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Variable agent
def Store(c, x) = c ▷ {get : c!⟨x⟩.Store⟨c, x⟩,  
        put : c?(y).Store⟨c, y⟩,  
        stop : 0}  
in Store⟨c , i⟩
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Variable agent
def Store(c, x) = c ▷ {get : c!⟨x⟩.Store⟨c, x⟩,  
        put : c?(y).Store⟨c, y⟩,  
        stop : 0}  
in Store⟨c , i⟩ Server

get (c)(x).P = (c ◁ get).c?(x).P 
put (c)⟨V⟩.P = (c ◁ put).c!⟨V⟩.P 
stop            = (c ◁ stop).0 Client

def Store(c, x) = … in  (get(c)(x).put(c)⟨x+1⟩.stop  | Store⟨c , i⟩)

e.g. increment store 



Effect calculus
Γ, x : σ ⊢ M : !, F
Γ ⊢ λx.M : σ → !, ∅F

abs

x : σ ∈ Γ
Γ ⊢ x : σ, ∅

varΓ ⊢ M : σ → !, F
Γ ⊢ M N : !, F • G • H

H Γ ⊢ N : σ, G
app

Γ ⊢ M : σ, F
Γ ⊢ let x = M in N : !, F • G

Γ, x : σ ⊢ N : !, G

(F,•,∅)monoid

 Γ ⊢ M : !, F 



Effect calculus for state

Γ ⊢ V : !, [ ]

Γ ⊢ put V : (), [put !] Γ ⊢ get : !, [get !]

(List {put t, get t | t ∈ !}, ++, [ ])

Γ ⊢ let x = get in put (x + 1) : int, [get int, put int]

e.g. increment store 



π-calculus with sessions

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

A Session types

Figure 4 gives the full session typing system used in this work which is close to that of Yoshida
and Vasconcelos [8]. For a session S, its dual S is defined in the usual way [8]. Throughout we
used the usual convention of eliding a trailing 0, e.g., writing r!hxi instead of r!hxi.0.

�;� ` V : ⌧ (value typing) (const)
C : C⌧

�; ; ` C : C⌧
(var)

v : ⌧ 2 �

�; ; ` v : ⌧
(suc)

� ` e : nat

� ` suc e : nat

�;� ` P (process typing)

(end) �; c̃ : end ` 0 (par)
�;�1 ` P �;�2 ` Q

�;�1,�2 ` P | Q (restrict)
�;�, c : S, c : S ` P

�;� ` ⌫c.P

(def)

�, X : (⌧̃ , S̃), x̃ : ⌧̃ ; c̃ : S̃ ` P

�, X : (⌧̃ , S̃);� ` Q

�;� ` def X(x̃, c̃) = P in Q
(dvar)

�; d̃ : end ` ẽ : ⌧̃

�, X : (⌧̃ , S̃); c̃ : S̃, d̃ : end ` Xhẽ, c̃i

(chan-recv)
�;�, c : T, d : S ` P

�;�, c :?[S].T ` c?(d).P
(chan-send)

�;�, c : T ` P

�;�, c : ![S].T, d : S ` c!hdi.P

(recv)
�, x : ⌧ ;�, c : S ` P

�;�, c :?[⌧ ].S ` c?(x).P
(send)

�; ; ` e : ⌧ �;�, c : S ` P

�;�, c : ![⌧ ].S ` c!hei.P

(branch)
�;�, c : Si ` Pi

�;�, c : &[l̃ : S̃] ` c⇤ {l̃ : P̃}
(select)

�;�, c : S ` P

�;�, c : �[l : S] ` c� l.P

where x̃ : ⌧̃ is shorthand for a sequence of variable-type pairs, and similarly c̃ : S̃ for
channels, l̃ : S̃ for labels and sessions, and ẽ for a sequence of expressions.

Figure 4: Session typing relation over the ⇡-calculus with recursion and sessions [8].

