
FINAL REPORT

Elementary Strong Functional Programming

EPSRC Grant Ref: GR/L03279

Investigator: Professor D. A. Turner

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK

January 2000

Introduction

The project, funded by the UK Engineering and Physical Sciences Research
Council from 14.10.96 to 13.10.99, was undertaken to investigate the practical
viability of a discipline of strong functional programming proposed in [18]. The
research associate was Dr Alastair Telford.

In strong functional programming all expressions are guaranteed to have
normal form. This has a number of theoretical and practical advantages which
are discussed in [18]. In order to retain the possibility of programming with
infinite structures, which is an essential feature of pure functional languages
such as Haskell, a key part of the methodology of [18] is to maintain a separation
in the type system between data, which is known to be finite, and codata which
is permitted to be infinite. This may be contrasted with the usual situation in
lazy functional programming in which infinite lists for example, have the same
compile-time type as ordinary finite lists.

The separation between data and codata leads to a distinction between re-
cursion, which to be “safe” must be well-founded, and corecursion, which must
be productive. Neither of these properies is decidable in the general case: a
proof is required, which may require arbitrary ingenuity. In the discipline under
investigation proofs are not required, we settle instead for only those forms of
recursion and corecursion which can be recognised by some decision procedure,
and seek to discover how practical it is live with such a constraint. Such a
language would not be Turing-complete, but might be convenient for a range of
purposes, including teaching.

1



1 Progress of the Research

Following [18] we were initially committed to allowing only structural recursion
and corecursion. A function defined over an inductive data type is said to
be structurally recursive if it calls itself on an immediate subcomponent of its
argument, i.e. for lists the tail, for naturals the predecessor etc. There is an
analogous but dual definition of structural corecursion.

Our intended source language allows higher order, polymorphic, free-form
recursion equations with pattern matching, as in Miranda or Haskell, and we
began looking at algorithms to recognise the structurally {co-}recursive subset
of this. To recognise pattern matching which corresponds to nested structural
recursion, such as Ackermann’s function, and mutual structural recursion, is in
general non-trivial. Abel, with whom we corresponded, shows how to do this
using call-graphs in his foetus system [1].

The RA appointed, Alastair Telford, had done his doctoral research in the
area of abstract interpretation, which is a powerful technique for inferring static
properties of functional programs.

Some early experiments convinced us that many of the function definitions
that interested us, such as quicksort, gcd, unification, etc. could be expressed
as structurally recursive only by rewriting them in ways that in general seemed
non-obvious and rather unnatural.

Given some initially promising results our research therefore concentrated on
devising abstract interpretations that could recognise wider classes of recursive
and corecursive definitions as “safe” in their original form, without the necessity
for them to be rewritten to make them structurally recursive.

The recursive and corecursive case require different, albeit related, theories.
In both cases we believe we have made significant advances on previously known
results. A PhD student partly funded by the project did excellent related work.

2 Results of the research

Our results, reported in [10, 11, 12, 14, 15, 16, 17], fall into three main areas.

2.1 Ensuring the productivity of infinite structures

The mathematical test for productivity of a corecursive definition of an infi-
nite structure is undecidable [3]. A decidable class of productive definitions
(corresponding to what is called structural corecursion in [18]) can be tested
by Coquand and Gimenez’s notion of guardedness [5, 7]. In [14, 15] we de-
scribe a technique of abstract interpretation that extends this notion to a con-
siderably wider class of definitions. To take a simple example the definition
evens = 2 : map (+2) evens is accepted as productive by our method, where it
fails that of [5, 7]. Our method for recognising productiveness also appears to
be strictly more powerful than that of Hughes, Pareto, et al. [9]. For example
we can accept the lazy functional algorithms for Hamming numbers and fiblist.

2



2.2 Ensuring termination of recursive functions

We have also developed an abstract interpretation that provides a decision pro-
cedure for recognising a class of recursively defined functions which are total.
The analysis, which we describe in [16, 17], uses the same domain of abstract
values employed to analyse the dual corecursive case. The class of functions
recognised includes the nested and higher order structural recursions accepted
by Abel’s foetus system [1] but also many non-structural recursions such as
those of gcd (by Euclid’s algorithm), quicksort, mergesort.

