py | P @ Oy | OF
with I F play(N, L) : void, N

gives
(G3eG3e(G4eE4eCleB3eA3+A3eG3e(D4eC4+CleB3)))*

20

For our musical example...

Two example instances:

» Song structure via term-algebra:
®=C,D,E,... ,rest| ®; + Py | P @ Oy | OF
with I F play(N, L) : void, N

gives
(G3eG3e(G4eE4eCleB3eA3+A3eG3e(D4eC4+CleB3)))*

» or, timing via (RT, +, 0, max, <)

20

For our musical example...

Two example instances:

» Song structure via term-algebra:
®=C,D,E,... ,rest| ®; + Py | P @ Oy | OF
with I F play(N, L) : void, N

gives
(G3eG3e(G4eE4eCleB3eA3+A3eG3e(D4eC4+CleB3)))*

» or, timing via (RT, +, 0, max, <)
with I F play(N, L) : void, L

20

For our musical example...

Two example instances:

» Song structure via term-algebra:
®=C,D,E,... ,rest| ®; + Py | P @ Oy | OF
with I F play(N, L) : void, N

gives
(G3eG3e(G4eE4eCleB3eA3+A3eG3e(D4eC4+CleB3)))*

» or, timing via (RT, +, 0, max, <)
with I F play(N, L) : void, L
gives 13 seconds

20

from “Type and effect systems” (Nielson, Nielson, 1999)

“Now we turn to explaining the individual steps in the overall
methodology of designing and using type and effect systems:
— devise a semantics for the programming language,

develop a program analysis in the form of a type and effect
system ...

prove the semantic correctness of the analysis,

develop an efficient inference algorithm, ...”

from “Type and effect systems” (Nielson, Nielson, 1999)

“Now we turn to explaining the individual steps in the overall
methodology of designing and using type and effect systems:

— devise a semantics for the programming language,

develop a program analysis in the form of a type and effect
system ...

prove the semantic correctness of the analysis,

develop an efficient inference algorithm, ...”

from “Type and effect systems” (Nielson, Nielson, 1999)

“Now we turn to explaining the individual steps in the overall
methodology of designing and using type and effect systems:

— devise a semantics for the programming language,

develop a program analysis in the form of a type and effect
system ...

prove the semantic correctness of the analysis,

develop an efficient inference algorithm, ...”

from “Type and effect systems” (Nielson, Nielson, 1999)

“Now we turn to explaining the individual steps in the overall
methodology of designing and using type and effect systems:
— devise a semantics for the programming language,

develop a program analysis in the form of a type and effect
system ...

prove the semantic correctness of the analysis,

develop an efficient inference algorithm, ...”

from “Type and effect systems” (Nielson, Nielson, 1999)

“Now we turn to explaining the individual steps in the overall
methodology of designing and using type and effect systems:

— devise a semantics for the programming language,

develop a program analysis in the form of a type and effect
system ...

prove the semantic correctness of the analysis,

develop an efficient inference algorithm, ...”

» An effect-directed semantics unifies the first three steps

from “Type and effect systems” (Nielson, Nielson, 1999)

“Now we turn to explaining the individual steps in the overall
methodology of designing and using type and effect systems:
— devise a semantics for the programming language,

— develop a program analysis in the form of a type and effect
system ...

prove the semantic correctness of the analysis,

develop an efficient inference algorithm, ...”

v

An effect-directed semantics unifies the first three steps

v

We develop an effect-directed semantics for rich
Nielson-Nielson-style effects

Type-directed semantics

10/20

Type-directed semantics

untyped model: [e] : D

D = Z+ (D — D) + {wrong}

10/20

Type-directed semantics

untyped model: [e] : D

D = Z+ (D — D) + {wrong}

simply typed model: [l +e: 7] : D;

Dint =7
DU—>T = Do— — DT

20

Type-directed semantics

untyped model: [e] : D

D = Z+ (D — D) + {wrong}

simply typed model: [l +e: 7] : D;

Dint =7
DU—>T — DO' — DT

effect-directed model: [~ e: 1, F]: D

20

Type-directed semantics

untyped model: [e] : D

D = Z+ (D — D) + {wrong}

simply typed model: [l +e: 7] : D;

Dint =7
DU—>T — DO' — DT

effect-directed model: [~ e: 1, F]: D

Core idea: algebra-semantics homomorphism

Algebraic structure of 7 determines structure on family D; .

