
The Semantic Elegance of Applicative Languages

D. A. Turner

University of Kent at Canterbury

In what does the alleged superiority of
applicative languages consist? In the
last analysis the answer must be in terms
of the reduction in the time required to
produce a correct program to solve a given
problem. On reflection I decided that
the best way to demonstrate this would be
to take some reasonably non-trivial
problem and show how, by proceeding within
a certain kind of applicative language
framework it was possible to develop a
working solution with a fraction of the
effort that would have been necessary in
a conventional imperative language. The
particular problem I have chosen also
brings out a number of general points of
interest which I shall discuss briefly
afterwards.

Before proceeding it will be necessary
for me to quickly outline the language
framework within which we shall be work-
ing. Very briefly it can be summarised
as (non-strict, higher order) recursion
equations + set abstraction. Obviously
what matters are the underlying semantic
concepts, not the particular syntax that
is used to express them, but for the
sake of definiteness I shall use the
notation of KRC (= "Kent RecUrsive
Calculator"), an applicative programming
system implemented at the University of
Kent [Turner 81]. KRC is fairly
closely based on the earlier language
SASL, [Turner 763, but I have added a
facility for set abstraction.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1981 ACM 0-89791-060-5/81-10/0085 $00.75

An overview of KRC

A KRC program is a collection of equations
by means of which the user attaches names
to various objects in KRC's universe of
discourse. The universe of discourse con-

tains four types of object. There are two
basic data types, numbers and strings;
and two types of structured object - lists
and functions. Numbers and strings have
the sort of properties one would expect.
Lists are denoted by using square brackets
and commas - thus [i, 2, 3, 4] and the
empty list is written [].

Lists may be accessed by indexing, so if L
is the name of a list L 3 denotes its
third component. An important operator on
lists is ":" which joins a new member at
the front. So

0: [1, 2, 33

has the value [0, i, 2, 33. The elements
of a list may be of any type and need not
all be of the same type. Lists may be
finite or infinite, for example the
equation

x = l:x

defines x to be a name for the infinite
list [I, i, 1 ...].

The universe of discourse contains all
possible infinite lists (actually not all
of them can be denoted by writing down
equations, but for reasons of continuity
in the semantics we have to say they are
all there). A useful piece of shorthand
is the ".." notation, thus

[a..b]

denotes the list of numbers (inclusive)
from a to b. This also has an open-ended
form, so for example

[I..]

denotes the list of all natural numbers.

85

Functions are denoted by writing down one
or more equations, with the name of the
function followed by some formal para-
meters on the left and an expression
giving a value for the function on the
right. So for example functions for
squaring a number and for calculating
factorials would be written respectively
("product" is a library function).

sq n = n * n

fac n = product [i..n]

A function can be defined by more than
one equation, with the different cases
being distinguished by the use of pattern
matching in the formal parameters and/or
the use of guards (boolean expressions,
written on the right of an equation
following a comma). Ackermann's function
for example, could be defined by the
following three equations

A 0 n = n + 1

A m 0 = A (m-l) i, m>0

A m n = A (m-l) (A m (n-l)), m>0&n>0

Notice that the order in which the above
equations are written has no logical sig-
nificance (we insert guards where neces-
sary to ensure this). As another
example of the use of pattern matching,
the library function "product" can be
defined

product [1 = 1

product (a:x) = a * product x

Note that the use of patterns involving
":" on the left of an equation avoids
the need for explicit use of the selectors
"hd" and "tl" on lists.

Functions can be non-strict if the equa-
tions imply that they should be. For
example if we define f by

f x = 3

then of course f must always return the
result 3, even if its argument is re-
presented by a non-terminating compu-
tation. [We do not discuss imple-
mentations at all here, but as the
reader will have already deduced from
the presence of infinite lists, it
must involve some form of lazy
evaluation.]

Set Abstraction

We use a language construct closely based
on Zermelo-Frankel set abstraction
(except that the result is here a list
rather than a set). An (informal)
syntax for these expressions may be given
as follows

zfexpression ::= {explqualifier; -..
...; qualifier}

qualifier ::= generatorlguard

generator ::= var + list-expression

guard ::= boolean-expression

The variable on the left of a generator is
a local variable of the zf expression and
ranges over the members of the list on the
right of the "÷" sign.

