
RECURSION EQUATIONS AS A
PROGRAMMING LANGUAGE*

D. A. Turner

Computing Laboratory
University of Kent, UK

The last few years have seen a growing interest in functional (or applicative)
languages as a potential alternative to conventional programming languages,
particularly since Backus’s Turing lecture (Backus 1978). This interest arises
from two distinct causes, one coming from software considerations and the other
from developments in the hardware. On the software side, there is mounting
evidence that the collection of ideas that came to maturity in the late sixties
and are loosely called “structured programming” have simply failed to deliver the
reduction in software costs that was originally hoped for — perhaps because the
break then proposed with traditional programming practices was insufficiently
radical. At the same time, people on the hardware side are searching for new
architectures, and therefore new methods of programming, that are capable of
taking advantage of the possibility of a very large degree of concurrency in the
machine, a possibility that is opening up because of the development of VLSI.

The importance of applicative languages lies in the fact that they hold out
the promise of being able to solve both of these problems at the same time.
In both cases, the key step is the abolition of the assignment statement and
with it the notion of sequencing. Before looking in more detail at an applicative
language and its properties it is worthwhile to review the software and hardware
arguments for considering such a radical change in our programming practice.

The Software Crisis and its Causes

It is commonly observed that we have a software crisis and in a gathering of com-
puter scientists it should not be necessary to multiply examples. Everyone has
their own favourite horror story about a project that failed in some catastrophic
way because of a bug in a program. Less spectacular but equally worrying is
the high cost of producing software even for comparatively simple applications.
It is by now clear that the largest single obstacle to the wider use of comput-
ers is our inability to produce cheap, reliable and manageable software. The
more dramatic the advances on the hardware side the more embarrassing this
fact becomes. Does it seem too unreasonable to suggest that there is something
fundamentally wrong about the way in which we produce software?

� Originally published in Functional Programming and its Applications, eds. J. Dar-
lington, P. Henderson and D. A. Turner c� Cambridge University Press, 1982.
Reproduced with permission.

I shall argue that the basic problem lies in the nature of existing programming
languages. Existing programming languages emerged in a relatively short period
between 1955 and 1960 — Fortran and Cobol set the pattern for later languages.
They have evolved since primarily by way of becoming more complicated — the
underlying principles have not changed. When we compare, say, Pascal with
Fortran, the similarities are much more significant than the differences. More
precisely, the differences are superficial but the similarities are fundamental. At
a certain level of abstraction all the programming languages in production use
today are the same. All are sequential, imperative languages with assignment as
their basic action.

When we compare our programming languages with all previous mathemat-
ical notation, however, the differences are very striking. Mathematical notation
has evolved over many centuries and obeys certain basic rules which are common
to every area of mathematics and which give mathematical notation its deductive
power. Let us briefly enumerate some of these basic properties of mathematical
notation.

First of all mathematics is static. There is no equivalent in mathematics of the
programming language notion of a procedure which gives a different answer each
time you call it. The mathematical idea of a function is a fixed table of input–
output pairs. Given the same f and the same x, the value of f x must always
be the same. This is so even when mathematics is used to describe processes
of change as in physics. We proceed by making time a parameter. That is we
formalise the notion of a three dimensional world which is changing by talking
about a static four dimensional world. Physics as a science became possible only
because Newton showed us how to reduce dynamics to statics in this way.

Secondly, and relatedly, there is in mathematics a certain kind of consistency
in the use of names — consider for example the equation

x2 − 2x+ 1 = 0

which has only one solution, namely x = 1. Now, supposing someone were to say
“no, there is another solution—we can take the first occurrence of x to be 3 and
the second to be 5, giving 3×3−2×5+1 = 0, which is also correct”, what would
we say? We would say that this proposed “solution” is invalid because it ignores
a basic premise of the whole exercise, namely that x is supposed to stand for
the same value throughout its scope, otherwise there would have been no point
in always calling the value x. Paradoxical though it may sound, in mathematics
variables do not vary; they stand for a constant value throughout their scope.

These basic properties of mathematical notation have been termed by lo-
gicians “referential transparency” (Russell & Whitehead 1925, Quine 1962). In
mathematics, an expression is used only to refer to (or denote) a value and the
same expression always denotes the same value (within the same scope).