10/20

Effect analysis and semantics

Lattice effects
(Gifford, Lucassen '86) ———
Ne:r, F

I

“Marriage of effects and monads”
(Wadler, Thiemann '03)

[FT-e: M 7] :] — T[]

l

Richer structure on F
(Nielson, Nielson '94, '99)

Effect-directed semantics This paper
(Katsumata '14) Richer effect-directed
[FTe:M 7] :[F] = Tr7] semantics

(graded monads) (graded joinads)

11/20

Effect analysis and semantics

Lattice effects
(Gifford, Lucassen '86) ———
Ne:r, F

I

“Marriage of effects and monads”
(Wadler, Thiemann '03)

[FT-e: M 7] :] — T[]

l

Richer structure on F
(Nielson, Nielson '94, '99)

Effect-directed semantics This paper
(Katsumata '14) Richer effect-directed
[FTe:M 7] :[F] = Tr7] semantics
(graded monads) (graded joinads)

Operations on T homomorphic to operations on F

11/20

Modelling effects with graded monads (Katsumata 2014)

12/20

Modelling effects with graded monads (Katsumata 2014)

[TEe:r, F]:[T] — Te[7]

12/20

Modelling effects with graded monads (Katsumata 2014)

[FTEe:m F]:[F]— Te[7]
e.g. for state TA=S — (A X S).

12/20

Modelling effects with graded monads (Katsumata 2014)

[TEe:r, F]:[T] — Te[7]
e.g. for state TFA = (reads(F)) — (A x writes(F)).

12/20

Modelling effects with graded monads (Katsumata 2014)
[FT=e:r,F]:] — Te[7]

e.g. for state TrA = (reads(F)) — (A x writes(F)).
e.g. for partiality TA=1+4+A

12/20

Modelling effects with graded monads (Katsumata 2014)
[FTEe:m F]: [— Te[7]

e.g. for state TFA = (reads(F)) — (A x writes(F)).
e.g. forpartiality T/A= 1, TTA=A,

12/20

Modelling effects with graded monads (Katsumata 2014)

[FTEe:m F]: [— Te[7]

e.g. for state TFA = (reads(F)) — (A x writes(F)).
e.g. for partiality T A=1, TTA=A T A=A+1

Modelling effects with graded monads (Katsumata 2014)

[FTEe:m F]: [— Te[7]

e.g. for state TFA = (reads(F)) — (A x writes(F)).
e.g. for partiality T A=1, TTA=A T A=A+1

Graded monads provide sequential composition

Modelling effects with graded monads (Katsumata 2014)

[FTEe:m F]: [— Te[7]

e.g. for state TFA = (reads(F)) — (A x writes(F)).
e.g. for partiality T A=1, TTA=A T A=A+1

Graded monads provide sequential composition

Let (F,e,0) be an effect monoid.

Modelling effects with graded monads (Katsumata 2014)

[FTEe:m F]: [— Te[7]

e.g. for state TFA = (reads(F)) — (A x writes(F)).
e.g. for partiality T A=1, TTA=A T A=A+1

Graded monads provide sequential composition

Let (F,e,0) be an effect monoid.
Givendi :A—>TgBand db: B— T¢C

Modelling effects with graded monads (Katsumata 2014)

[FTEe:m F]: [— Te[7]

e.g. for state TFA = (reads(F)) — (A x writes(F)).
e.g. for partiality T A=1, TTA=A T A=A+1

Graded monads provide sequential composition

Let (F,e,0) be an effect monoid.
Givendi :A—>TgBand db: B— T¢C
then dbddi : A— Tr.cC

Modelling effects with graded monads (Katsumata 2014)

[FTEe:m F]: [— Te[7]

e.g. for state TFA = (reads(F)) — (A x writes(F)).
e.g. for partiality T A=1, TTA=A T A=A+1

Graded monads provide sequential composition

Let (F,e,0) be an effect monoid.
Givendi :A—>TgBand db: B— T¢C
then dbddi : A — TrecC with ida : A — THA.

12/20

Modelling effects with graded monads (Katsumata 2014)

[FTEe:m F]: [— Te[7]

e.g. for state TFA = (reads(F)) — (A x writes(F)).
e.g. for partiality T A=1, TTA=A T A=A+1

Graded monads provide sequential composition

Let (F,e,0) be an effect monoid.
Givendi :A—>TgBand db: B— T¢C
then dbddi : A — TrecC with ida : A — THA.

