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B

Stencil Computations

for (i=0; i<N; i++)
    for (j=0; j<M; j++)
      B[i][j] = f(A[i][j],   A[i-1][j], A[i+1][j], 
                A[i][j-1], A[i][j+1]);

A

f
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Stencil Computations
?

?

for (i=0; i<N; i++)
    for (j=0; j<M; j++)
      B[i][j] = f(A[i][j],   A[i-1][j], A[i+1][j], 
                A[i][j-1], A[i][j+1]);

when
i=0, j=0
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Stencil Computations

for (i=0; i<(N+2); i++)
    for (j=0; j<(M+2); j++)
      if (i<1 || i>N || j<1 || j>M)
          A[i][j] = 0.3; -- boundary value

for (i=1; i<(N+1); i++)
    for (j=1; j<(M+1); j++)
      B[i][j] = f(A[i][j],   A[i-1][j], A[i+1][j], 
                A[i][j-1], A[i][j+1]);

A & B of size (N+2 x N+2)
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Common Bugs

•Out-of-bounds errors    e.g.  A[-1][0]

• Crash

• Silent (even worse) 

•Uninitialised boundaries  e.g.  A[0][0] =  ?

•Typos  e.g.  A[j-1][i] instead of A[i][j-1]

Cause: arbitrary index expressions
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Solutions
•Static analyses (in general undecidable)

•Runtime bounds checking

•Pro: Prevents numerical correctness bugs

•Cons: Adds overhead (~20% on a single iteration 
over a 512x512 image)

•Typos can still be a problem
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•General purpose languages lose program information

•General purpose languages obscure optimisations and 
obfuscate (in)correctness

•Domain specific languages permit better optimisation and 
reasoning via restricted syntax (Not “mere syntax”!)

• Restricted syntax ⟹ more (decidable) information

•More information ⟹ better optimisation & reasoning

Philosophy
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Ypnos (pronounced ip-nos)

• Internal DSL in Haskell for (n-dimensional) stencil 
computations

•Shallow embedding + specialised syntax via macros

•Slogan (of this paper/talk): 

Well-typed Ypnos programs have only safe 
indexing (i.e. no out-of-bounds errors)

•Correctness guarantees ⟹ efficiency guarantees: 
bounds checks can be eliminated as all array access 
is safe

•Guarantees parallelisation (not discussed today)
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Safety in Ypnos
•No general, arbitrary indexing

•Specialised syntax for array access (grid 
patterns) and boundary definitions

•Restricted syntax provides static information, 
encoded in types

•Safety invariant enforced via type-checking
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Grids 

X

Y

{

Type-level dimensionality

e.g. X × Y

                     “cursor”       
(current index under consideration)

Grid dim bounds a

•Grid value comprise an array

•Grid type constructor encodes information

and a cursor
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Grids 

X

Y

{
Type-level boundary info

                     “cursor”       
(current index under consideration)

Grid dim bounds a

•Grid value comprise an array

•Grid type constructor encodes information

and a cursor

Wednesday, 14 September 2011



Grids 

X

Y

{

Element type of the grid

                     “cursor”       
(current index under consideration)

Grid dim bounds a

•Grid value comprise an array

•Grid type constructor encodes information

and a cursor
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Grid Patterns
•Special kind of pattern match on         values Grid

f | @c | = ...{

Grid pattern

bound to the “cursor” elementc
e.g. c = A[i]

f | l @c r | = ...{
Grid pattern

bound to left of “cursor”l
r bound to right of “cursor”

e.g. l = A[i-1]
c = A[i]
r = A[i+1]
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Grid Patterns (2)

g’ = run f g

Computes average of neighbours

*

*Note: related to extension operation of a comonad

Applies a stencil function at every possible “cursor” position

f :: Grid X b Double → Double
f | l @c r | = (l+c+r)/3.0

run :: (Grid d b x→ y)→ Grid d b x→ Grid d {} y
runA :: (Grid d b a→ a)→ Grid d b a→ Grid d b a

{Stencil function (kernel)
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Grid Patterns (3)

f X:| l @c r | = ...

{

Dimension annotation

laplace2D (X*Y):| _ t _ | = t + l + r + b - 4*c
| l @c r |
| _ b _ |

Two-dimensional syntactic sugar

e.g. l = A[i-1][j]
c = A[i][j]
r = A[i+1][j]

t = A[i][j-1]
b = A[i][j+1]
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?
?
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Boundaries

boundary (-1, -1) -> 0.0
         (*i, -1) -> 0.0
         (+1, -1) -> 0.0
         (-1, *j) -> 0.0
         (+1, *j) -> 0.0
         (-1, +1) -> 0.0
         (*i, +1) -> 0.0
         (+1, +1) -> 0.0

•Special boundary definition syntax

•Pattern match on boundary regions

-- a
-- b
-- c
-- d
-- e
-- f
-- g
-- h
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Boundaries

boundary (-1, -1) -> 0.0
         (*i, -1) -> f(i)
         (+1, -1) -> 1.0
         (-1, *j) -> 1.0
         (+1, *j) g -> g...
         (-1, +1) -> 0.0
         (*i, +1) -> 0.0
         (+1, +1) -> 0.0

