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In what does the alleged superiority of 
applicative languages consist? In the 
last analysis the answer must be in terms 
of the reduction in the time required to 
produce a correct program to solve a given 
problem. On reflection I decided that 
the best way to demonstrate this would be 
to take some reasonably non-trivial 
problem and show how, by proceeding within 
a certain kind of applicative language 
framework it was possible to develop a 
working solution with a fraction of the 
effort that would have been necessary in 
a conventional imperative language. The 
particular problem I have chosen also 
brings out a number of general points of 
interest which I shall discuss briefly 
afterwards. 

Before proceeding it will be necessary 
for me to quickly outline the language 
framework within which we shall be work- 
ing. Very briefly it can be summarised 
as (non-strict, higher order) recursion 
equations + set abstraction. Obviously 
what matters are the underlying semantic 
concepts, not the particular syntax that 
is used to express them, but for the 
sake of definiteness I shall use the 
notation of KRC (= "Kent RecUrsive 
Calculator"), an applicative programming 
system implemented at the University of 
Kent [Turner 81]. KRC is fairly 
closely based on the earlier language 
SASL, [Turner 763, but I have added a 
facility for set abstraction. 
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An overview of KRC 

A KRC program is a collection of equations 
by means of which the user attaches names 
to various objects in KRC's universe of 
discourse. The universe of discourse con- 

tains four types of object. There are two 
basic data types, numbers and strings; 
and two types of structured object - lists 
and functions. Numbers and strings have 
the sort of properties one would expect. 
Lists are denoted by using square brackets 
and commas - thus [i, 2, 3, 4] and the 
empty list is written []. 

Lists may be accessed by indexing, so if L 
is the name of a list L 3 denotes its 
third component. An important operator on 
lists is ":" which joins a new member at 
the front. So 

0: [1, 2, 33 

has the value [0, i, 2, 33. The elements 
of a list may be of any type and need not 
all be of the same type. Lists may be 
finite or infinite, for example the 
equation 

x = l:x 

defines x to be a name for the infinite 
list [I, i, 1 ...]. 

The universe of discourse contains all 
possible infinite lists (actually not all 
of them can be denoted by writing down 
equations, but for reasons of continuity 
in the semantics we have to say they are 
all there). A useful piece of shorthand 
is the ".." notation, thus 

[a..b] 

denotes the list of numbers (inclusive) 
from a to b. This also has an open-ended 
form, so for example 

[I..] 

denotes the list of all natural numbers. 
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Functions are denoted by writing down one 
or more equations, with the name of the 
function followed by some formal para- 
meters on the left and an expression 
giving a value for the function on the 
right. So for example functions for 
squaring a number and for calculating 
factorials would be written respectively 
("product" is a library function). 

sq n = n * n 

fac n = product [i..n] 

A function can be defined by more than 
one equation, with the different cases 
being distinguished by the use of pattern 
matching in the formal parameters and/or 
the use of guards (boolean expressions, 
written on the right of an equation 
following a comma). Ackermann's function 
for example, could be defined by the 
following three equations 

A 0 n = n + 1 

A m 0 = A (m-l) i, m>0 

A m n = A (m-l) (A m (n-l)), m>0&n>0 

Notice that the order in which the above 
equations are written has no logical sig- 
nificance (we insert guards where neces- 
sary to ensure this). As another 
example of the use of pattern matching, 
the library function "product" can be 
defined 

product [1 = 1 

product (a:x) = a * product x 

Note that the use of patterns involving 
":" on the left of an equation avoids 
the need for explicit use of the selectors 
"hd" and "tl" on lists. 

Functions can be non-strict if the equa- 
tions imply that they should be. For 
example if we define f by 

f x = 3 

then of course f must always return the 
result 3, even if its argument is re- 
presented by a non-terminating compu- 
tation. [We do not discuss imple- 
mentations at all here, but as the 
reader will have already deduced from 
the presence of infinite lists, it 
must involve some form of lazy 
evaluation.] 