With ordering

Given partially ordered (7, e.0.) then for all £ C G then
coercion: trca: TFA— TGA

12/20

Semantics of branching: derived vs. parameterised

13/20

Semantics of branching: derived vs. parameterised

[if eo then e; else 2] = COND([eo], [e1], [e2])

13/20

Semantics of branching: derived vs. parameterised
[if e then e; else ex] = COND([eo], [e1], [e2])

» COND definable viacond:Bx Ax A — A

13/20

Semantics of branching: derived vs. parameterised
[if e then e; else ex] = COND([eo], [e1], [e2])

» COND definable viacond :Bx Ax A— A
cond(true, x,y) = x cond(false, x,y) =y

13/20

Semantics of branching: derived vs. parameterised
[if e then e; else ex] = COND([eo], [e1], [e2])

» COND definable viacond :Bx Ax A — A
cond(true, x,y) = x cond(false, x,y) =y

» Restricts effect branching behaviour:

13 /20

Semantics of branching: derived vs. parameterised
[if e then e; else ex] = COND([eo], [e1], [e2])

» COND definable viacond :Bx Ax A — A
cond(true, x,y) = x cond(false, x,y) =y
» Restricts effect branching behaviour:

()I'I—eo:bool,/—_ e :7, G e :m, H
IF

I if eg then ey else ex : 7, F o (G LIH)

13 /20

Semantics of branching: derived vs. parameterised
[if e then e; else ex] = COND([eo], [e1], [e2])

» COND definable viacond :Bx Ax A— A
cond(true, x,y) = x cond(false, x,y) =y

» Restricts effect branching behaviour:

Ik e : bool, F e :7, G e :m, H

(%) I+ if eg then e; else ey : 7, F o (GLIH)

cond : B x TGuHA X TGuHA — TGuHA

13/20

Semantics of branching: derived vs. parameterised
[if e then e; else ex] = COND([eo], [e1], [e2])

» COND definable viacond :Bx Ax A — A
cond(true, x,y) = x cond(false, x,y) =y

» Restricts effect branching behaviour:

Ik e : bool, F e :7, G e :m, H

(1F) I+ if eg then e; else ey : 7, F o (GLIH)

cond : B x TGuHA X TGuHA — TGuHA

» Towards Nielson-Nielson richer effects, but + may not be LI.

13 /20

Semantics of branching: derived vs. parameterised
[if e then e; else ex] = COND([eo], [e1], [e2])

COND definable via cond :Bx Ax A— A
cond(true, x,y) = x cond(false, x,y) =y

v

v

Restricts effect branching behaviour:

Ik e : bool, F e :7, G e :m, H

(1F) I+ if eg then e; else ey : 7, F o (GLIH)

Cond . B X TG\ \HA X TG\ }HA — TG\ \HA

v

v

Instead: parameterise semantics on
COND : TFB X TgA X THA — T?JF(FTG’H)A

Towards Nielson-Nielson richer effects, but + may not be L!.

13 /20

Definition: jonoid

For a set of effects / then (F,e. /. & 7) is a joinoid
control-flow algebra:

Definition: jonoid
For a set of effects / then (F,e. /. & 7) is a joinoid

control-flow algebra:

» (F.e, /) is a monoid, representing sequential
composition and purity;

Definition: jonoid
For a set of effects / then (F,e. /. & 7) is a joinoid

control-flow algebra:
» (F.e, /) is a monoid, representing sequential
composition and purity;
» (F.&. 1) is a commutative monoid, representing
parallel composition;

Definition: jonoid
For a set of effects / then (F,e. /. & 7) is a joinoid

control-flow algebra:

» (F.e, /) is a monoid, representing sequential
composition and purity;

» (F.&. 1) is a commutative monoid, representing
parallel composition;

> letting F + G = 7-(/, F, G) (pure guard)

For a set of effects / then (F,e. /. & 7) is a joinoid
control-flow algebra:
» (F.e, /) is a monoid, representing sequential
composition and purity;
» (F.&. 1) is a commutative monoid, representing
parallel composition;
> letting F + G = 7-(/,F. G) (pure guard) (F,+) is a
semigroup, representing choice between branches

