
Evolving Fortran types with
inferred units-of-measure	

 (slides)

Dominic Orchard†, Andrew Rice*, Oleg Oshmyan

*

ICCS 2015

†

dorchard.co.uk

http://dorchard.co.uk

 September 23rd, 1999
Orbital insertion (artist’s impression)

What actually happened….	

Mars Climate Orbiter

NASA/JPL/Corby Waste

$327.6 million

(also artist’s impression)

due to a unit mismatch:	

foot-pounds (lbf) vs. Newtons (N)

Dimensional analysis
(“Great Principle of Similitude”, Isaac Newton, 1686)	

x is a length (dimension)	

x is in metres (unit of measure)	

unit(x * y) = (unit x) * (unit y)	

unit(x / y) = (unit x) / (unit y)	

unit(x + y) = unit x = unit y	

unit(x - y) = unit x = unit y 	

unit(x^R) = unit(x)^R	

photo from Andrew Kennedy’s website 	

http://research.microsoft.com/en-us/um/people/akenn/units/

http://research.microsoft.com/en-us/um/people/akenn/units/

Dimensional analysis 	

= a type sytem

• House, 1983	

	
 “A proposal for an extended form of type checking of
expressions”	

• Kennedy, 1994	

	
 “Dimension Types”	

• How many (popular) languages have this today? 	

	
 F#, Haskell [experimental], C [via extensions]

Fortran - an important target

• Fortran very popular in science	

• Evolved considerably over 60 years	

• Lots of long-running projects	

• Many numerical programs	

• A serious need for more verification*

Automatic tools to the rescue!!!

	
 	
 *A computational science agenda for programming language research, Orchard, Rice, ICCS 2014

A recent ISO proposal for
Fortran units

real, unit(m) :: x
real, unit(s) :: t
real, unit(mps):: v
real, unit(mps) :: s
!...
v = x / t
s = abs(v)

unit :: m, s
unit :: mps = m / s
!
!

ftp://ftp.nag.co.uk/sc22wg5/N1951-N2000/N1969.pdf

Follows Fortran 	

tradition of explicit types

•All units must be declared	

•All variables must have a unit	

•All derived units must have a
unique name

ftp://ftp.nag.co.uk/sc22wg5/N1951-N2000/N1969.pdf

‘Explicitness’ tradition hinders
evolution

• Two long-running climate modelling projects at
Cambridge:	

‣ (Hybrid 8) 10kloc, 1k variable declarations	

‣ (Hybrid 4) 8.5kloc,1.2k variable declarations

Proposal: a lightweight
approach

• Type inference	

• Implicitly-introduced unit names	

• Polymorphism

abs : real, unit(u) → real, unit(u)

• Aid adoption by suggesting annotation points

Demo time

∀u.

 [critical variable analysis]

CamFort tool…
• Cambridge Fortran research infrastructure [a pre-processor]	

• Program analyses, transformations, refactorings 	

	
 	
 Upgrading Fortran source code using automatic refactoring, Orchard, Rice, WRT’13 	

• Type-system extensions (e.g., units-of-measure)

…& project at Cambridge
• (Semi)automated verification and testing	

• Integrate with existing working practises	

• More sustainable code

	
 	
 A computational science agenda for programming language research, Orchard, Rice, ICCS 2014

Evaluation

• 43 programs from An Introduction to Computational Physics,
Tao Pang, Cambridge University Press, 2006.	

• 50-200 lines in size	

• Excluded 6 programs due to MPI or odd syntax

Evaluation - effort saving
% saving =

Median effort saving = 82.4% (3sf.)

0 20 40 60 80 100
Percentage saving

0

2

4

6

8

10

12

14

16

Fr
eq

ue
nc

y

% saving

size of critical variable set

number of variables
)× 100(1 -

Evaluation - utility of units

% utility =

Median utility = 42.8% (3sf.)

variables assigned a non-unitless unit
number of variables

× 100

manually (as a critical variable) or after inference

0 20 40 60 80 100
Percentage saving

0

1

2

3

4

5

6

7

Fr
eq

ue
nc

y

% utility

Lessons learned...
• Automatic verification tools are good	

‣ Inference eases evolution, reduces effort (~ 82% saving)	

• Breaking traditions can be good (when they hinder upgrading
a code base)	

• Units of measure are really worth it!

Download info + tutorial: http://dorchard.co.uk/units	

See more: http://dorchard.co.uk/science	

Thanks!

http://dorchard.co.uk/units
http://dorchard.co.uk/science