Set Abstraction 

We use a language construct closely based 
on Zermelo-Frankel set abstraction 
(except that the result is here a list 
rather than a set). An (informal) 
syntax for these expressions may be given 
as follows 

zfexpression ::= {explqualifier; -.. 
...; qualifier} 

qualifier ::= generatorlguard 

generator ::= var + list-expression 

guard ::= boolean-expression 

The variable on the left of a generator is 
a local variable of the zf expression and 
ranges over the members of the list on the 
right of the "÷" sign. 

One example is the following definition of 
the (2nd order) library function "map" 
which applies a function to every element 
of a list 

map f x = {f a I a ÷ x} 

The library "filter", which filters a list 
through a given predicate, could be 
defined 

filter f x = {a I a ÷ x; f a} 

The use of the construct is particularly 
convenient when there is more than one 
generator involved, for example a function 
for generating the cartesian product of 
two lists (i.e. a list of all pairs formed 
by drawing one from each) can be written 

cp x y = {[a,b]la÷x;b÷y} 

The addition of set abstraction represents 
a very considerable increase in the ex- 
pressive power of an applicative language. 
Consider for example the problem of 
defining a function which will return a 
list of all possible partitions of a 
number into positive integers. For the 
sake of definiteness, let us say with 
permutations, so [2.11 and [1,21 are two 
different partitions of 3. Such a func- 
tion can be expressed rather succinctly as 
follows 

partitions 0 = [[]] 

partitions n = {i:p I i÷ [l..n]; 

p+ partitions(n-i)} 

Notice by the way that the variables in- 
troduced by generators come into scope 
from left to right, so later generators 
can involve earlier ones (but not vice 
versa). 

Following this extremely brief overview 
of the notation of KRC, we now turn our 
attention to a somewhat larger problem, as 
promised. 
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The statement of the problem 

The problem which I have chosen to use as 
an illustration here arises from the field 
of organic chemistry. I dare say that 
from the point of view of a chemist who 
has made a study of these matters it will 
seem a rather easy problem and perhaps 
somebody, somewhere has a FORTRAN program 
sitting on their desk which already solves 
it. Nevertheless from the point of view 
of a programmer who had not tried it 
before, the problem seemed difficult 
enough to be interesting. At least 
several competent programmers I know re- 
ported to me that they had found it so. 
It therefore seemed a good testing ground 
for the language framework outlined in the 
opening section of this paper. In what 
follows I have concentrated on reproducing 
fairly honestly the thought processes 
which first led me to a runnable solution, 
rather than on presenting the most elegant 
or efficient solution possible. 

The problem is to enumerate, without repe- 
titions and in order of increasing size, 
all possible paraffin molecules. For 
those who have forgotten their high school 
chemistry, paraffins are built up using 
only carbon, which has a valency of 4 and 
hydrogen, which has a valency of i. The 
first few paraffin molecules, together 
with their names are shown in figure I. 

In a paraffin one is allowed neither 
double bonds nor cycles, so all paraffins 
with n carbon atoms share the empirical 
formula 

C n H2n+2 
but for all n~ there are several dis- 
tinct molecules ("isomers") with the same 
formula. The number of isomers rises 
rather rapidly with n. In counting 
isomers it should be borne in mind that 
the four bond positions on a given carbon 
atom are in fact indistinguishable (i.e. 
the four bond positions can be freely 
interchanged ). So what seem at first 
to be different molecules may in fact 
turn out to be different orientations of 
the same molecule. Notice in particular 
that the phenomenon of "stereo- 
isomerism" (a molecule being differeDt 
from its mirror image) is not possible 
with paraffins. 

The problem as posed is not merely to 
count the number of isomers for each n, 
but actually to produce a representation 
(just one) of each molecule. 

Choosing a Representation for the Data 
Type "Paraffin Molecule" 

Let us begin by choosing a representation 
for the molecules. Normally in top-down 
prograr~ning one is advised to delay 
decisions about representation as long as 

possible, but in this case it is clear 
that a central problem is going to be de- 
fining an equivalence relation on mole- 
cules, and I found it difficult to bring 
this into focus without fixing on an (at 
least provisional) representation for 
molecules. 