Finally, we can relate this to the notion of equality, which plays a fundamental
role in mathematical reasoning. Two expressions are said to be equal if and
only if they denote the same value. An immediate consequence of referential
transparency is that equality is substitutive — equal expressions are everywhere
interchangeable. It is this which gives mathematical notation its deductive power.

Now, how do our conventional programming languages relate to this tradi-
tion? It is clear that they don’t adhere to it, because in introducing the as-
signment statement, which can change the value of a variable in the middle of
its scope, they have broken the basic ground rules of mathematical notation. In-
stead of being referentially transparent, programming languages are referentially
opaque. In fact, the things that we call “variables” in languages like Algol are
not really variables in the mathematical sense at all — in the last analysis they
are names for registers in the store of a Von–Neumann computer.

It is because of this that it is difficult to reason about programs. Since expres-
sions can change their value through time, equality is not substitutive. Indeed,
in a programming language it does not even have to be true that an expression
is equal to itself — because the presence of side effects may mean that evaluat-
ing the same expression twice in succession can produce two difference answers!
In general it is not possible to reason about such programs on the basis of a
static analysis of the program text — instead, we have to think of the program
dynamically and follow the detailed flow of control, and this seems unreasonably
difficult.

A particularly sharp symptom of the software crisis is the fact that after
more than a decade of intensive effort — starting with say Floyd (1967) and
Hoare (1969) — we still do not have anything resembling a practically viable
set of techniques for giving formal proofs of program correctness on production
programs. It seems likely that this is because existing programming languages
lack the basic substitution properties on which a smooth running proof theory
could be built.

Apart from the problems connected with their referential opacity, the other
basic difficulty with existing programming languages is that they are very long–
winded, in terms of the amount one has to write to achieve a given effect. Even
a comparatively straightforward program like a compiler can easily run to ten
thousand lines and there exist commercial packages up to a million lines long.

A number of studies carried out in industry have shown that a given pro-
grammer tends to produce a relatively fixed number of lines of code per year —
typically around 1500 lines of debugged and documented code — and while the
number of lines varies quite a lot from programmer to programmer, it is for a
given individual largely independent of the language in which he is working —
for example, it doesn’t seem to matter whether it is assembly code or PL/1.

The significance of this result is that it means that the most important single
variable in determining software production costs, apart from the quality of the
programmers, is the level of language at which they are working. The reason why
FORTRAN was such an enormous step forward, for example, is that programs
written in FORTRAN are from five to ten times shorter than the equivalent
assembly code. Other things being equal then, the FORTRAN programmer is
from five to ten times more productive than the assembly code programmer.

Our problem today is that in the twenty five years that have elapsed since
the invention of FORTRAN, we have failed to produce any further substantial
improvement in this basic ratio of expressive power. If you compare a program

written in a “modern” imperative language, such as PASCAL or ADA with its
FORTRAN equivalent, you will not find it very much shorter — in fact, it might
even be longer because of the extra declaratory information necessitated by the
current fashion for very restrictive forms of strong typing.

It is becoming clear that in order to solve the software crisis, we have to
find a way to move up to a whole new level of language that will be more
expressive than our conventional high level languages by about the same ratio
as our conventional languages were better than assembly code. That sort of
increase in power can only arise by letting go of a level of detail that our present
programming languages force us to express — which seems to imply a move to
some kind of non-procedural language.

In fact, our experience to date with applicative programming is very promis-
ing in this respect. Programs written in languages like SASL (Turner 1976, 1981)
are consistently an order of magnitude shorter than the equivalent programs in a
conventional high level language. We will see some examples of programs in this
style below, but at this stage we can give a general reason why the change from
an imperative language to a descriptive one should lead to programs becoming
so much shorter.

Expressed at an appropriate level of abstraction (for example as a dataflow
graph—see Treleaven (1979)), an algorithm is a partially ordered set of compu-
tations, the partial ordering being imposed by data dependencies. In order to
execute an algorithm on a Von–Neumann computer, however, we have to convert
this to a total ordering, in one of the many possible ways, and organise storage
for the intermediate results. In an imperative programming language both of
these tasks must be carried out by the programmer with the result that he has
to specify a great deal of extra information. A second reason why conventional
high level languages are so long winded is that they lack certain necessary ab-
straction tools, in particular higher order functions, of which we shall say more
below.