•Special boundary definition syntax

•Pattern match on boundary regions

•Permits complicated boundaries: wrapping, 
reflection
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Boundaries (2)

boundary (-1, -1) -> 0.0
         (*i, -1) -> 0.0
         (+1, -1) -> 0.0
         (-1, *j) -> 0.0
         (+1, *j) -> 0.0
         (-1, +1) -> 0.0
         (*i, +1) -> 0.0
         (+1, +1) -> 0.0

boundary from (-1, -1) to (+1, +1) -> 0.0

Abbreviated form
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Laplace Example

[dimensions| ... |]
[boundary| ... |]
[fun| ... |]

Macros (Haskell Quasiquoting):

[dimensions| X, Y |]

laplace2D = [fun| X*Y:| _ t _ |
| l @c r |
| _ b _ | -> t + l + r + b - 4.0*c |]

lapBoundary = [boundary| Double (-1, *j) -> 0.0
(1, *j) -> 0.0
(*i, -1) -> 0.0
(*i, +1) -> 0.0 |]

grid = listGrid (Dim X :* Dim Y) (0, 0) (w, h) img_data lapBoundary
grid’ = run laplace2D grid

1
2
3
4
5
6
7
8
9
10
11
12
13
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Enforcing Safety Invariant

•Encode access pattern of stencils in types

•Encode boundary information in types 

•Check boundaries define enough elements 
for stencils to always have defined values

•Lots of use of GADTs, type families, class 
constraints
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Grid Patterns (Translation)

{

Type-level representation of a relative index

Tuple of type-level integers (inductive)

Pos (S Z)
Pos Z
Neg (S Z)
Neg (S (S Z))

Pos (S (S Z))
...

...

(Neg (S Z),Pos (S (S Z)))

represented as value

e.g.
(−1,+2)

index :: i→ Grid d b a→ a

0  ⤳
1  ⤳
2  ⤳

-1  ⤳
-2  ⤳

...

...
with type

(IntT (Neg (S Z)), IntT (Pos (S (S Z))))

Wednesday, 14 September 2011



Grid Patterns (Translation)

f | l @c r | = ...�
f = (λg -> let c = index (Pos Z) g

l = index (Neg (S Z)) g
r = index (Pos (S Z)) g

in ...)
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Grid Patterns (Translation)

{
Haskell type constraint: C ⇒ τ

Safe• (Binary) predicate/relation          enforces safety

•Checks an index against the boundary 
information of a grid: b

index•             implemented without bounds checking 
(i.e. unsafe)

index :: Safe i b⇒ i→ Grid d b a→ a
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Boundary (Translation)

boundary (-1, -1) -> 0.0
         (*i, -1) -> 0.0
         ...

(ConsB (Static (λ(Neg (S Z), Neg (S Z)) -> 0.0))
(ConsB (Static (λ(i, Neg (S Z)) -> 0.0)) ...

�

Translates into special list structure (GADT)

BoundaryList (Cons (Neg (S Z), Neg (S Z))
Cons (Int, Neg (S Z)) ...) Static ...

:: Type encodes the boundary regions described

Details in paper!
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Boundary (Translation)
BoundaryList (Cons (Neg (S Z), Neg (S Z))

Cons (Int, Neg (S Z)) ...) Static ...

Added to a grid’s type
when grid constructed with
boundary

e.g.

Grid dim bounds a

:: Grid (X × Y ) (Cons (Neg(SZ),Neg(SZ))
(Cons (Int ,Neg(SZ)) . . .)) a
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f :: (Safe (Pos Z) b,
Safe (Pos (S Z)) b,
Safe (Neg (S Z)) b) =>
Grid X b Double → Double

f | l @c r | = (l+c+r)/3.0

Enforcing Safety

Cannot apply f to a grid if the grid does not have 
satisfactory boundaries

f | l @c r | = ... � f = (λg -> let c = index (Pos Z) g
l = index (Neg (S Z)) g
r = index (Pos (S Z)) g

in ...)

(cut to demo)
Wednesday, 14 September 2011



Results

•Laplace (512x512) (Haskell vs. Ypnos)

•Laplacian of Gaussians (512x512)
2

6664

0 0 −1 0 0
0 −1 −2 −1 0
−1 −2 16 −2 −1
0 −1 −2 −1 0
0 0 −1 0 0

3

7775

2

4
0 1 0
1 −4 1
0 1 0

3

5

∼= 3% speedup per iteration

∼= 5% slowdown per iteration

•Correctness - Discover bugs at compile 
time!

•Better speedups with more stencils
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Further Work

•Many scientific applications: triangle/polygon 
meshes for better 2D surface of 3D shapes.

•Parallel implementation

•Output C, CUDA/OpenCL, etc.

•Mechanisms for better error messages
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Thank You.

https://github.com/dorchard/ypnos
(Previous publication here http://dorchard.co.uk)
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