Ideally we would like to define a canonical 
orientation for each molecule so that each 
distinct isomer is represented by one and 
only one data structure. There does not 
seem to be any straightforward way of de- 
fining such a canonical orientation, how- 
ever, (at least I could not see one) so we 
shall go for the alternative plan of giv- 
ing a non-unique representation together 
with a set of laws for determining which 
representations are equivalent (in the 
sense that they are different orientations 
of the same molecule). 

One obvious way to represent a paraffin 
molecule in terms of list structures is 
as follows. We pick on one carbon atom 
arbitrarily and deem it to be the "leading" 
one. We then represent the molecule as 
a 4-1ist, the components of the list being 
the sub-molecules ("radicals" in chemical 
terminology) attached to the 4 bonds of 
the leading carbon atom. Each radical 
is represented either by the string "H", 
if it is just a hydrogen ato~p, or else by 
a 3-1ist corresponding to a carbon atom 
with 3 further radicals attached to it. 

In terms of these conventions, then, 
methane would be represented thus - 

["H", "H", "H", "H"l 

and one of several possible representa- 
tions for propane is 

[ [ "H", "H", "H" l, [ "H", "H", "H" ], "H" p "H" 3 

We could obviously save a great deal of 
space by not representing hydrogen atoms 
explicitly, but following a principle of 
separation of concerns let us leave that 
as an optimisation to be carried out later. 

Definin 9 an Equivalence Relation on 
Molecules 

The above representation for a molecule 
has two elements of arbitrariness - first 
that any carbon atom could have been 
picked on as the leading one - second that 
for each carbon atom the order in which 
its dependent radicals are listed is 
arbitrary and could be freely permuted. 

We capture this below in terms of three 
transformations which we can carry out on 
the representation of a molecule - 
"invert", "rotate" and "swap". Each 
transformation is expressed here by a func- 
tion which can be applied to a representa- 
tion of a molecule to return a (perhaps 
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Figure 1 "Some Paraffin Molecules" 
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modified) representation of the same mole- 
cule. 

invert [[a, b, c~ d, e, f3 
= [a, b, c [d, e, f]] 

invert x = x, x i = "H" 

rotate [a, b, c, d3 = [b, c, d, a3 

swap [a, b, c, d3 = [b, a, c, d3 

It is clear, moreover, that all the repre- 
sentations of a given molecule can be ob- 
tained from any one representation by re- 
peated applications of the above trans- 
formations. We can freely permute the 
bonds of the leading carbon atom by com- 
bined applications of "rotate" and "swap" 
and by combining these with applications 
of "invert" any carbon atom can eventually 
be brought into the leading position. We 
can now define a predicate "equiv" on 
representations of paraffin molecules 
such that "equiv a b" determines whether 
a and b represent the same molecule. Thus: 

equiv a b = member (equivclass a)b 

equivclass a = closure under laws 

[rotate,invert,swap3[a] 

closure under laws f s = 
s ++ closure' f s s 

closure' f s t = closure" f s 
(mkset{alf'÷f;a÷ma p f' t; 

~ member s a}) 

closure" f s t = [3, t = [3 
= t ++ closure' f (s++t) t, t ~ [1 

In the above "member", "map" and "mkset" 
are library functions - "mkset" removes 
repetitions from a list, and "++" is the 
append operator on lists. 

The key idea is embodied in the function 
"closure under laws" which takes a set 
of functYons a~d a set of objects and 
finds the closure of the latter under 
repeated applications of the members 
of the former. Clearly this is a 
function which could find application.s 
in a wide range of problems beyond the 
present one. The above somewhat in- 
direct definition, via the auxiliary 
function closure' and closure", was 
chosen for reasons of efficiency. 

Generating All Molecules of a Given 
Size. 