In summary, a good case can be made out for saying that the fundamental
cause of the software crisis is the imperative and machine oriented nature of our
programming languages, and that to overcome it we have to abandon the use of
side effects and programmer control of sequencing in favour of purely functional
notation. The theoretical possibility of programming in a purely functional style
has been known for two decades — the obstacle to its use in practice has always
been the difficulty of achieving acceptable efficiency in the use of existing hard-
ware while using such techniques. The current rebirth of interest in functional
programming is largely triggered by the fact that developments are now taking
place on the hardware side which seem likely to overturn this situation.

The Development of VLSI and the Challenge of Parallelism

The basic design of the computer was laid down by John Von Neumann in the
1940s and has remained largely unaltered since (see Fig. 1). There is a single
active processor and a large passive store — the connection between the processor

and the store is relatively narrow, only one word in the store can be accessed
at a time. Initially, and for a long time afterwards, the processor and the store
were made of two fundamentally different technologies, and the processor was
very much the more expensive of the two.

Fig. 1. the Von Neumann computer

The rationality of this arrangement is now being fatally undermined by the
development of VLSI. First of all, note that processor and memory are now
built of the same technology, namely VLSI chips. Moreover, processing power
is becoming very cheap indeed. There is no longer any compelling reason for
building mono–processor architectures — it would make equally good economic
sense to build a machine which had a network of many processors.

Secondly, we have an obvious motive for doing so — to obtain increased
performance. The speed of operation of a conventional Von Neumann computer
is limited basically by the bandwidth of the connection between the processor
and memory — Backus has called this “the Von Neumann bottleneck”. In order
to make such a computer go faster we have to improve the technology out of
which the components are built, and there are obvious limits to this process. In
a multiprocessor architecture, by contrast, we can obtain arbitrary increases in
speed simply by adding more processors to the network — provided of course,
and this is crucial, that we can find ways of programming it that exploit the
potential concurrency.

The first step towards using the possibilities for parallelism opened up by
VLSI has been taken by the development of the various “array processors” now
appearing on the market — for example, the ICL “DAP”. These capture a
particular type of parallelism, which can be called “lockstep parallelism” in which
the same instruction is performed simultaneously on a large number of data
items.

This is appropriate only to certain specialised applications. A more general
type of parallelism is where we have many processors each executing different
instructions. A number of architectures of this general type are now under devel-
opment, of which the best known are the various kinds of dataflow computer—see
for example (Dennis 1979).

The potential performance of this type of architecture is enormous (thousands
of megaflops, using current technology) but how can they be programmed? An
idea that can be dismissed more or less straight away is that we should take
some conventional sequential language and add facilities for explicitly creating
and co–ordinating processes — the tasking facilities of ADA are an example of
this approach. This may work where the number of processes is small, but when
we are talking about thousands and thousands of independent processes, this
cannot possibly be under the conscious control of the programmer.

Parallelism on this scale can only arise from some basic asynchronousness of
the language being used. Workers in dataflow are converging on the use of func-
tional languages as a solution to this problem—see Ackermann & Dennis (1979),
Arvind, Gostelow & Plouffe (1978). Paradoxically then, notwithstanding their
former reputation for inefficiency, it is precisely the need for higher performance
that may ultimately force the adoption of functional languages.

Incidentally, the historical efficiency disadvantage of functional languages
arises partly from the fact that they have been running on machines with inap-
propriate instruction sets. There are simple theoretical arguments which show
that given an appropriately designed instruction set there is no reason in prin-
ciple why functional programs should be less efficient than the corresponding
imperative programs, even on a Von Neumann machine. It is therefore welcome
that in addition to the work currently being done with parallel architectures,
some recent efforts have been directed towards the development of sequential
machines specifically adopted to functional languages (Clarke et al. 1980, Hol-
loway et al. 1980).

A Simple Language Based on Higher Order Recursion
Equations

For the sake of having a definite syntax to work with, I will give the ensuing
examples of functional programming in the notation of KRC (“Kent Recursive
Calculator”) a system I have implemented at the University of Kent and which
I have been using for teaching purposes. It is fairly closely based on the earlier
language SASL (Turner 1976) which I developed while working at the University
of St Andrews in the period 1972–1976, but I have added a new language feature
based on Zermelo–Frankel set abstraction.