Definition: jonoid

For a set of effects / then (F,e. /. & 7) is a joinoid
control-flow algebra:
» (F.e, /) is a monoid, representing sequential
composition and purity;
» (F.&. 1) is a commutative monoid, representing
parallel composition;
> letting F + G = 7-(/,F. G) (pure guard) (F,+) is a
semigroup, representing choice between branches

> with right-distributivity axioms:

Definition: jonoid
For a set of effects / then (F,e. /. & 7) is a joinoid

control-flow algebra:

» (F.e, /) is a monoid, representing sequential
composition and purity;

» (F.&. 1) is a commutative monoid, representing
parallel composition;

> letting F + G = 7-(/,F. G) (pure guard) (F,+) is a
semigroup, representing choice between branches

> with right-distributivity axioms:

(F+G)eH=(FeH)+ (GeH)
(F+G)&H=(F&H)+ (G&H)

Definition: jonoid
For a set of effects / then (F,e. /. & 7) is a joinoid

control-flow algebra:

» (F.e, /) is a monoid, representing sequential
composition and purity;

» (F.&. 1) is a commutative monoid, representing
parallel composition;

> letting F + G = 7-(/,F. G) (pure guard) (F,+) is a
semigroup, representing choice between branches

> with right-distributivity axioms:
(F+G)eH=(FeH)+ (GeH)
(F+G)&H=(F&H)+ (G&H)

> all operations are monotonic with respect to L.

14 /20

Graded generalised joinad

Definition: graded conditional joinad

Given a jonoid (F,e, /[, & 7 C):

Graded generalised joinad

Definition: graded conditional joinad

Given a jonoid (F, e, [, &, ™ C):
» graded monad for the pre-ordered monoid (e, /,)

Graded generalised joinad

Definition: graded conditional joinad

Given a jonoid (F, e, [, &, ™ C):
» graded monad for the pre-ordered monoid (e, /,)
» additional operations:

Graded generalised joinad

Definition: graded conditional joinad

Given a jonoid (F, e, [, &, ™ C):
» graded monad for the pre-ordered monoid (e, /,)
» additional operations:

condF,G’H,A ZTFB X T(;A X THA — T?JF(F,G’H)A
par,_—’G7A :TFA X TGA — TF&GA

Graded generalised joinad

Definition: graded conditional joinad

Given a jonoid (F, e, [, &, ™ C):
» graded monad for the pre-ordered monoid (e, /,)
» additional operations:

condF,G’H,A ZTFB X T(;A X THA — T?JF(F,G’H)A
par,_—’G7A :TFA X TGA — TF&GA

» Satisfy jonoid axioms (modulo lifting to functors)

15/20

Graded generalised joinad

Definition: graded conditional joinad

Given a jonoid (F, e, [, &, ™ C):
» graded monad for the pre-ordered monoid (e, /,)
» additional operations:

condF’G’H,A ZTFB X TGA X THA — T?JF(F,G’H)A
par,_—’G7A :TFA X TGA — TF&GA

» Satisfy jonoid axioms (modulo lifting to functors)
where 4 = cond and & = par

Monoids are to (graded) monads as jonoids are to (graded)
joinads

15/20

Theorem: soundness

Given a graded joinadic semantics for the simply-effect-and-
typed M\-calculus with if and par then, for all e, e',T, 7, F:

Theorem: soundness

Given a graded joinadic semantics for the simply-effect-and-
typed M\-calculus with if and par then, for all e, e',T, 7, F:

[Fe=é:7,F = [Tke:r,F]l=[T+¢€:1F]

Theorem: soundness

Given a graded joinadic semantics for the simply-effect-and-
typed M\-calculus with if and par then, for all e, e',T, 7, F:

[Fe=é:7,F = [Tke:r,F]l=[T+¢€:1F]

wrt. CBV -= with additional equations:

Theorem: soundness

Given a graded joinadic semantics for the simply-effect-and-
typed M\-calculus with if and par then, for all e, e',T, 7, F:

(1F517)
(152’

(IF-DIST-PAR)
(IF-DIST-SEQ)
(PAR-PURE)

(PAR-SYM)

(PAR-ASSOC)

[Fe=é:7,F = [Tke:r,F]l=[T+¢€:1F]

wrt. CBV -= with additional equations:

iftruetheneelsex = e
if falsethen x else ' = ¢’
(if bthen eelse ¢’) par e”
= if bthen (e pare”) else (&’ par e”’)

let x = (if ethen €’ else) in €’

