
EFFICIENT AND CORRECT
STENCIL COMPUTATIONS

Via Pattern Matching & Static Typing

Dominic Orchard, Alan Mycroft
7th September, Bordeaux, IFIP DSL 2011

Wednesday, 14 September 2011

B

Stencil Computations

for (i=0; i<N; i++)
 for (j=0; j<M; j++)
 B[i][j] = f(A[i][j], A[i-1][j], A[i+1][j],
 A[i][j-1], A[i][j+1]);

A

f

Wednesday, 14 September 2011

Stencil Computations
?

?

for (i=0; i<N; i++)
 for (j=0; j<M; j++)
 B[i][j] = f(A[i][j], A[i-1][j], A[i+1][j],
 A[i][j-1], A[i][j+1]);

when
i=0, j=0

Wednesday, 14 September 2011

Stencil Computations

for (i=0; i<(N+2); i++)
 for (j=0; j<(M+2); j++)
 if (i<1 || i>N || j<1 || j>M)
 A[i][j] = 0.3; -- boundary value

for (i=1; i<(N+1); i++)
 for (j=1; j<(M+1); j++)
 B[i][j] = f(A[i][j], A[i-1][j], A[i+1][j],
 A[i][j-1], A[i][j+1]);

A & B of size (N+2 x N+2)

Wednesday, 14 September 2011

Common Bugs

•Out-of-bounds errors e.g. A[-1][0]

• Crash

• Silent (even worse)

•Uninitialised boundaries e.g. A[0][0] = ?

•Typos e.g. A[j-1][i] instead of A[i][j-1]

Cause: arbitrary index expressions

Wednesday, 14 September 2011

Solutions
•Static analyses (in general undecidable)

•Runtime bounds checking

•Pro: Prevents numerical correctness bugs

•Cons: Adds overhead (~20% on a single iteration
over a 512x512 image)

•Typos can still be a problem

Wednesday, 14 September 2011

•General purpose languages lose program information

•General purpose languages obscure optimisations and
obfuscate (in)correctness

•Domain specific languages permit better optimisation and
reasoning via restricted syntax (Not “mere syntax”!)

• Restricted syntax ⟹ more (decidable) information

•More information ⟹ better optimisation & reasoning

Philosophy

Wednesday, 14 September 2011

Ypnos (pronounced ip-nos)

• Internal DSL in Haskell for (n-dimensional) stencil
computations

•Shallow embedding + specialised syntax via macros

•Slogan (of this paper/talk):

Well-typed Ypnos programs have only safe
indexing (i.e. no out-of-bounds errors)

•Correctness guarantees ⟹ efficiency guarantees:
bounds checks can be eliminated as all array access
is safe

•Guarantees parallelisation (not discussed today)

Wednesday, 14 September 2011

Safety in Ypnos
•No general, arbitrary indexing

•Specialised syntax for array access (grid
patterns) and boundary definitions

•Restricted syntax provides static information,
encoded in types

•Safety invariant enforced via type-checking

Wednesday, 14 September 2011

Grids

X

Y

{

Type-level dimensionality

e.g. X × Y

 “cursor”
(current index under consideration)

Grid dim bounds a

•Grid value comprise an array

•Grid type constructor encodes information

and a cursor

Wednesday, 14 September 2011

Grids

X

Y

{
Type-level boundary info

 “cursor”
(current index under consideration)

Grid dim bounds a

•Grid value comprise an array

•Grid type constructor encodes information

and a cursor

Wednesday, 14 September 2011

Grids

X

Y

{

Element type of the grid

 “cursor”
(current index under consideration)

Grid dim bounds a

•Grid value comprise an array

•Grid type constructor encodes information

and a cursor

Wednesday, 14 September 2011

Grid Patterns
•Special kind of pattern match on values Grid

f | @c | = ...{

Grid pattern

bound to the “cursor” elementc
e.g. c = A[i]

f | l @c r | = ...{
Grid pattern

bound to left of “cursor”l
r bound to right of “cursor”

e.g. l = A[i-1]
c = A[i]
r = A[i+1]

Wednesday, 14 September 2011

Grid Patterns (2)

g’ = run f g

Computes average of neighbours

*

*Note: related to extension operation of a comonad

Applies a stencil function at every possible “cursor” position

f :: Grid X b Double → Double
f | l @c r | = (l+c+r)/3.0

run :: (Grid d b x→ y)→ Grid d b x→ Grid d {} y
runA :: (Grid d b a→ a)→ Grid d b a→ Grid d b a

{Stencil function (kernel)

Wednesday, 14 September 2011

Grid Patterns (3)

f X:| l @c r | = ...

{

Dimension annotation

laplace2D (X*Y):| _ t _ | = t + l + r + b - 4*c
| l @c r |
| _ b _ |

Two-dimensional syntactic sugar

e.g. l = A[i-1][j]
c = A[i][j]
r = A[i+1][j]

t = A[i][j-1]
b = A[i][j+1]

Wednesday, 14 September 2011

?
?