Perhaps I should explain why I don’t teach my students LISP (McCarthy et
al. 1962) which is still the language most people first think of when functional
programming is mentioned. There are two reasons — the first is that the syntax
of LISP is so clumsy that it constitutes a real obstacle to comprehension. Fig. 2
illustrates this with a definition of Ackermann’s function in LISP — note that

Fig. 2. Ackermann’s function in LISP and KRC

there are eighteen pairs of parentheses! — and for contrast a definition of the
same function in KRC, which looks more like a piece of ordinary mathematics.
The second and more serious reason is that the semantics of LISP are rather
complicated and include a number of features which could in no sense be regarded
as functional. The nett effect, at least in my experience, is that as a vehicle
for teaching people about functional programming, LISP is apt to cause more
confusion than enlightenment and I prefer to avoid using it.

KRC is purely a functional language — there are no side effects and no
concept of flow of control. A program in KRC (actually, we call it a “script”)
is a set of equations giving mathematical definitions of various entities in which
the user is interested. For example, a simple script might be

r = u / v

u = x + y

v = x - y

x = 23

y = 10

The order in which the above equations are listed is of no significance — we have
shown them in alphabetical order but that is purely for clerical convenience. The
KRC system is interactive and includes built in commands for editing scripts,
saving them in and retrieving them from, files and so on. In particular, the user
can ask to have expressions evaluated in the environment established by the
script. So for example, typing

r?

here causes the value of r to be printed at the terminal.
The only ordering of calculations established by a KRC script is that implied

by the data dependencies — so for example, in the above case u and v must be
calculated before r, but that is the only constraint — note in particular that u
and v could be calculated in parallel.

The types of object in KRC’s universe of discourse are — numbers, strings,
written e.g. "pig", lists and functions. Numbers and strings have the sorts of
properties one would expect with the usual sorts of operators defined on them.
Lists are written using square brackets and commas, thus

days = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"]

elements of a list are accessed by indexing1. So for example, the expression

days 0

would here have the value "mon". The operator # takes the length of a list, so

days

is here 7. Another important operator on lists is “:” which adds a new element
at the front, corresponding to the LISP function “CONS”. So for example, the
expression

0 : [1, 2, 3]

takes the value [0, 1, 2, 3]. The elements of a list can be of any type — enabling
us to use lists of lists to represent matrices for example — and can also be of
mixed type, enabling us to represent trees, etc.

Lists can be concatenated using an infix “++” operator and there is also a
list difference operator, written “--”. So for instance

[1, 2, 3, 4, 5] -- [1, 3, 5]

has the value [2, 4].
Finally, a useful piece of shorthand is the “..” notation, allowing, for example,

[1..100]

as a notation for the list of integers from 1 through 100. An interesting property
of the implementation in this latter case, by the way, is that this list does not
immediately occupy 100 words of store, but only about 3 — enough to store a
formula for calculating the elements when they are accessed.

This is part of a general strategy called “lazy evaluation” (Henderson & Mor-
ris 1976, Turner 1976) whereby the KRC system consistently avoids performing
any calculation until it becomes necessary. Perhaps the most important conse-
quence of this is that it permits the system to accept definitions involving infinite
data structures as well as finite ones. For example, the equation

1 KRC originally indexed lists starting at 1 rather than 0 but I have changed the
examples in the paper to the modern convention of indexing from 0, which is the
behaviour of Unix KRC. The only example affected is the eight queens problem.

x = 2 : x

defines x to be the infinite list all of whose elements are 2, and we also permit
the form, e.g.

[1..]

meaning the list of all the natural numbers starting at 1.
Notice by the way that in the applicative style appropriate to a language like

KRC, the use of explicit lists of values replaces the use of loops in an imperative
language. For example, suppose we wanted to calculate the sum of the numbers
from 1 to 1000. We would write

sum [1..1000]?

in which we first set up the list of values in which we are interested and then
apply the library function for summing a list. Lazy evaluation enables us to set
up intermediate data structures in this way without incurring a space penalty.

The fourth and final type of object in KRC’s universe of discourse is the
function. Functions are defined by including in the script one or more equations
with the name of the function followed by some formal parameters on the left
and an expression describing the corresponding value in the right. For example
the factorial function could be defined by the following equation (product is a
library function)

factorial n = product [1..n]

Sometimes there are several possible right hand sides — we can show them
differentiated by “guards” (a guard is Boolean expression written on the far right
of the equation, after a comma). Consider for example the following definition
of a function for calculating greatest common divisor by Euclid’s algorithm

gcd a b = a, a==b

= gcd (a-b) b, a>b

= gcd a (b-a), b>a

An alternative to the use of guards on the right is the use of pattern matching on
the left, in which one or more of the formal parameters are replaced by constants
— an example of this is shown by the definition of Ackermann’s function given
in figure 3 above.