One example is the following definition of
the (2nd order) library function "map"
which applies a function to every element
of a list

map f x = {f a I a ÷ x}

The library "filter", which filters a list
through a given predicate, could be
defined

filter f x = {a I a ÷ x; f a}

The use of the construct is particularly
convenient when there is more than one
generator involved, for example a function
for generating the cartesian product of
two lists (i.e. a list of all pairs formed
by drawing one from each) can be written

cp x y = {[a,b]la÷x;b÷y}

The addition of set abstraction represents
a very considerable increase in the ex-
pressive power of an applicative language.
Consider for example the problem of
defining a function which will return a
list of all possible partitions of a
number into positive integers. For the
sake of definiteness, let us say with
permutations, so [2.11 and [1,21 are two
different partitions of 3. Such a func-
tion can be expressed rather succinctly as
follows

partitions 0 = [[]]

partitions n = {i:p I i÷ [l..n];

p+ partitions(n-i)}

Notice by the way that the variables in-
troduced by generators come into scope
from left to right, so later generators
can involve earlier ones (but not vice
versa).

Following this extremely brief overview
of the notation of KRC, we now turn our
attention to a somewhat larger problem, as
promised.

86

The statement of the problem

The problem which I have chosen to use as
an illustration here arises from the field
of organic chemistry. I dare say that
from the point of view of a chemist who
has made a study of these matters it will
seem a rather easy problem and perhaps
somebody, somewhere has a FORTRAN program
sitting on their desk which already solves
it. Nevertheless from the point of view
of a programmer who had not tried it
before, the problem seemed difficult
enough to be interesting. At least
several competent programmers I know re-
ported to me that they had found it so.
It therefore seemed a good testing ground
for the language framework outlined in the
opening section of this paper. In what
follows I have concentrated on reproducing
fairly honestly the thought processes
which first led me to a runnable solution,
rather than on presenting the most elegant
or efficient solution possible.

The problem is to enumerate, without repe-
titions and in order of increasing size,
all possible paraffin molecules. For
those who have forgotten their high school
chemistry, paraffins are built up using
only carbon, which has a valency of 4 and
hydrogen, which has a valency of i. The
first few paraffin molecules, together
with their names are shown in figure I.

In a paraffin one is allowed neither
double bonds nor cycles, so all paraffins
with n carbon atoms share the empirical
formula

C n H2n+2
but for all n~ there are several dis-
tinct molecules ("isomers") with the same
formula. The number of isomers rises
rather rapidly with n. In counting
isomers it should be borne in mind that
the four bond positions on a given carbon
atom are in fact indistinguishable (i.e.
the four bond positions can be freely
interchanged). So what seem at first
to be different molecules may in fact
turn out to be different orientations of
the same molecule. Notice in particular
that the phenomenon of "stereo-
isomerism" (a molecule being differeDt
from its mirror image) is not possible
with paraffins.

The problem as posed is not merely to
count the number of isomers for each n,
but actually to produce a representation
(just one) of each molecule.

Choosing a Representation for the Data
Type "Paraffin Molecule"

Let us begin by choosing a representation
for the molecules. Normally in top-down
prograr~ning one is advised to delay
decisions about representation as long as

possible, but in this case it is clear
that a central problem is going to be de-
fining an equivalence relation on mole-
cules, and I found it difficult to bring
this into focus without fixing on an (at
least provisional) representation for
molecules.

Ideally we would like to define a canonical
orientation for each molecule so that each
distinct isomer is represented by one and
only one data structure. There does not
seem to be any straightforward way of de-
fining such a canonical orientation, how-
ever, (at least I could not see one) so we
shall go for the alternative plan of giv-
ing a non-unique representation together
with a set of laws for determining which
representations are equivalent (in the
sense that they are different orientations
of the same molecule).

One obvious way to represent a paraffin
molecule in terms of list structures is
as follows. We pick on one carbon atom
arbitrarily and deem it to be the "leading"
one. We then represent the molecule as
a 4-1ist, the components of the list being
the sub-molecules ("radicals" in chemical
terminology) attached to the 4 bonds of
the leading carbon atom. Each radical
is represented either by the string "H",
if it is just a hydrogen ato~p, or else by
a 3-1ist corresponding to a carbon atom
with 3 further radicals attached to it.