A decidable test for a broader class of terminating recursions than primitive
recursion is described in Arkoudas and McAllester [2]. However, their system is
first order and monomorphic, while our method is designed to work in a system
that is higher order and polymorphic. The method we describe in [17] also
includes an automatic subtyping mechanism that enables us to handle functions
like head which are total only if considered over (in this case) non-empty lists,
and also avoids the necessity, present in [2], for functions such as gcd to be
rewritten in a special “Walther-recursive” style.

We believe these results, together with those for corecursion (see previous
section) significantly advance the practical viability of an elementary strong
functional programming discipline, by allowing a wider class of standard func-
tion definitions to be admitted than previously.

2.3 Exact continuous arithmetic

Alex Kaganovsky, a PhD student associated with the group, did outstanding
work on the investigation of an important class of corecursive algorithms over
infinite lists of integers. The problem area he studied is the efficient implementa-
tion of unbounded precision arithmetic on real and complex numbers represented
as streams of signed digits. The problem of performing mathematically exact
arithmetic on real numbers represented in a computer by streams of signed digits
was first studied by Wiedmer [20], and in 1982 Carl Pixley at Burroughs carried
out a practical implementation of Wiedmer’s algorithms in a lazy functional
language [13]. Boehm and Cartwright [4] later claimed superior performance
for an alternative implementation of the reals as functions from rationals to
rationals.

Kaganovsky carried out a detailed complexity analyis of both approaches and
was able to overcome the alleged inefficiency of the Wiedmer/Pixley represen-
tation by some ingenious adjustments to the algorithms, which he implemented
in Miranda. He also adapted the method to complex numbers represented in a
imaginary base by a single stream of signed digits. Interestingly his algorithms
for computing various functions on real and complex numbers are in most cases
identical in the two cases except for the choice of normalisation function, which
differs for the imaginary base.

Kaganovsky’s results, which include algorithms for many analytic functions
and contain many innovations, including a significant advance in efficiency terms
on previous work, are described in two papers and his thesis [10, 11, 12].

3



3 Future Directions

We see several directions for further research following on from this work.

3.1 Efficiency study

A second aim of the project as stated in the original case for support was to test
the hypothesis that a discipline of elementary strong functional programming
lends itself to improved opportunities for efficient execution.

Due to the change of focus described earlier we made only preliminary inves-
tigations in this area, concentrating instead on developing improved algorithms
for automatic detection of termination (and dually, of productivity). Demon-
strating efficiency gains from this in a toy compiler would not be convincing. A
serious study requires modifying a production quality functional language com-
piler - say GHC (Glasgow Haskell Compiler) - to incorporate (i) the data/codata
distinction and (ii) our abstract interpretation algorithms for enforcing termi-
nation/productivity. One would then have to try to demonstrate in practise
that the additional information thus available could be used to permit further
optimisations over and above what the compiler can already do.

Clearly this would be a major project in its own right.

3.2 Relating to other recent work

A second set of issues for future investigation is the relationship between our
work in [14, 15, 16, 17] and some other recent developments. We see two inter-
esting avenues here:

i) One topic for future investigation arises from Cousot’s observation that
type checking can be implemented by abstract interpretation [6]. This raises the
possibility that our methods of termination detection could be combined with
Cousot’s for type inference to obtain a single integrated abstract interpretation
which infers types and enforces termination in a single compiler phase.

ii) It can be argued that for many purposes what is required of a program is
not merely a guarantee that it terminates, but something stronger: an assurance
that it terminates within feasible bounds of time and space utilisation - and for
most purposes this means bounds that grow only polynomially with input size.

The idea of polynomial functional programming, that is a programming dis-
cipline in which polynomial time complexity is guaranteed has already been
studied by Martin Hofman: in [8] he shows how this can be enforced with a
linear type system. Further, Wadler [19] has shown that there are abstract in-
terpretations of a functional program that can be used to provide asymptotic
time complexity analysis. So there is some reason to think that our abstract
interpretations for termination detection developed in [17] could be adapted to
enforce the stronger condition of polynomial time termination.

4



4 Contacts

Further information may be obtained from the investigator at the Univer-
sity of Kent (see title page for address). There is a project web page at
http://www.cs.ukc.ac.uk/people/staff/dat/esfp from which most of our papers
and reports can be downloaded.