A more sophisticated type of pattern matching involves the use of list struc-
tures in formal parameter positions, for example in the following definition of a
function which takes a pair of 2–lists representing complex numbers and returns
their complex product

mult [a,b] [c,d] = [a*c - b*d, a*d + b*c]

The operator “:” is also allowed in pattern matching, as in this definition of
the library function sum

sum [] = 0

sum (a:x) = a + sum x

Here [] represents the empty list and in the second equation, the formal pa-
rameter matches any non–empty list, whose first member corresponds to a and
whose rest or “tail” to x.

Notice by the way that because of the absence of side effects, KRC functions
are purely static in nature — applied to the same argument, a given function
always gives the same answer. Note also that functions are “first class citizens”
— they can be made elements of lists, passed as parameters and returned as
results.

Partial Application and Higher Order Functions

A particularly powerful kind of abstraction is a higher order function — that is,
a function that returns another function as a result. In KRC, these are made
available through the following very simple mechanism. If a function is to defined
to have, say, n arguments, it can always be applied to less than n arguments,
say m, and the result is a function of (n − m) arguments in which the first m
arguments have been “frozen in”.

So for example, if we define

twice f x = f (f x)

sq x = x * x

f = twice sq

what is the effect of the function f? Answer — it takes the fourth power; twice
is here being used as a higher order function.

Higher order functions can be used to bring about an extremely compressed
programming style. Consider, for example, the definition of sum given earlier.
This represents an extremely common pattern of recursion for “folding” a list
using a given binary operator, in this case “+”, and a given start value, in this
case “0”. We can capture the general pattern in the following definition of a 3
argument function, fold2

fold op s [] = s

fold op s (a:x) = op a (fold op s x)

We can now define sum in a single line by partially applying fold

sum = fold ’+’ 0

The advantage of doing things this way is that a great number of analogous
functions become available without any further effort. For example

product = fold ’*’ 1

Note the use of single quotes, e.g. ’+’, to denote an infix operator as a function.

2 This function would now be called foldr; foldl and foldr with their now familiar
definitions first appeared in the 1983 release of SASL.

The Use of ZF Expressions3

It is extremely useful to be able to quantify over a collection of objects without
having to explicitly recurse down them. To this end, KRC includes a facility
based on Zermelo–Frankel set abstraction. The basic idea of this kind of set
abstraction is that one is allowed to write

{fx | x ∈ S}

meaning “the set of all f x such that x is a member of S”. Notice that x is
a local variable of the above construction. We make this into a KRC language
feature by working with lists, rather than sets, and using “;” for such that and
“<-” for the membership sign. The variable binding construct “var<-list” is
called a “generator”. So for example

{x * x; x<-[1..100]}

is a list of the squares of the first hundred numbers4. We further extend the power
of the notation by allowing more than one generator, separated by semicolons,
and also one or more “filters”—these are logical expressions restricting the values
which can appear in the list.

So we can define the Cartesian product of two lists (a list of all pairs formed
with a member from each) as follows

cp x y = {[a,b]; a<-x; b<-y}

and a list of all Pythagorean triangles with sides less than 30 can be written

{[a,b,c]; a,b,c<-[1..30]; a*a+b*b==c*c}

notice that in an obvious piece of shorthand, we allow more than one variable
to be bound by the same generator.

ZF expressions are particularly powerful when combined with recursion, as
in the following definition of a function for generating all the permutations of a
given list

perms [] = [[]]

perms x = {a:p; a<-x; p<-perms (x -- [a])}

3 These are now called “list comprehensions”, a term coined by Phil Wadler in
1985. The ZF expressions of KRC differ from modern list comprehensions in one
significant respect — outputs of multiple generators are interleaved to ensure that
all combinations are reached, even with two or more infinite generators.