In terms of these conventions, then,
methane would be represented thus -

["H", "H", "H", "H"l

and one of several possible representa-
tions for propane is

[["H", "H", "H" l, ["H", "H", "H"], "H" p "H" 3

We could obviously save a great deal of
space by not representing hydrogen atoms
explicitly, but following a principle of
separation of concerns let us leave that
as an optimisation to be carried out later.

Definin 9 an Equivalence Relation on
Molecules

The above representation for a molecule
has two elements of arbitrariness - first
that any carbon atom could have been
picked on as the leading one - second that
for each carbon atom the order in which
its dependent radicals are listed is
arbitrary and could be freely permuted.

We capture this below in terms of three
transformations which we can carry out on
the representation of a molecule -
"invert", "rotate" and "swap". Each
transformation is expressed here by a func-
tion which can be applied to a representa-
tion of a molecule to return a (perhaps

87

H

I
H - C - H

I
H

methane

H H

I I
H - C - C - H

I I
H H

ethane

H H H

I i I
H - C - C - C - H

l I i
H H H

propane

H H H H

I I i I
H - C - C - C - C - H

I I I I
H H H H

normal butane

H H H H H

i I I I I
H - C - C - C - C - C - H

I I i I I
H H H H H

normal pentane

H H H H

I I I I
H - C - C - C - C - H

I I I
H H H

H-C-H

I
H

iso-pentane

H H H

t [i
H - C - C - C - H

I I
H H

H - C - H

I
H

iso-butane

"H

]
H - C

I
H

H

I
H - C - H

- - C

H - C - H

i
H

H

I
C - H

I
H

neo-pentane

Figure 1 "Some Paraffin Molecules"

88

modified) representation of the same mole-
cule.

invert [[a, b, c~ d, e, f3
= [a, b, c [d, e, f]]

invert x = x, x i = "H"

rotate [a, b, c, d3 = [b, c, d, a3

swap [a, b, c, d3 = [b, a, c, d3

It is clear, moreover, that all the repre-
sentations of a given molecule can be ob-
tained from any one representation by re-
peated applications of the above trans-
formations. We can freely permute the
bonds of the leading carbon atom by com-
bined applications of "rotate" and "swap"
and by combining these with applications
of "invert" any carbon atom can eventually
be brought into the leading position. We
can now define a predicate "equiv" on
representations of paraffin molecules
such that "equiv a b" determines whether
a and b represent the same molecule. Thus:

equiv a b = member (equivclass a)b

equivclass a = closure under laws

[rotate,invert,swap3[a]

closure under laws f s =
s ++ closure' f s s

closure' f s t = closure" f s
(mkset{alf'÷f;a÷ma p f' t;

~ member s a})

closure" f s t = [3, t = [3
= t ++ closure' f (s++t) t, t ~ [1

In the above "member", "map" and "mkset"
are library functions - "mkset" removes
repetitions from a list, and "++" is the
append operator on lists.

The key idea is embodied in the function
"closure under laws" which takes a set
of functYons a~d a set of objects and
finds the closure of the latter under
repeated applications of the members
of the former. Clearly this is a
function which could find application.s
in a wide range of problems beyond the
present one. The above somewhat in-
direct definition, via the auxiliary
function closure' and closure", was
chosen for reasons of efficiency.

Generating All Molecules of a Given
Size.

Because of the absence of cycles every
paraffin molecule must contain at
least one occurrence of the methane
radical CH 3 and we can without loss of
generality choose this to the "leading"
carbon atom. A function for generating
a list containing (once each) all the
paraffin molecules with n carbons can
therefore be written

paraffin n = quotient equiv
{Ix, "H", "H", "H"l 1 x ÷ para (n-l)}

quotient f (a:x) = a:{blb÷quotient f x;
~ f a b}

quotient f [] = []