Because of the absence of cycles every 
paraffin molecule must contain at 
least one occurrence of the methane 
radical CH 3 and we can without loss of 
generality choose this to the "leading" 
carbon atom. A function for generating 
a list containing (once each) all the 
paraffin molecules with n carbons can 
therefore be written 

paraffin n = quotient equiv 
{Ix, "H", "H", "H"l 1 x ÷ para (n-l)} 

quotient f (a:x) = a:{blb÷quotient f x; 
~ f a b} 

quotient f [] = [] 

Where '~para", to be defined below is a 
function which returns a list (perhaps 
with repetitions) of all paraffin radi- 
cals of a given size. The function 
"quotient" defined above takes the 
quotient of a set with respect to a 
given equivalence relation (i.e. returns 
a set containing only one representative 
of each equivalence class present in the 
original set) and is used above to ensure 
that each molecule is represented only 
once in the final output. There follows 
a definition of "para" 

para 0 = ["H"] 

para n = {[a, b, c] I i,j,k÷[0..n-13; 
i~j~k; i+j+k=n-l; 

a ÷ para i; b + para j; c ÷ para k} 

At this point we have everything we need 
to produce a runnable solution to our 
problem. We have only to define an out- 
put structure in terms of "paraffin", 
thus 

output = layn (append(map paraffin 
El..J)) 

and printing "output" will give us the 
required list of paraffin molecules in 
order of increasing size. The list is 
infinite and so the process of printing 
it will go on forever, or at least 
until the user interrupts it at the ter- 
minal. (Note - "append" is a library 
function which takes a list of lists and 
joins then all together with "++"; "layn" 
is a standard layout function which 
causes the elements of a list to be 
printed one per line with numbered lines.) 

~his solution, however, runs with appall- 
ing slowness (I tried it) mainly because 
of easily removable inefficiencies in our 
definition of "para". There is a minor 
problem and a major problem. 

The minor problem is that the way we 
choose i, j and k in the definition of 
para n is needlessly wasteful. We could 
in fact first choose i in the set 
[0.. (n-l)/3] then choose j in the set 
[i. (n-l-i)/23, whereupon k is fixed to be 
n-l-i-j. This leads us to rewrite the 
second line in the definition of "para" 
as 

para n = {[a, b, c3 I i ÷ [0.. (n-i)/33; 
j ÷ [i.. (n-l-i)/2]; a ÷ para i ; 
b ÷ para j ; c ÷ para (n-l-i-j) } 

The major problem is that in evaluating 
"para n" we repeatedly re-evaluate para i 
for each i < n a large number of times. 
We need to make para into a "memo- 
function" [Michie 681 i.e. a function 
whose value is calculated only once for 
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each argument, namely on its first call 
and thereupon stored in a table, so that 
if it is required again it can be found 
by table lookup, rather than by recalcu- 
lation. For a recursive function, like 
"para", memo-isation leads to an exponen- 
tial improvement in performance. (or to 
put it another way, failure to memo-ise 
leads an exponential deterioration in 
performancel) 

At first sight it seems that a memo- 
function involves in an essential way the 
use of side-effects for its expression. 
This is, however, not the case. There is 
in SASL a standard transformation for 
turning a function into a memo function 
in a purely applicative way - see 
[Turner 81a, Chapter 43. Applying the 
idea to "para" leads us to rewrite its 
definition as follows: 

para 0 = ["H"3 

para n = paralist n 

paralist = map genpara If..] 

genpara n = {[a, b, c] I i + [0.. (n-i)/33; 
j ÷ [i.. (n-l-i)/2]; a ÷ para i ; 

b + para j ; c ÷ para (n-l-i-j)} 

In the above "genpara" performs the calcu- 
lation, but the recursion is replaced by 
table lookup. The looku p table is repre- 
sented by the (infinite)list "paralist" 
(in SASL and KRC lists can be indexed by 
applying them to an integer). The ele- 
ments of "paralist" are initialised by 
calling "genpara" but thanks to lazy 
evaluation they only come into existence 
as they are accessed. 

We now have a runnable program for our 
paraffin problem. The complete text 
of the program is shown in figure 2, 
accompanied by an initial segment of 
its output. The command "outputS" is 
an instruction to the KRC system to print 
the list, output. 