4 The original motive for choosing “;” rather “|” as the such that sign was to avoid
confusion with KRC’s use of “|” to mean logical “or”. However, if such that is im-
mediately followed by a generator it can safely be written “|”, which in the context
cannot meaningfully be interpreted as “or”. All the ZF expressions in this paper can
be written with either “|” or “;” as the initial separator. The only situation where
such that cannot be written “|” is when followed by a filter rather than a generator.
For example in {a;b | c} which evaluates to [a] or [] depending on the value of the
logical expression following the semicolon.

Generators come into scope from left to right, so later generators can involve
earlier ones, but not vice versa.

This more or less completes our survey of KRC (it is not a very large lan-
guage) and we now turn to some programming examples.

Some Programming Examples

Primes by the Method of Eratosthenses

Our first example is generating prime numbers by the sieve of Eratosthenes
(“%” is the remainder operator)

primes = sieve [2..]

sieve (p:x) = p : sieve {n; n<-x; n%p>0}

Given the above as the script the command

primes?

will cause the KRC system to print prime numbers indefinitely (or rather until
it runs out of space) producing the output

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 ... etc

It is instructive to compare this definition of the sieve of Eratosthenes using infi-
nite lists, with a more operational one involving explicit notions of co–operating
process—see (Kuo, Linck & Saadat 1978) for a solution in Hoare’s CSP notation.

The Digits of e

Another example which demonstrates nicely the convenience of being able to
work with infinite lists is the following program for printing the digits of e, for
the idea of which I am grateful to E. W. Dijkstra. We know that e can be defined,
writing i! for factorial(i)

e =

∞�

i=0

1/i!

Now we can choose to represent fractional numbers using a peculiar base
system, in which the weight of the i’th digit is 1/i! — so note that the “carry
factor” from the i’th digit back to the (i-1)’th is i. Written to this funny base e
is just

2.1111111 . . .

the problem now being to convert from the funny base to decimal. The general
algorithm for converting from any base to decimal can be stated in words as
follows.

First print the integer part of the number, then take the remaining digits,
multiply them all by 10 and renormalize using the appropriate carry factors

— the new integer part will be the next decimal digit and this process can
be repeated indefinitely. We can capture this in a purely functional way by
representing the number before and after conversion as two infinite lists, and
defining a function convert recursively, thus

e = convert (2 : ones)

ones = 1 : ones

convert (d:x) = d : convert (normalise 2 (0 : mult x))

mult x = {10 * a; a<-x}

normalise c (d:x) = carry c (d : normalise (c+1) x)

carry c (d:e:x) = d+e/c : e%c : x

The above will not quite do, however — if we try to print e, we get the first digit
2, followed by a long silence. The problem is that the recursion for normalise
is not well founded — it tries to look infinitely far to the right before producing
the first digit. We need some result which limits the distance from which a carry
can propagate, or else we are stuck.

The necessary cut–off rule is provided by the observation that in the above
conversion, the maximum possible carry from a digit to its immediately leftward
neighbour is 9 (we leave the proof of this as an exercise for the reader). This
leads us to rewrite the definition of normalise in the following more cautious
form

normalise c (d:e:x) = d : normalise (c+1) (e : x), e+9 < c

= carry c (d : normalise (c+1)(e : x))

This simple modification is all that is required. If we now issue the command

e!

the system responds by printing the digits of e indefinitely (subject to space
limitations)

2.7182818284590 ...

Note on KRC Printing Conventions The use of “!” rather than “?” causes
lists to be printed unformatted, that is without surrounding square brackets
or commas between the items—likewise recursively for sublists. This is useful in
case the user wants to organise his own formatting by including layout characters
at various points in the data structure being printed.

The reader should study the function show defined in the KRC Prelude5—the
instruction “x?” is actually equivalent to “show x : ["\n"]!”.

5 The Prelude and other information about KRC including downloads can be found
at http://krc-lang.org .

The Eight Queens Problem

For our final example of functional programming, we shall take the well known
eight queens problem, which is representative of a large class of problems which,
at least when programmed imperatively, seem to require the use of backtracking.

We have to find a way of placing eight queens on a chess board so that no
queen is in check from any other. Queens can give check vertically, horizontally
or diagonally (in two ways). A moment’s reflection tells us that in any solution,
there must be exactly one queen in each column. So an obvious way to proceed
is to start with an empty board and proceed from left to right , say, placing
one queen in each column, always putting the new queen in a position where it
cannot be checked by those already there — and if there is no such position, we
have boxed ourselves into a blind alley. A reasonable representation of a board
is as a list of integers, giving the row numbers of the queens so far placed on it.
So for example

[2,5,3]

represents a board with queens in the first three columns at the positions shown.
So the empty board is represented just by the empty list, [].