Where '~para", to be defined below is a
function which returns a list (perhaps
with repetitions) of all paraffin radi-
cals of a given size. The function
"quotient" defined above takes the
quotient of a set with respect to a
given equivalence relation (i.e. returns
a set containing only one representative
of each equivalence class present in the
original set) and is used above to ensure
that each molecule is represented only
once in the final output. There follows
a definition of "para"

para 0 = ["H"]

para n = {[a, b, c] I i,j,k÷[0..n-13;
i~j~k; i+j+k=n-l;

a ÷ para i; b + para j; c ÷ para k}

At this point we have everything we need
to produce a runnable solution to our
problem. We have only to define an out-
put structure in terms of "paraffin",
thus

output = layn (append(map paraffin
El..J))

and printing "output" will give us the
required list of paraffin molecules in
order of increasing size. The list is
infinite and so the process of printing
it will go on forever, or at least
until the user interrupts it at the ter-
minal. (Note - "append" is a library
function which takes a list of lists and
joins then all together with "++"; "layn"
is a standard layout function which
causes the elements of a list to be
printed one per line with numbered lines.)

~his solution, however, runs with appall-
ing slowness (I tried it) mainly because
of easily removable inefficiencies in our
definition of "para". There is a minor
problem and a major problem.

The minor problem is that the way we
choose i, j and k in the definition of
para n is needlessly wasteful. We could
in fact first choose i in the set
[0.. (n-l)/3] then choose j in the set
[i. (n-l-i)/23, whereupon k is fixed to be
n-l-i-j. This leads us to rewrite the
second line in the definition of "para"
as

para n = {[a, b, c3 I i ÷ [0.. (n-i)/33;
j ÷ [i.. (n-l-i)/2]; a ÷ para i ;
b ÷ para j ; c ÷ para (n-l-i-j) }

The major problem is that in evaluating
"para n" we repeatedly re-evaluate para i
for each i < n a large number of times.
We need to make para into a "memo-
function" [Michie 681 i.e. a function
whose value is calculated only once for

89

each argument, namely on its first call
and thereupon stored in a table, so that
if it is required again it can be found
by table lookup, rather than by recalcu-
lation. For a recursive function, like
"para", memo-isation leads to an exponen-
tial improvement in performance. (or to
put it another way, failure to memo-ise
leads an exponential deterioration in
performancel)

At first sight it seems that a memo-
function involves in an essential way the
use of side-effects for its expression.
This is, however, not the case. There is
in SASL a standard transformation for
turning a function into a memo function
in a purely applicative way - see
[Turner 81a, Chapter 43. Applying the
idea to "para" leads us to rewrite its
definition as follows:

para 0 = ["H"3

para n = paralist n

paralist = map genpara If..]

genpara n = {[a, b, c] I i + [0.. (n-i)/33;
j ÷ [i.. (n-l-i)/2]; a ÷ para i ;

b + para j ; c ÷ para (n-l-i-j)}

In the above "genpara" performs the calcu-
lation, but the recursion is replaced by
table lookup. The looku p table is repre-
sented by the (infinite)list "paralist"
(in SASL and KRC lists can be indexed by
applying them to an integer). The ele-
ments of "paralist" are initialised by
calling "genpara" but thanks to lazy
evaluation they only come into existence
as they are accessed.

We now have a runnable program for our
paraffin problem. The complete text
of the program is shown in figure 2,
accompanied by an initial segment of
its output. The command "outputS" is
an instruction to the KRC system to print
the list, output.

Lessons drawn

The above program was the fruit of about
an hour's labour at a terminal and seems
a reasonably convincing demonstration of
the utility of recursion equations plus
set abstraction as a language framework.
The program is far from fully polished
and has very much the status of a first
cut. By the application of two obvious
optimisations - (a) the removal of the
redundant "H"s from the internal repre-
sentation of molecules and (b) the use
of an idea called "filter promotion" (see
later), I was subsequently led to a pro-
gram which ran perhaps ten times faster
than the above. Rather than pursuing
these further refinements in detail here,
however, this seems an appropriate moment
to break off from the consideration of this
particular problem and draw some general
lessons.