A.1 Subtyping and selection

Our session typing system assigns selection types that include only the label l being selected
((select) in Figure 4). Duality with branch types is provided by subtyping on selection types:

(sel) �[l̃ : S̃] � �[l̃ : S̃, l̃0 : S̃0]

(this is a special case of the usual full subtyping rule for selection, see [2, [sub-sel], Table 5,
p. 4]). Therefore, for example, the get process could be typed:

(sub)

�, x : ⌧ ;�; c : S ` P

�;�, c : �[get : ?[⌧ ].S] ` get(c)(x).P
(sel) �[get : ?[⌧ ].S] � �[get : ?[⌧ ].S, put : ![⌧ ].S]

�;�, c : �[get : ?[⌧ ].S, put : ![⌧ ].S] ` get(c)(x).P

However, such subtyping need only be applied when duality is being checked, that is, when
opposing endpoints of a channel are bound by channel restriction, ⌫c.P . We take this approach,
thus subtyping is only used with channel restriction such that, prior to restriction, session types
can be interpreted as e↵ect annotations with selection types identifying e↵ectful operations.
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e.g. increment store get (c)(x).P = c ◁ get . c?(x).P 
put (c)⟨V⟩.P = c ◁ put . c!⟨V⟩.P

Γ, c : ⊕[get : ?[int]. ⊕[put : ![int].end ]]  ⊢ get(c)(x).put(c)(x+1).0

[get int, put int]cf. effects



Encoding effect annotations 
as sessions

⟦ [] ⟧ = end
⟦ (get !) : F ⟧ = ⊕[get : ?⟦!⟧. ⟦ F ⟧ ]
⟦ (get !) : F ⟧ = ⊕[put : !⟦!⟧. ⟦ F ⟧ ] 

For list-based effect annotations over elements E

embed : E → (S → S)  given

⟦ F ⟧  : [E] → S  
     = fold embed (λ. end) F

then



∀g . r
ei,eo⦇ Γ ⊢ M : !, F ⦈ =

Embedding

⟦ Γ ⊢ M : !, F ⟧ 
embedding

⟦ Γ ⟧;  (r : !⟦τ⟧.end,  eff : ⟦ F ⟧) ⊢ 

r
ei,eoνei, eo . (⦇ Γ ⊢ M : !, F ⦈          |  ei!⟨eff⟩.eo(c).0)

send channel with effect capabilities

⟦ Γ ⟧;  (r : !⟦τ⟧.end,  ei : ?⟦ F • g ⟧, eo : !⟦ g ⟧) ⊢ ⦇ M ⦈ r
ei,eo

receive channel with effect capabilities



⦇ Γ ⊢ x : !, ∅ ⦈      =r
ei,eo

Embedding (zeroth-order)

ei?(c).r!⟨x⟩.eo!⟨c⟩

⦇ Γ ⊢ let x = M in N : !, F • G ⦈     =r
ei,eo

ν q, a . (⦇ M ⦈      | q?(x).⦇ N ⦈      )q
ei, a

r
a, eo

⟦ Γ ⟧;   r : !⟦τ⟧,  ei : ?⟦ g ⟧, eo : !⟦ g ⟧ ⊢ ei?(c).r!⟨x⟩.eo!⟨c⟩∀g . where

q : !⟦σ⟧,  ei : ?⟦ F • G • h ⟧, a : !⟦ G • h ⟧ ⊢ ⦇ M ⦈
q
ei, a∀h . where

r
a, eor : !⟦τ⟧, a : ?⟦ G • h ⟧,  eo : !⟦ h ⟧ ⊢ ⦇ N ⦈



Embedding (higher-order)

Must embed latent effects F σ → ! 

 ⟦ σ → ! ⟧ = !⟦ σ ⟧ . ![ ! ⟦!⟧ ] . end
F ⟦ σ → ! ⟧ = !⟦ σ ⟧ . ![?⟦ F • G ⟧] . ![!⟦ G ⟧] . ![ ! ⟦!⟧ ] . end

send channel which 
can send channel with effect  
capabilities for continuation

send channel which  
can receive channel  

with latent effect capabilities



Embedding (higher-order)

⦇ Γ ⊢ λx . M : σ → !, ∅ ⦈      =F

r
ei,eo

ν y . (ei?(c).eo!⟨c⟩.r !⟨y⟩.y?(x, a, b, q).⦇ M ⦈     )q
a,b

r : ![ !⟦ σ ⟧ . ![?⟦ F • h ⟧] . ![!⟦ h ⟧] . ![ ! ⟦!⟧ ] ],  
ei : ?⟦ g ⟧, eo : !⟦ g ⟧  ⊢ ν y . (ei? .…)

∀g, h . 