References

[1] Andreas Abel “Eine semantische Analyse struktureller Rekursion”, Diploma
Dissertation, 50 pages, Ludwigs-Maximillians-University, Munich, February
1999.

[2] Kostas Arkoudas & David McAllester “Walther Recursion”, Proceedings
CADE 13, LNCS 1104, pp 643-657, Springer, 1996.

[3] J W de Bakker & J N Kok “Towards a uniform topological treatment of
streams and functions over streams”, Report CS-R8422 Centre for Maths
and Comp Sci, Amsterdam, 1984, also in Proceedings ICALP 1985.

[4] H-J. Boehm, R. S. Cartwright “Exact Real Arithmetic: Formulating Real
Numbers as Functions” in Research Topics in Functional Programming, pp
43-64, (ed) D. A. Turner, Addison Wesley, 1990.

[5] Thierry Coquand “Infinite Objects in Type Theory”, Proceedings
TYPES93, pages 62-78, 1993.

[6] P. Cousot “Types as abstract interpretations”, 24th ACM Symposium on
Principles of Programming Languages, pages 316-331, ACM Press, 1997.

[7] E. Gimenez “Codifying Guarded Definitions with Recursive Schemes”, Pro-
ceedings TYPES94, pages 39-59, 1994.

[8] Martin Hofmann “Linear Types and Non-size-increasing Polynomial Time
Computation”, Proceedings 14th Annual Symposium on Logic in Computer
Science, Trento, Italy, ed G. Longo, IEEE Computer Society Press, 1999.

[9] R.J.M. Hughes, L. Pareto, A. Sabry “Proving the Correctness of Reactive
Systems using Sized Types”, 23rd ACM Symposium on Principles of Pro-
gramming Languages, St Petersburg, Florida, ACM Press, 1996.

[10] A.Y.Kaganovsky “Computing With Exact Real Numbers in a Radix-r Sys-
tem”, Electronic Notes in Theoretical Computer Science, Volume 13, 27
Pages, Elsevier 1998. Revised version available as Technical Report TR 19-
99, 30 pages, Computing Laboratory, University of Kent, October 1999.

[11] A.Y.Kaganovsky “Exact Complex Arithmetic in an Imaginary Radix Sys-
tem”, Technical Report TR 9-99, 30 pages, Computing Laboratory, Univer-
sity of Kent, July 1999.

5



[12] A.Y.Kaganovsky “Exact Computing in Positional Weighted Systems”, PhD
Thesis, 212 pages, September 1999. Under submission to University of Kent.

[13] C. P. Pixley “Demand Driven Arithmetic”, Burroughs Corporation Austin
Research Center, Internal Report ARC 82-18, Nov 1982.

[14] A.J.Telford, D.A.Turner “Ensuring Streams Flow” Johnson, ed, Algebraic
Methodology and Software Technology - AMAST ’97. LNCS 1349, pages
509-523, Springer, 1997.

[15] A.J.Telford, D.A.Turner “Ensuring the Productivity of Infinite Structures”
Technical Report TR 14-97, 37 pages, Computing Laboratory, University of
Kent, March 1998. Under submission to Journal of Functional Program-
ming.

[16] A.J.Telford, D.A.Turner “Ensuring Termination in ESFP”, presented at
15th British Colloquium in Theoretical Computer Science, Keele, April 1999,
14 pages. To appear in Journal of Universal Computer Science.

[17] A.J.Telford, D.A.Turner “A Hierarchy of Elementary Languages with
Strong Normalisation Properties”, Technical Report TR 2-00, 66 pages, Uni-
versity of Kent Computing Laboratory, January 2000. A revised version is
in preparation for submission to a journal.

[18] D.A.Turner “Elementary Strong Functional Programming”. R.Plasmeijer,
P.Hartel, eds, First International Symposium on Functional Programming
Languages in Education. LNCS 1022, pages 1-13, Springer, 1995.

[19] Philip Wadler “Strictness analysis aids time analysis”, Principles of Pro-
gramming Languages, San Diego, California, ACM, 1988.

[20] E. Wiedmer “Computing with Infinite Objects”, Theoretical Computer Sci-
ence, vol 10, pp 133-155 (1980).

6