We proceed by defining a function queens n that returns a list of all the
solutions to the “n queens” problem — that is the problem of placing n queens
on an n by 8 board

queens 0 = [[]]

queens n = {q : b; q<-[1..8]; b<-queens (n-1); safe q b}

safe q b = and {\checks q b i; i<-[0..#b-1]}

checks q b i = q == b i | abs (q - b i) == i + 1

This is everything that is needed, to print the solutions, we can say

layn (queens 8)!

which will cause them to be printed one per line, with numbered lines (abs, and,
layn are defined in the KRC prelude).

Notice by the way that if we decide to print only the first solution, e.g. by
saying

hd (queens 8)?

then because of lazy evaluation, the other solutions do not even get generated. So
we would still program in the above way, even if we only wanted one solution. The
key abstraction that enables us to get rid of the whole problem of backtracking
(here and in all similar cases) is to think in terms of a function that returns all
the solutions at a given level, instead of only one of them.

Acknowledgements This paper was written in October 1981 and published
in Darlington, Henderson and Turner (1982). I am grateful to Cambridge Uni-
versity Press for permission to reproduce it6. A version also appears in A List
of Successes that Can Change the World eds. Lindley, McBride, Sanella and
Trinder, Springer LNCS 9600 (2016), a Festschrift in honour of Phil Wadler on
his 60th birthday.

The paper as originally published included as an Appendix the KRC Prelude.
Both the current Prelude and a historical one dating from 1981 can be found
at http://krc-lang.org, from where a working implementation of Kent Recursive
Calculator can be downloaded—I am grateful to Martin Guy for translating my
code from an obsolete dialect of BCPL to C and getting it working under Unix.

References

Ackermann, W.B., Dennis, J.B.: VAL – preliminary reference manual. MIT Laboratory
for Computer Science (June 1979)

Arvind, Gostelow, K.P., Plouffe, W.: An Asynchronous Programming Language and
Computing Machine. University of California at Irvine (December 1978)

Backus, J.: Can Programming be liberated from the Von Neumann style: A functional
style and its algebra of programs. CACM 21(8):613–641 (August 1978)

Clarke, J.W., Gladstone, P.J.S., Maclean, C.D., Norman A.C.: SKIM – S, K, I reduction
machine. Proceedings LISP conference, Stanford (1980)

Darlington, J., Henderson, P., Turner, D.A. (eds): Functional Programming and its
Applications Cambridge University Press (1982)

Dennis, J.B.: The varieties of Data Flow Computers. MIT Computation Structures
Group, Memo 183 (August 1979)

Floyd, R.W.: Assigning meanings to programs. Proc Amer Math Soc Symposia in
applied mathematics, 19:19–31 (1967)

Henderson, P., Morris, J.M.: A lazy evaluator. Proceedings 3rd POPL symposium,
Atlanta, Georgia (1976)

Hoare, C.A.R.: An axiomatic basis for Computer Programming. CACM 12(10):567–583
(October 1969)

Holloway, J., Steele, G., Sussman, G.J., Bell, A.: The Scheme 79 Chip. Proceedings
LISP conference, Stanford (1980)

Kuo, S.S., Linck, M.H., Saadat, S.: A guide to CSP. Oxford University Programming
Research Group, Technical Monograph PRG–14 (August 1978)

McCarthy, J., et al.: LISP 1.5 Programmers Manual. MIT Press (1962)
Quine, W.V.O: Word and Object. MIT Press, Cambridge, Mass. (1960)
Russell, B., Whitehead, A.N.: Principia Mathematica. Cambridge University Press

(1925)
Treleaven, P.C.: Exploiting Program Concurrency in Computing Systems. IEEE “Com-

puter”, 42–50 (January 1979)
Turner, D.A.: SASL Language Manual. St Andrews University Department of Compu-

tational Science Technical Report (1976)
Turner, D.A.: Aspects of the Implementation of Programming Languages. Oxford Uni-

versity D. Phil. Thesis (1981)
Turner, D.A.: Recursion Equations as a Programming Language. pp 1–28 of Darlington,

Henderson and Turner (1982)

6 This version last revised 2016.3.13