= ifethen (letx = €’ ine’)else (let x = €’ ine")
x pare = (x, e)
epare’ = swap (e’ pare)

e par (¢’ pare”) = assoc ((e pare’) pare”)

16 /20

Conclusions

17 /20

Conclusions

» unify Hanne and Flemming's rich effects with semantics

17 /20

Conclusions

» unify Hanne and Flemming's rich effects with semantics

indexing

non-seq. control
monads ——— graded monads

graded joinads

17 /20

Conclusions

» unify Hanne and Flemming's rich effects with semantics

indexing

non-seq. control
monads ——— graded monads

graded joinads

» Semantics for various kinds of parallel, concurrent (e.g. music)
and speculative behaviour (e.g. prefetching)

17 /20

Conclusions

» unify Hanne and Flemming's rich effects with semantics

indexing non-seq. control

monads ——— graded monads graded joinads

» Semantics for various kinds of parallel, concurrent (e.g. music)
and speculative behaviour (e.g. prefetching)

» Considerable simplification to proofs

17 /20

Conclusions

» unify Hanne and Flemming's rich effects with semantics
monads 918, graded monads non-seq. control graded joinads

» Semantics for various kinds of parallel, concurrent (e.g. music)
and speculative behaviour (e.g. prefetching)

» Considerable simplification to proofs

> Represent effect-dependent optimisations more easily

17 /20

Conclusions

v

unify Hanne and Flemming’s rich effects with semantics

indexing non-seq. control

monads ——— graded monads graded joinads

Semantics for various kinds of parallel, concurrent (e.g. music)
and speculative behaviour (e.g. prefetching)

Considerable simplification to proofs

Represent effect-dependent optimisations more easily

Effect-directed semantics provides co-design approach

17 /20

Conclusions

v

unify Hanne and Flemming’s rich effects with semantics

indexing non-seq. control

monads ——— graded monads graded joinads

Semantics for various kinds of parallel, concurrent (e.g. music)
and speculative behaviour (e.g. prefetching)

Considerable simplification to proofs

Represent effect-dependent optimisations more easily

Effect-directed semantics provides co-design approach
» Equations of analysis carry over to semantics, and vice versa

17 /20

Conclusions

v

unify Hanne and Flemming’s rich effects with semantics

indexing non-seq. control

monads ——— graded monads graded joinads

Semantics for various kinds of parallel, concurrent (e.g. music)
and speculative behaviour (e.g. prefetching)

Considerable simplification to proofs

Represent effect-dependent optimisations more easily

Effect-directed semantics provides co-design approach

» Equations of analysis carry over to semantics, and vice versa
» Exposes which structure is needed in each direction

17 /20

Thanks Hanne and Flemming for the inspiration.
Happy Birthday!

Thanks to Sam Aaron (Cambridge) for the Sonic Pi language used
for the intro program

18 /20

Backup slides

19/20

Modeling effects with monads

Model effectful computations via some data type T

20/20

Modeling effects with monads

Model effectful computations via some data type T

[FT=e:r]:[F]— T[]

20/20

Modeling effects with monads

Model effectful computations via some data type T

[FT=e:r]:[F]— T[]

e.g. for state TA=S — (A X S).

20/20

Modeling effects with monads

Model effectful computations via some data type T

[FT=e:r]:[F]— T[]

e.g. for state TA=S — (A X S).
e.g. for partiality TA= 14+ A

20/20

Modeling effects with monads

Model effectful computations via some data type T

[FT=e:r]:[F]— T[]

e.g. for state TA=S — (A X S).
e.g. for partiality TA= 14+ A

Monads provide sequential composition

Given f : A— TB and g: B — TC then

Modeling effects with monads

Model effectful computations via some data type T

[FT=e:r]:[F]— T[]

e.g. for state TA=S — (A X S).
e.g. for partiality TA= 14+ A

Monads provide sequential composition

Given f : A— TB and g: B — TC then

géf:A—-TC

Modeling effects with monads

Model effectful computations via some data type T

[FT=e:r]:[F]— T[]

e.g. for state TA=S — (A X S).
e.g. for partiality TA= 14+ A

Monads provide sequential composition

Given f : A— TB and g: B — TC then

géf:A—-TC

with ids : A — TA.

20/20