The first general lesson I would draw is
that by the use of an appropriately de-
signed applicative language the effort
necessary to arrive at (and the space
necessary to express) an executable solu-
tion to a problem can be reduced to a
small fraction of that required in a tra-
ditional programming language. Even in
the present situation, where we lack the
hardware necessary for the direct support
of applicative languages, an implementa-
tion of an applicative language can be an
extremely valuable tool for the develop-
ment and testing of algorithms. For
example I had a number of misconceptions
about the paraffins problem (which I
elided from the above account) of which I
was fairly quickly disabused by interact-
ing with the KRC system. If I~now had to
solve the problem in, say, PASCAL, I would
do so with much greater confidence.

The second general abservation is that the
language framework we are using here
supports very nicely the following separa-
tion of concerns (which has of course been
advocated many times before). In a first
step we concentrate on writing down a
logically correct definition of the de-
sired function, completely ignoring con-
siderations of efficiency. Recursion
plus set abstraction is a very powerful
combination for this purpose, enabling us
to think very "big thoughts" in one go.
Typically, however, the definitions we
arrive at in this way have an exponential
or combinatorial run-time, whereas there
may exist an algorithm which is linear
(or at least polynomial). In a second
step we repair the efficiency of the
definition, by applying transformations
know to preserve correctness. In a sur-
prising large number of cases it turns
out that a small number of standard opti-
misations are sufficient to bring about
the necessary improvement in performance.
Two in particular seem to be of such
general applicability as to deserve spe-
cial mention in a next (and final) section
of this paper.

The third and final observation I wish to
make relates more specifically to the
paraffin problem. I believe that the
reason why this seems on first inspection
to be rather a hard problem is because it
involves an unfree data type and I suspect
this is characteristic of a lot of the
more recalcitrant problems one meets. A
general way of characterising an unfree
data type, which we used in this example,
is as the quotient of a free data type
under an equivalence relation and a good
way of defining an equivalence relation
is to give a set of laws of which it is
the closure. Our function "closure
under laws" gives us a convenient h~ndle
onto ~his and I hope it will turn out to
be useful for other applications in the
future.

90

output = layn (append (map paraffin [I..]))

paraffin n = quotient equiv {[x,"H","H","H"]Ix<-para (n- I)}

para 0 : ["H"]

para n = paralist n

paralist = map genpara [I..]

genpara n = {[a,b,c][i<-[0..(n-])/3];j<-[i..(n-]-i)/2];

a<-para i;b<-para j;c<-para (n-] - i - j)}

equiv a b = member (equivclass a) b

equivclass x = closure under laws [invert,rotate,swap] Ix]

invert [[a,b,c],d,e,f] = [a,b,c,[d,e,f]]

invert x = x, ×] = "H"

rotate [a,b,c,d] = [b,c,d,a]

swap [a,b,c,d] : [b,a,c,d]

closure' f s t = closure" f s (mkset {a',f'<-f;a<-map f' t;\member s a})

closure" f s t = [], t = []

= t ++ closure' f (s ++ t) t

closure under laws f s : s ++ closure' f s s

quotient f (a:x) = a:{b[b<-quotient f x;\f a b}

quotient f [] = []

output!

I)

2)

3)

4)

5)

6)

7)

8)

9)

I0)

11)

12)

13)

• . • •

FIGURE 2

["H" ," H" ," H" ," H"]

[["H" ,"H" ,"H"] ," H" ," H" ," H"]

[["H" ," H" ,["H" ," H" ,"H"]] ,"H" ," H" ," H"]

[["H"," H", ["H"," H", ["H" ," H" ," H"]]], "H" ," H"," H"]

[["H" ,["H" ," H" ,"H"], ["H" ," H" ," H"]] ,"H" ,"H" ,"H"]

[["H" ," H" ,["H" ,"H" ,["H" ," H" ,["H" ,"H" ," H"]]]] ,"H" ,"H" , "H"]

[["H" ," H", ["H", ["H" ," H" ,"' H"], ["H" ," H" ," H"]]] ," H" ," H"," H"]

[[["H" ," H" ," H"] , ["H" ," H" ," H"] , ["H" ," H" ," H"]] , "H" ," H" ," H"]

[["H" ," H" , ["H" ," H", ["H" ," H", ["H" ," H", ["H" ," H" ," H"]]] l] ," H" ," H"," H"]

[["H" ," H", ["H" ," H", ["H", ["H" ," H" ," H"], ["H"," H" ," H"]]]]," H" ," H" ," H"]

