
Lightweight Verification For
Computational Science Models
Dominic Orchard

Joint work with colleagues at the University of Cambridge:
Mistral Contrastin, Matthew Danish, Andrew Rice

CamCamFortFort

2

RETRACTED

NASA/JPL/Corby Waste

 September 23rd, 1999
Orbital insertion (artist’s impression)

What actually happened….!

Mars Climate Orbiter

NASA/JPL/Corby Waste

$327.6 million

(also artist’s impression)

due to a unit mismatch:!
foot-pounds (lbf) vs. Newtons (N)

units
mistmatch!

foot-pounds (lbf)
vs.

Newtons (N)

average bug-rate in industry software is 15-50 errors per 1000 lines**

** S. McConnell, Code complete, O’Reilly Media, Inc., 2004.

indexing
error!*

minus sign flipped
in array access

* Z. Merali, Computational science: Error, why scientific programming does not compute, 2010

How to ensure correctness?

• Testing
‣ Unit testing
‣ Integration testing
‣ Combine with code-coverage checkers
‣ Requires significant effort

• Formal verification

‣ Bug finding tools (e.g. Clang analyser for C clang-analyzer.llvm.org)

‣ Specification-based systems

3

http://clang-analyzer.llvm.org

Specification-based approaches to verification

• User specifies some aspect of the program

• A verification tool checks conformance

• built into a language e.g. type systems
‣ Specify the broad range values that should be input and output

e.g. integer :: x; character :: y; x = x / y

• additional specification language
‣ e.g. ACSL behaviour specs. for C (https://frama-c.com/acsl.html)

relationship between input/outputs, ranges of values, and more

4

https://frama-c.com/acsl.html

Specification-based approaches to verification

5

Code Full
spec.

Partial
spec.

Time consuming
Specification completeness? How to chose

which parts?

Lightweight
spec.

Focussed on one
aspect

6

CamCamFortFort https://github.com/camfort/camfort/wiki

• Lightweight specification / verification of numerical Fortran

‣ units-of-measure typing

‣ stencil specifications (shape of array access)  

• Specifications are comments

• Some specifications can be auto-generated for legacy code

https://github.com/camfort/camfort/wiki

Dimensional analysis
(“Great Principle of Similitude”, Isaac Newton, 1686)

x is a length (dimension)
x is in metres (unit of measure)

unit(x * y) = (unit x) * (unit y)
unit(x / y) = (unit x) / (unit y)
unit(x + y) = unit x = unit y
unit(x - y) = unit x = unit y
unit(x^R) = unit(x)^R

7

photo from Andrew Kennedy’s website
http://research.microsoft.com/en-us/um/people/akenn/units/

8

http://research.microsoft.com/en-us/um/people/akenn/units/

1 program energy
2 real :: mass = 3.00, gravity = 9.91, height = 4.20
3 real :: potential_energy
4
5 potential_energy = mass * gravity * height
6 end program energy

energy1.f90:
 (2:22) mass
 (2:51) height
 (3:11) potential_energy

Suggest
$ camfort units-suggest energy1.f90

Example: units-of-measure specifications

1 program energy
2 != unit kg :: mass
3 != unit m :: height
4 real :: mass = 3.00, gravity = 9.91, height = 4.20
5 != unit kg m**2/s**2 :: potential_energy
6 real :: potential_energy
7
8 potential_energy = mass * gravity * height
9 end program energy

energy1.f90: Consistent. 4 variables checked.

Check
$ camfort units-check energy1.f90

Example: units-of-measure specifications

1 program energy
2 != unit kg :: mass
3 != unit m :: height
4 real :: mass = 3.00, gravity = 9.91, height = 4.20
5 != unit kg m**2/s**2 :: potential_energy
6 real :: potential_energy
7
8 potential_energy = mass * gravity * height
9 end program energy

Synthesising units for energy1.f90

Synthesise
$ camfort units-synth energy1.f90 energy1.f90

Example: units-of-measure specifications

Example: units-of-measure specifications
1 program energy
2 != unit kg :: mass
3 != unit m :: height
4 != unit m/s**2 :: gravity
5 real :: mass = 3.00, gravity = 9.91, height = 4.20
6 != unit kg m**2/s**2 :: potential_energy
7 real :: potential_energy