⦇ Γ ⊢ M N : !, F • G • H ⦈     =r
ei,eo

ν q, s, a, b . (⦇ M ⦈      | ⦇ N ⦈     | q?(y).s?(arg).y!⟨arg, b, eo, r⟩) q
ei, a

s
a, b



Soundness

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

With e↵ects E↵ectful computations are embedded by interactions with a side-e↵ect handling
agent over a session channel. The embedding, written J�Ke↵r , maps a judgement � `M : ⌧, F to
a session type judgement with channels � = (r : !J⌧K.end, e↵ : JF K) i.e., the e↵ect annotation
F is interpreted as the session type of channel e↵ . For state, this interpretation is defined as
in eq. (6). The embedding first requires an intermediate step, written L� Mer:

L� `M : ⌧, F Mer = J�K; (r : !J⌧K.end, e : ?JF •GK.!JGK.end) ` LM Mer (11)

where e is a channel over which channels for e↵ects are communicated: e receives a session
channel of session type JF •GK (i.e., capable of carrying out e↵ects F •G) and sends a session
channel of session type JGK (capable of carrying out e↵ects G). Here the e↵ect G is universally
quantified at the meta level. This provides a way to thread a channel for e↵ect interactions
through a computation, such as in the case of let-binding. The interpretation is then defined:

L letx  M inN Mer = ⌫q, e1, e2.(LM Me1q | q?(x).LN Me2r | e?(b).e1!hbi.e1?(c).e2!hci.e2?(d).e!hdi)
Lx Mer = e?(c).r!hxi.e!hci
LC Mer = e?(c).JCKr.e!hci (when C is pure)

L opM Mer = e?(c).JopMKr.e!hci (when op is pure) (12)

The let case resembles the pure embedding but threads through an e↵ect-carrying session chan-
nel. Channels e1, e2 are introduced, over which e↵ect channels are passed from the embedding
of M to N ; e1 sends LM Me1q the incoming session channel b and then receives the returned
channel c which e2 sends to LN Me2r and then receives the outgoing channel d. The embedding
of variables is straightforward, where the channel c for carrying out e↵ects is received and sent
without use. Embedding pure operations/constants is similar, reusing the pure embedding (9).

The get and put operations of our state e↵ects are embedded similarly to in (3) (page 2),
but with the passing of the session channel which interacts with the store:

L get Mer = e?(c).c� get . c?(x).r!hxi.e!hci
L putM Mer = ⌫q. (JMKq | e?(c).q?(x).c� put . c!hxi.r!huniti.e!hci) (13)

The embedding of get receives channel c over which it performs its e↵ect by selecting the
get branch and receiving x which is sent as the result on r before sending back c. The put

embedding is similar to get and let, but using the pure embedding JMKq since M is pure. The
full embedding is then defined in terms of the intermediate as follows:

J� `M : ⌧, F Ke↵r = J�K; (r : !J⌧K.end, e↵ : JF K) ` ⌫e. (L� `M : ⌧, F Mer | e!he↵ i.e?(c)) (14)

where e↵ is the free session channel over which e↵ects are performed.
Finally, the embedded program is composed in parallel with the variable agent, for example:

def Store(c, x) = . . . (see (2)) in Storehe↵ , 0i | Jletx  get in put (sucx)Ke↵r (15)

3.1 Soundness The e↵ect calculus exhibits the equational theory defined by the rela-
tion ⌘ in Figure 3, which enforces monoidal properties on e↵ects and the e↵ect algebra (as-
soc),(unitL),(unitR), and which allows pure computations to commute with e↵ectful ones
(comm). Our embedding is sound with respect to these equations and the weak bisimulation
relation of the ⇡-calculus with sessions (see [4]). Appendix C provides the proof.

Theorem (Soundness). If � `M ⌘ N : ⌧, F then J�K; (r :!J⌧K.end, e : JF K) ` JMKer ⇡ JNKer
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Future work

• Completeness and observational correspondence

• Subeffecting (via session subtyping)

• Different effect systems (what about sets?)

• Actually handling different kinds of concurrent effects



Conclusion
• Sessions and session types expressive enough to encode 

effects with an effect system

• Use this to give semantics of concurrent effects
• e.g., non-interference, atomicity via sessions

• Effect-informed optimisations, e.g. implicit parallelism

Γ ⊢ M : σ, ∅ifUsing session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

L letx  M in (let y  N inP ) Mei,eor = ⌫ q, s, eb. (JMKq | LN Mei,ebs | q?(x).s?(y).LP Meb,eor )

This alternate encoding introduces the opportunity for parallel evaluation of M and N . It is
enabled by the e↵ect system (which annotates M with I) and it is sound: it is weakly bisimilar
to the usual encoding (which follows from the soundness proof of (comm) in Appendix C and
the pure encoding lemma 1).