[["H" ," H", ["H" ,["H" ," H" ,"H"], ["H" ," H", ["H" ," H" ," H"]]]], "H" ," H" ,"H"]

[["H" ," H" , [["H" ," H" ,"H"] , ["H" ," H" ," H"] , ["H" ," H" ,"H"]]] , "H" ,"H" ," H"]

[["H" ,["H" ," H" ," H"] , ["H", ["H" ," H" ," H"] , ["H" ,"H" ," H"]]] , "H" ,"H" ,"H"]

IT.e Paraffins program in K R C , with some initial output.

91

Two useful optimisations

The two optimisations which warrant spe-
cial mention here are memo-isation
(originally due to Donald Michie) and
"filter promotion" (both the name and the
idea of which are due to John Darlington)
[Darlington 79].

(a) Memo-isation

This optimisation technique has already
been demonstrated earlier, on the func-
tion "para". A similar example, how-
ever, may bring out the method more
clearly. Consider the following"obvious"
definition of the function "fib n" which
returns the n'th fibonacci number.

fib i = i
fib 2 = i
fib n = fib (n-i) + fib (n-2), n>2

Although this has some claim to be consi-
dered the most natural definition it
suffers from a run-time that increases
exponentially with n. We could of course
program the well-known linear algorithm
explicitly (by tail recursion) but it is
in fact possible to achieve a linear run-
time without abandoning the structure of
the above definition.

We do this by turning "fib" into a memo-
function. We introduce a data structure
"fiblist" in which we store the values of
the function and replace all calls to the
function in the rest of the program, in-
cluding the recursive calls inside the
definition of "fib" itself, by table-
lookup. Thus

fiblist = map fib [i..3
fib i = i
fib 2 = i
fib n = fiblist (n-l)

+ fiblist(n-2), n>2

The run-time of "fib" is now linear in-
stead of exponential~

Obviously the technique can be applied
to any function of integer arguments.
Notice that this purely applicative
approach to memo functions depends
heavily on the fact that the language
in which we are working has a non-
strict semantics. (Incidentally, a
more radical approach, which might be
worth pursuing, would be to try and get
the system to perform this class of op-
timisations automatically. One quite
promising approach, with which I have
been experimenting, is to modify the
run-time system by keeping an associa-
tive cache of the results of all recent
function applications.)

(b) Filter Promotion

Again we can best bring out the technique
by means of a simple example. Suppose
we are asked to modify our earlier defini-
tion of the function "partitions" so as to

eliminate permutations, say by deciding
to allow only increasin~ partitions, e.g.
among the partitions of 3 we allow
[i,i,i] and[l,2] but not [2,1]. Our
first thought could be to apply a filter
to our original function

partitions' n = filter increasing
(partitions n)

where we can easily give a recursive
definition of "increasing" as a predicate
on lists. We can get a considerable :im-
provement in performance, however, by
pushing the filter inside the generator
"partitions" so that the unwanted lists
are not created in the first place (the
reader should compare this with the defi-
nitions of partitions earlier in the
paper):

partitions' 0 = [[]]
partitions' n = {i : p I i ÷ Fl..n];

p÷partitions' (n-i) ;

p = [] v i ~ hd p}

Like memo-isation, filter promotion can
lead to very dramatic improvements in
performance.

Note

The use of Zermelo-Frankel set abstraction
as an implementable language feature seems
originally to have been proposed by John
Darlington [Darlington 75].

REFERENCES

Darlington 75 "Applications of program
transformation to program synthesis"
Proceedings conference on proving and
improving programs, Arc et Senans 1975

Darlington 79 "A synthesis of several
sorting algorithms"
Acta Informatica 1979

Michie 68 "Memo-functions - a language
feature with role learning properties"
in EXPERIMENTAL PROGRAMMING 1966-7,
Edinburgh University, Dept.of Machine
Intelligence and Perception, January
1968

Turner 76 "SASL Language Manual", St.
Andrews University Technical Report,
December 1976

Turner 81 "KRC Language Manual",
University of Kent (in preparation)

Turner 81a D.Phil.Thesis, Oxford
University 1981

92