Synthesising units for energy1.f90

$ camfort units-synth energy1.f90 energy1.f90

Synthesise

8
9 potential_energy = mass * gravity * height
10 end program energy

8 real :: kinetic_energy, total_energy
9
10 != unit 1 :: half
11 != unit m/s :: velocity
12 real :: half = 0.5, velocity = 4.00
13
14 potential_energy = mass * gravity * height
15 kinetic_energy = half * mass * velocity
16
17 total_energy = potential_energy + kinetic_energy
18 end program energy

Extended example

13

BUG! should be velocity**2

“Unitless” coefficients

1 program energy
2 != unit kg :: mass
3 != unit m :: height
4 != unit m/s**2 :: gravity
5 real :: mass = 3.00, gravity = 9.91, height = 4.20
6 != unit kg m**2/s**2 :: potential_energy
7 real :: potential_energy

$ camfort units-check energy2.f90

energy2.f90 : Inconsistent:
 - at 17:38 'kinetic_energy' should be '(kg m**2.0) / s**2.0'
 instead 'kinetic_energy' is '1 kg (m / s)'

Unit aliases

14

!= unit :: joule = kg m**2 / s**2
!= unit joule :: potential_energy
real :: potential_energy

PolymorphicMonomorphic

Polymorphism

!= unit ‘u :: x
!= unit ‘u :: absolute

!= unit in :: inch
!= unit cm :: inch_to_cm

inch_to_cm : in ➝ cm absolute : ∀u . u ➝ u

15

Check
Does it do what I think it does?

Infer
What does it do?

Synthesise
Capture what it does for documentation & future-proofing

Suggest
Where should I add a specification to get the most information?

Units-of-measure in other languages

16

• F# - built-in

• Python - Pint http://pint.readthedocs.io

• C - Osprey (not sure if available yet)

http://pint.readthedocs.io

Example: stencil specifications

u v

17

Example: stencil specifications

u v

18

Example: stencil specifications

u v

19

Example: stencil specifications

u v

20

Example: stencil specifications

u v

21

Example: stencil specifications

u v

22

Example: stencil specifications

u v

23

Example: stencil specifications

u v

24

Example: stencil specifications

u v

$ camfort stencils-infer heat.f90
Inferring stencil specifications for heat.f90

heat.f90
(9:6)-(9:43) stencil readOnce, (centered(depth=1, dim=1)) :: v

Example: stencil specifications

u v

$ camfort stencils-synth heat.f90
Synthesising stencil specifications for heat.f90

heat.f90
(9:6)-(9:43) stencil readOnce, (centered(depth=1, dim=1)) :: v

Two potential mistakes

27

Illegal repetition of access pattern

Out of bounds stencil access/
Does not conform with the shape.

More advanced specifications

• There are other primitive regions: pointwise,
forward, and backward

• Two operators for composition: +, *

• Specifications acting on multiple dimensions

28

From a Navier-Stokes fluid simulation

29

!= stencil :: (centered(depth=1, dim=1) * pointwise(dim=2))
 + (centered(depth=1, dim=2) * pointwise(dim=1)) :: u

!= stencil :: forward(depth=1, dim=1) * backward(depth=1,dim=2) :: v

natural & physical sciences

computer science Let’s bridge the chasm!

30

Conclusions

• Correctness is very important

• Testing is good; automated verification better (reduce effort)

• Various tools for different languages

• More interaction needed between CS and sciences to build
more effective tools e.g. CamFort

31

Future plans
• Test generation from properties

• Dependency specifications

Follow CamFort updates
http://github.com/camfort/camfort

@camfort_tool

32

Andrew RiceDominic OrchardMatthew DanishMistral Contrastin

Thank you!

http://github.com/camfort/camfort

BETTER
SOFTWARE
BETTER
RESEARCH

https://www.software.ac.uk/

https://www.software.ac.uk/