5 Summary and further work

This paper showed that sessions and session types are expressive enough to encode stateful
computations with an e↵ect system. We formalised this via a sound embedding of a simple, and
general, e↵ect calculus into the session calculus. Whilst we have focussed on causal state e↵ects,
our e↵ect calculus and embedding can also be instantiated for I/O e↵ects, where input/output
operations and e↵ects have a similar form to get/put. We considered only state e↵ects on a
single store, but traditional e↵ect systems account for multiple stores via regions. Our approach
could be extended with a store and session channel per region. Other instantiations of our e↵ect
calculus/embedding are further work, for example, for set-based e↵ects.

E↵ect reasoning is di�cult in higher-order settings as the e↵ects of abstracted computations
are locally unknown. E↵ect systems account for this by annotating function types with the
latent e↵ects of a function which are delayed till application. A possible encoding of a function
type with latent e↵ects into a session type could be following:

J� F�! ⌧K = !J�K . ![?JF •GK] . ![!JGK] . ![!J⌧K]

i.e., a channel over which four things can be sent: a J�K value for the function argument, a
channel which can receive a further channel capable of simulating e↵ects F •G, a channel which
can send a channel capable of simulating e↵ects G, and a channel which can send a J⌧K for the
result. Thus, the encoding of a function receives e↵ect handling channels which have the same
form as the e↵ect channels for first-order term encodings. A full, formal treatment of e↵ects in
a higher-order setting is forthcoming work.

E↵ects systems also commonly include a (partial) ordering on e↵ects, which describes how
e↵ects can be overapproximated [3]. For example, causal state e↵ects are ordered by prefix
inclusion, thus an expression M with judgement � ` M : ⌧, [G ⌧ ] might have its e↵ects over-
approximated (via a subsumption rule) to � ` M : ⌧, [G ⌧,P ⌧ 0]. It is possible to account for
(some) sube↵ecting using subtyping of sessions. Formalising this is further work.

Whilst we have embedded e↵ects into sessions, the converse seems possible: to embed ses-
sions into e↵ects. Nielson and Nielson previously defined an e↵ect system for higher-order
concurrent programs which resembles some aspects of session types [6]. Future work is to ex-
plore mutually inverse embeddings of sessions and e↵ects. Relatedly, further work is to explore
whether various kinds of coe↵ect system (which dualise e↵ect systems, analysing context and
resource use [7]) such as bounded linear logics, can also be embedded into session types.

Acknowledgements Thanks to Tiago Cogumbreiro and the anonymous reviewers for their
feedback. The work has been partially sponsored by EPSRC EP/K011715/1, EP/K034413/1,
and EP/L00058X/1, and EU project FP7-612985 UpScale.
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single store, but traditional e↵ect systems account for multiple stores via regions. Our approach
could be extended with a store and session channel per region. Other instantiations of our e↵ect
calculus/embedding are further work, for example, for set-based e↵ects.

E↵ect reasoning is di�cult in higher-order settings as the e↵ects of abstracted computations
are locally unknown. E↵ect systems account for this by annotating function types with the
latent e↵ects of a function which are delayed till application. A possible encoding of a function
type with latent e↵ects into a session type could be following:

J� F�! ⌧K = !J�K . ![?JF •GK] . ![!JGK] . ![!J⌧K]

i.e., a channel over which four things can be sent: a J�K value for the function argument, a
channel which can receive a further channel capable of simulating e↵ects F •G, a channel which
can send a channel capable of simulating e↵ects G, and a channel which can send a J⌧K for the
result. Thus, the encoding of a function receives e↵ect handling channels which have the same
form as the e↵ect channels for first-order term encodings. A full, formal treatment of e↵ects in
a higher-order setting is forthcoming work.

E↵ects systems also commonly include a (partial) ordering on e↵ects, which describes how
e↵ects can be overapproximated [3]. For example, causal state e↵ects are ordered by prefix
inclusion, thus an expression M with judgement � ` M : ⌧, [G ⌧ ] might have its e↵ects over-
approximated (via a subsumption rule) to � ` M : ⌧, [G ⌧,P ⌧ 0]. It is possible to account for
(some) sube↵ecting using subtyping of sessions. Formalising this is further work.

Whilst we have embedded e↵ects into sessions, the converse seems possible: to embed ses-
sions into e↵ects. Nielson and Nielson previously defined an e↵ect system for higher-order
concurrent programs which resembles some aspects of session types [6]. Future work is to ex-
plore mutually inverse embeddings of sessions and e↵ects. Relatedly, further work is to explore
whether various kinds of coe↵ect system (which dualise e↵ect systems, analysing context and
resource use [7]) such as bounded linear logics, can also be embedded into session types.
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