
Haskell Type Constraints Unleashed (talk)

Dominic Orchard Tom Schrijvers
University of Cambridge, UK KU Leuven, Belgium

dominic.orchard@cl.cam.ac.uk tom.schrijvers@cs.kuleuven.be

FLOPS 2010, Sendai, Japan

Wednesday April 21, 2010

Type terms in Haskell

C ⇒ τ

type constraints types

Framework of Current GHC/Haskell
Type System Features

types constraints

co
n
st

a
n
ts

generative
Data types Classes
data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms
type T ā = τ constraint K ā = C

fa
m

il
ie

s generative
Data type families Class families
data family T ā

not considered
data instance T τ̄ = . . .

synonym
Type synonym families Constraint families
type family T ā constraint family K ā
type instance T τ̄ = τ constraint instance K τ̄ = C

Haskell 98 Type System Features

C ⇒ τ
Type classes Data types

Type synonyms

Type classes

class Show a where

show :: a→ String

instance Show Bool where

show True = “True”

show False = “False”

show :: Show a⇒ a→ String

Haskell 98 + GHC Type System
Features

C ⇒ τ
Type classes Data types (GADTs)

Type synonyms
Type synonym families
Data type families

Type families

• Type-level function : τ → τ , or type-indexed set of
types

• Defined as rewrite rules from types to types

type family Collection e

type instance Collection Int = [Int]

type instance Collection Bool = Int

e.g. type Collection Int is a synonym for [Int]

Type families allow method signature
flexibility

type family Collection e

type instance Collection Int = [Int]

type instance Collection Bool = Int

class CollectionElem e where

insert :: e -> Collection e -> Collection e

...

e.g.

insert :: Int -> Collection Int -> Collection Int

Type families allow method signature
flexibility

type family Collection e

type instance Collection Int = [Int]

type instance Collection Bool = Int

class CollectionElem e where

insert :: e -> Collection e -> Collection e

...

e.g.

insert :: Int -> [Int] -> [Int]

Classes and families are open

• Declaration separate to definition e.g.

type family Collection e

class CollectionElem e where ...

• Definition with instances, possibly across files e.g.

type instance Collection Int = [Int]

instance CollectionElem Int where ...

Under-development of Constraint Term
Language

C ⇒ τ
Type classes Data types

(Equality constraints) Type synonyms
Type synonym families
Data type families

Haskell Type Constraints Unleashed
Beefed-Up!

Dominic Orchard Tom Schrijvers
University of Cambridge, UK KU Leuven, Belgium

dominic.orchard@cl.cam.ac.uk tom.schrijvers@cs.kuleuven.be

FLOPS 2010, Sendai, Japan

Wednesday April 21, 2010

Example 1: Set functor

class Functor f where

fmap :: (a -> b) -> f a -> f b

instance Functor [] where

fmap = map

instance Functor Set where

fmap = Set.map 6 `

Set.map :: (Ord a,Ord b)⇒ (a→ b)→ Set a→ Set b

• fmap is fixed with no constraints

Example 2: Polymorphic EDSL

class Expr sem where
constant :: a -> sem a
add :: sem a -> sem a -> sem a

e.g. (constant 1) ‘add‘ (constant 2) could denote
1 + 2.

data NumSemantics a = MkNum a

instance Expr NumSemantics where
constant c = MkNum c

add (MkNum e1) (MkNum e2) = MkNum (e1 + e2) 6 `
(+) :: Num a⇒ a→ a→ a

Example 2: Less-Polymorphic EDSL

class Expr sem where
constant :: a -> sem a
add :: Num a => sem a -> sem a -> sem a

e.g. (constant 1) ‘add‘ (constant 2) could denote
1 + 2.

data NumSemantics a = MkNum a

instance Expr NumSemantics where
constant c = MkNum c
add (MkNum e1) (MkNum e2) = MkNum (e1 + e2)

(+) :: Num a⇒ a→ a→ a

Type families allow method signature
flexibility

type family Collection e

class CollectionElem c where

insert :: e -> Collection e -> Collection e

...

• Need constraint flexibility.

• Our solution: type indexed-families of
constraints.

Our approach: extend constraint term
features by analogy with type term features

Axis: Types and Constraints

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Features: Datatypes and synonyms

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Axis: Generative and Synonyms

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Axis: Generative and Synonyms

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Axis: Classes

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Axis: Constants and Families

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Axis: Constants and Families

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Axis: Families

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Axis: Families

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Constraint Synonyms

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Constraint Synonyms

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Example (without constraint synonyms)

eval :: (Solver s, Queue q, Transformer t,

Elem q ~ (Label s, Tree s a, TreeState t),

ForSolver t ~ s)

=> ...

eval’ :: (Solver s, Queue q, Transformer t,

Elem q ~ (Label s, Tree s a, TreeState t),

ForSolver t ~ s)

=> ...

Example (with constraint synonyms)

constraint Eval s q t a =

(Solver s, Queue q, Transformer t,

Elem q ~ (Label s, Tree s a, TreeState t),

ForSolver t ~ s)

eval :: Eval s q t a => ...

eval’ :: Eval s q t a => ...