Wednesday, 14 September 2011

Boundaries

boundary (-1, -1) -> 0.0
 (*i, -1) -> 0.0
 (+1, -1) -> 0.0
 (-1, *j) -> 0.0
 (+1, *j) -> 0.0
 (-1, +1) -> 0.0
 (*i, +1) -> 0.0
 (+1, +1) -> 0.0

•Special boundary definition syntax

•Pattern match on boundary regions

-- a
-- b
-- c
-- d
-- e
-- f
-- g
-- h

Wednesday, 14 September 2011

Boundaries

boundary (-1, -1) -> 0.0
 (*i, -1) -> f(i)
 (+1, -1) -> 1.0
 (-1, *j) -> 1.0
 (+1, *j) g -> g...
 (-1, +1) -> 0.0
 (*i, +1) -> 0.0
 (+1, +1) -> 0.0

•Special boundary definition syntax

•Pattern match on boundary regions

•Permits complicated boundaries: wrapping,
reflection

Wednesday, 14 September 2011

Boundaries (2)

boundary (-1, -1) -> 0.0
 (*i, -1) -> 0.0
 (+1, -1) -> 0.0
 (-1, *j) -> 0.0
 (+1, *j) -> 0.0
 (-1, +1) -> 0.0
 (*i, +1) -> 0.0
 (+1, +1) -> 0.0

boundary from (-1, -1) to (+1, +1) -> 0.0

Abbreviated form

Wednesday, 14 September 2011

Laplace Example

[dimensions| ... |]
[boundary| ... |]
[fun| ... |]

Macros (Haskell Quasiquoting):

[dimensions| X, Y |]

laplace2D = [fun| X*Y:| _ t _ |
| l @c r |
| _ b _ | -> t + l + r + b - 4.0*c |]

lapBoundary = [boundary| Double (-1, *j) -> 0.0
(1, *j) -> 0.0
(*i, -1) -> 0.0
(*i, +1) -> 0.0 |]

grid = listGrid (Dim X :* Dim Y) (0, 0) (w, h) img_data lapBoundary
grid’ = run laplace2D grid

1
2
3
4
5
6
7
8
9
10
11
12
13

Wednesday, 14 September 2011

Enforcing Safety Invariant

•Encode access pattern of stencils in types

•Encode boundary information in types

•Check boundaries define enough elements
for stencils to always have defined values

•Lots of use of GADTs, type families, class
constraints

Wednesday, 14 September 2011

Grid Patterns (Translation)

{

Type-level representation of a relative index

Tuple of type-level integers (inductive)

Pos (S Z)
Pos Z
Neg (S Z)
Neg (S (S Z))

Pos (S (S Z))
...

...

(Neg (S Z),Pos (S (S Z)))

represented as value

e.g.
(−1,+2)

index :: i→ Grid d b a→ a

0 ⤳
1 ⤳
2 ⤳

-1 ⤳
-2 ⤳

...

...
with type

(IntT (Neg (S Z)), IntT (Pos (S (S Z))))

Wednesday, 14 September 2011

Grid Patterns (Translation)

f | l @c r | = ...�
f = (λg -> let c = index (Pos Z) g

l = index (Neg (S Z)) g
r = index (Pos (S Z)) g

in ...)

Wednesday, 14 September 2011

Grid Patterns (Translation)

{
Haskell type constraint: C ⇒ τ

Safe• (Binary) predicate/relation enforces safety

•Checks an index against the boundary
information of a grid: b

index• implemented without bounds checking
(i.e. unsafe)

index :: Safe i b⇒ i→ Grid d b a→ a

Wednesday, 14 September 2011

Boundary (Translation)

boundary (-1, -1) -> 0.0
 (*i, -1) -> 0.0
 ...

(ConsB (Static (λ(Neg (S Z), Neg (S Z)) -> 0.0))
(ConsB (Static (λ(i, Neg (S Z)) -> 0.0)) ...

�

Translates into special list structure (GADT)

BoundaryList (Cons (Neg (S Z), Neg (S Z))
Cons (Int, Neg (S Z)) ...) Static ...

:: Type encodes the boundary regions described

Details in paper!
Wednesday, 14 September 2011

Boundary (Translation)
BoundaryList (Cons (Neg (S Z), Neg (S Z))

Cons (Int, Neg (S Z)) ...) Static ...

Added to a grid’s type
when grid constructed with
boundary

e.g.

Grid dim bounds a

:: Grid (X × Y) (Cons (Neg(SZ),Neg(SZ))
(Cons (Int ,Neg(SZ)) . . .)) a

Wednesday, 14 September 2011

f :: (Safe (Pos Z) b,
Safe (Pos (S Z)) b,
Safe (Neg (S Z)) b) =>
Grid X b Double → Double

f | l @c r | = (l+c+r)/3.0

Enforcing Safety

Cannot apply f to a grid if the grid does not have
satisfactory boundaries

f | l @c r | = ... � f = (λg -> let c = index (Pos Z) g
l = index (Neg (S Z)) g
r = index (Pos (S Z)) g

in ...)

(cut to demo)
Wednesday, 14 September 2011

Results

•Laplace (512x512) (Haskell vs. Ypnos)

•Laplacian of Gaussians (512x512)
2

6664

0 0 −1 0 0
0 −1 −2 −1 0
−1 −2 16 −2 −1
0 −1 −2 −1 0
0 0 −1 0 0

3

7775

2

4
0 1 0
1 −4 1
0 1 0

3

5

∼= 3% speedup per iteration

∼= 5% slowdown per iteration

•Correctness - Discover bugs at compile
time!

•Better speedups with more stencils

Wednesday, 14 September 2011

Further Work

•Many scientific applications: triangle/polygon
meshes for better 2D surface of 3D shapes.

•Parallel implementation

•Output C, CUDA/OpenCL, etc.

•Mechanisms for better error messages

Wednesday, 14 September 2011

Thank You.

https://github.com/dorchard/ypnos
(Previous publication here http://dorchard.co.uk)

Some thanks:
Max Bolingbroke
Kathy Gray
Ben Lippmeier
Robin Message

Ian McDonnell
Tomas Petricek
Simon Peyton-Jones

Wednesday, 14 September 2011

https://github.com/dorchard/ypnos
https://github.com/dorchard/ypnos
https://github.com/dorchard/ypnos
https://github.com/dorchard/ypnos