Constraint Synonym Families

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families

type family T ā

type instance T τ̄ = τ

Constraint Synonym Families

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint synonym families

type family T ā

type instance T τ̄ = τ

Constraint Synonym Families

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint synonym families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Constraint Synonym Families

Type synonym family syntax:

type family T ā

type instance T τ̄ = τ

Analogous constraint synonym family syntax:

constraint family K ā

constraint instance K τ̄ = C

Example 1: Set functor

class Functor f where

fmap :: (a -> b) -> f a -> f b

instance Functor [] where

fmap = map

instance Functor Set where

fmap = Set.map 6 `

Set.map :: (Ord a,Ord b)⇒ (a→ b)→ Set a→ Set b

Example 1: Set functor - Solution 1

constraint family Inv f e

constraint instance Inv [] e = ()

constraint instance Inv Set e = Ord e

class Functor f where

fmap :: (Inv f a, Inv f b) => (a -> b) -> f a -> f b

instance Functor [] where

fmap = map

instance Functor Set where

fmap = Set.map

Example 1: Set functor - Solution 2 (Associated)

class Functor f where

constraint Inv f e

fmap :: (Inv f a, Inv f b) => (a -> b) -> f a -> f b

instance Functor [] where

constraint Inv [] e = ()

fmap = map

instance Functor Set where

constraint Inv Set e = Ord e

fmap = Set.map

Example 1: Set functor - Solution 3 (+ default)

class Functor f where

constraint Inv f e = ()

fmap :: (Inv f a, Inv f b) => (a -> b) -> f a -> f b

instance Functor [] where

fmap = map <- note: unchanged!

instance Functor Set where

constraint Inv Set e = Ord e

fmap = Set.map

Example 2: Polymorphic EDSL

class Expr sem where

constant :: a -> sem a

add :: sem a -> sem a -> sem a

data NumSemantics a = MkNum a

instance Expr NumSemantics where

constant c = MkNum c

add (MkNum e1) (MkNum e2) = MkNum (e1 + e2) 6 `
(+) :: Num a⇒ a→ a→ a

Example 2: Polymorphic EDSL

class Expr sem where

constraint Pre sem a = ()

constant :: Pre sem a => a -> sem a

add :: Pre sem a => sem a -> sem a -> sem a

data NumSemantics a = MkNum a

instance Expr NumSemantics where

constraint Pre NumSemantics a = Num a

constant c = MkNum c

add (MkNum e1) (MkNum e2) = MkNum (e1 + e2)

Well-defined Families

• Confluence

• No overlapping instances

• No type-families application in instance heads

• Termination

Termination

(Based on type family termination 1)

constraint instance K τ̄ = C

∀ constraint family applications K’ τ̄ ′ ∈ C:

1 |τ̄ | > |τ̄ ′| (strictly decreasing)

2 τ̄ ′ has no more occurences of any type variable than τ

repetition of a type variable = possible term size increase

(multiplication)

3 τ̄ ′ does not contain any type family applications

1
Schrijvers, T., Jones, S.P., Chakravarty, M., Sulzmann, M.: Type checking with open

type functions. SIGPLAN Not. 43(9) (2008) 5162

State of play

types constraints

co
n
st

a
n
ts generative

Data types Classes

data T ā where . . . class K ā where . . .

synonym
Type synonyms Constraint synonyms

type T ā = τ constraint K ā = C

fa
m

il
ie

s generative

Data type families Class families?

data family T ā
not considered

data instance T τ̄ = . . .

synonym

Type synonym families Constraint synonym families

type family T ā constraint family K ā

type instance T τ̄ = τ constraint instance K τ̄ = C

Paper contributions

• Constraint synonyms and constraint synonym families

• Static semantics rules

• Termination conditions for constraint families (and
interaction with classes)

• Provide encodings into GHC/Haskell and System FC

Further work

• Implement in GHC

• Class families?

• Improving refactoring with class synonym instances

• Open vs. closed as an axis

Conclusions

• Symmetrised the type system along the
constraint-type divide

• Constraint synonyms: Easier to read/write code

• Constraint synonym families: Index constraints based
on types

• Fixes many problems (functor problem)

• Polymorphic EDSLs can be polymorphic again, even
with constraints!

Haskell Type Constraints Unleashed!

Back-up slides

Confluence

No type family application in instance heads

constraint family K f a
©1 constraint instance K [] a = ()

©2 constraint instance K (T a) a = Ord a

type instance T Char = BitSet

type instance T Int = []

Given constraint K [] Int:

©1 K [] Int = ()
©2 K (T Int) Int → K [] Int

= Ord Int
6= ()

Confluence

No type family application in instance heads

constraint family K f a
©1 constraint instance K [] a = ()

©2 constraint instance K (T a) a = Ord a

type instance T Char = BitSet

type instance T Int = []

Given constraint K [] Int:

©1 K [] Int = ()
©2 K (T Int) Int → K [] Int

= Ord Int
6= ()

Termination (condition 2)

2 τ̄ ′ has no more occurences of any type variable than
LHS

e.g.

constraint family K m a

constraint instance K [a] b = K b b

if b = [a]

K [a] b → K [a] [a] → K [a] [a] → . . .

Termination (condition 3)

3 τ̄ ′ does not contain any type family applications

constraint family K m a
©1 constraint instance K (T (T m)) a = K (F m) a

| (T (T m)) a | = 4 | (F m) a | = 3

type family F m
©2 type instance F Int = T (T Int)

K (T (T Int)) a
©1−→ K (F Int) a

©2−→ K (T (T Int)) a
©1−→ . . .

	Problems
	Our Approach
	Design space
	Constraint Synonym
	Constraint Synonym Families

	Well-defined Families
	Termination

	Paper Contributions
	Further Work
	Conclusions
	Confluence