Lessons drawn 

The above program was the fruit of about 
an hour's labour at a terminal and seems 
a reasonably convincing demonstration of 
the utility of recursion equations plus 
set abstraction as a language framework. 
The program is far from fully polished 
and has very much the status of a first 
cut. By the application of two obvious 
optimisations - (a) the removal of the 
redundant "H"s from the internal repre- 
sentation of molecules and (b) the use 
of an idea called "filter promotion" (see 
later), I was subsequently led to a pro- 
gram which ran perhaps ten times faster 
than the above. Rather than pursuing 
these further refinements in detail here, 
however, this seems an appropriate moment 
to break off from the consideration of this 
particular problem and draw some general 
lessons. 

The first general lesson I would draw is 
that by the use of an appropriately de- 
signed applicative language the effort 
necessary to arrive at (and the space 
necessary to express) an executable solu- 
tion to a problem can be reduced to a 
small fraction of that required in a tra- 
ditional programming language. Even in 
the present situation, where we lack the 
hardware necessary for the direct support 
of applicative languages, an implementa- 
tion of an applicative language can be an 
extremely valuable tool for the develop- 
ment and testing of algorithms. For 
example I had a number of misconceptions 
about the paraffins problem (which I 
elided from the above account) of which I 
was fairly quickly disabused by interact- 
ing with the KRC system. If I~now had to 
solve the problem in, say, PASCAL, I would 
do so with much greater confidence. 

The second general abservation is that the 
language framework we are using here 
supports very nicely the following separa- 
tion of concerns (which has of course been 
advocated many times before). In a first 
step we concentrate on writing down a 
logically correct definition of the de- 
sired function, completely ignoring con- 
siderations of efficiency. Recursion 
plus set abstraction is a very powerful 
combination for this purpose, enabling us 
to think very "big thoughts" in one go. 
Typically, however, the definitions we 
arrive at in this way have an exponential 
or combinatorial run-time, whereas there 
may exist an algorithm which is linear 
(or at least polynomial). In a second 
step we repair the efficiency of the 
definition, by applying transformations 
know to preserve correctness. In a sur- 
prising large number of cases it turns 
out that a small number of standard opti- 
misations are sufficient to bring about 
the necessary improvement in performance. 
Two in particular seem to be of such 
general applicability as to deserve spe- 
cial mention in a next (and final) section 
of this paper. 

The third and final observation I wish to 
make relates more specifically to the 
paraffin problem. I believe that the 
reason why this seems on first inspection 
to be rather a hard problem is because it 
involves an unfree data type and I suspect 
this is characteristic of a lot of the 
more recalcitrant problems one meets. A 
general way of characterising an unfree 
data type, which we used in this example, 
is as the quotient of a free data type 
under an equivalence relation and a good 
way of defining an equivalence relation 
is to give a set of laws of which it is 
the closure. Our function "closure 
under laws" gives us a convenient h~ndle 
onto ~his and I hope it will turn out to 
be useful for other applications in the 
future. 
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output = layn (append (map paraffin [I..])) 

paraffin n = quotient equiv {[x,"H","H","H"]Ix<-para (n- I)} 

para 0 : ["H"] 

para n = paralist n 

paralist = map genpara [I..] 

genpara n = {[a,b,c][i<-[0..(n-])/3];j<-[i..(n-]-i)/2]; 

a<-para i;b<-para j;c<-para (n- ] - i - j)} 

equiv a b = member (equivclass a) b 

equivclass x = closure under laws [invert,rotate,swap] Ix] 

invert [[a,b,c],d,e,f] = [a,b,c,[d,e,f]] 

invert x = x, × ] = "H" 

rotate [a,b,c,d] = [b,c,d,a] 

swap [a,b,c,d] : [b,a,c,d] 

closure' f s t = closure" f s (mkset {a',f'<-f;a<-map f' t;\member s a}) 

closure" f s t = [], t = [] 

= t ++ closure' f (s ++ t) t 

closure under laws f s : s ++ closure' f s s 

quotient f (a:x) = a:{b[b<-quotient f x;\f a b} 

quotient f [] = [] 

output! 

I) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

I0) 

11) 

12) 

13) 

• . • • 

FIGURE 2 

[ "H" ," H" ," H" ," H" ] 

[ [ "H" ,"H" ,"H" ] ," H" ," H" ," H" ] 

[ [ "H" ," H" ,[ "H" ," H" ,"H" ] ] ,"H" ," H" ," H" ] 

[ [ "H"," H", [ "H"," H", [ "H" ," H" ," H" ] ] ], "H" ," H"," H" ] 

[ [ "H" ,[ "H" ," H" ,"H"], [ "H" ," H" ," H" ] ] ,"H" ,"H" ,"H" ] 

[ [ "H" ," H" ,[ "H" ,"H" ,[ "H" ," H" ,[ "H" ,"H" ,"  H" ] ] ] ] ,"H" ,"H" , "H"]  

[ [ "H" ," H", [ "H", [ "H" ," H" ,"' H" ], [ "H" ," H" ," H" ] ] ] ," H" ," H"," H" ] 

[ [ [ "H" ," H" ,"  H" ] ,  [ "H" ," H" ," H" ] ,  [ "H" ," H" ," H" ] ] ,  "H" ," H" ," H" ] 

[ [ "H" ," H" , [ "H" ," H", [ "H" ," H", [ "H" ," H", [ "H" ," H" ," H" ] ] ] l ] ," H" ," H"," H" ] 

[ [ "H" ," H", [ "H" ," H", [ "H", [ "H" ," H" ," H" ], [ "H"," H" ," H" ] ] ] ]," H" ," H" ," H" ] 

[ [ "H" ," H", [ "H" ,[ "H" ," H" ,"H" ], [ "H" ," H", [ "H" ," H" ," H" ] ] ] ], "H" ," H" ,"H" ] 

[ [ "H" ," H" , [ [ "H" ," H" ,"H" ] ,  [ "H" ,"  H" ," H" ] ,  [ "H" ,"  H" ,"H" ] ] ] ,  "H" ,"H" ," H" ] 

[ [ "H" ,[ "H" ," H" ," H" ] ,  [ "H",  [ "H" ," H" ," H" ] ,  [ "H" ,"H" ," H" ] ] ] , "H"  ,"H" ,"H" ] 

IT.e Paraffins program in K R C , with some initial output. 
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Two useful optimisations 

The two optimisations which warrant spe- 
cial mention here are memo-isation 
(originally due to Donald Michie) and 
"filter promotion" (both the name and the 
idea of which are due to John Darlington) 
[Darlington 79]. 

(a) Memo-isation 

This optimisation technique has already 
been demonstrated earlier, on the func- 
tion "para". A similar example, how- 
ever, may bring out the method more 
clearly. Consider the following"obvious" 
definition of the function "fib n" which 
returns the n'th fibonacci number. 

fib i = i 
fib 2 = i 
fib n = fib (n-i) + fib (n-2), n>2 

Although this has some claim to be consi- 
dered the most natural definition it 
suffers from a run-time that increases 
exponentially with n. We could of course 
program the well-known linear algorithm 
explicitly (by tail recursion) but it is 
in fact possible to achieve a linear run- 
time without abandoning the structure of 
the above definition. 

We do this by turning "fib" into a memo- 
function. We introduce a data structure 
"fiblist" in which we store the values of 
the function and replace all calls to the 
function in the rest of the program, in- 
cluding the recursive calls inside the 
definition of "fib" itself, by table- 
lookup. Thus 

fiblist = map fib [i..3 
fib i = i 
fib 2 = i 
fib n = fiblist (n-l) 

+ fiblist(n-2), n>2 

The run-time of "fib" is now linear in- 
stead of exponential~ 

Obviously the technique can be applied 
to any function of integer arguments. 
Notice that this purely applicative 
approach to memo functions depends 
heavily on the fact that the language 
in which we are working has a non- 
strict semantics. (Incidentally, a 
more radical approach, which might be 
worth pursuing, would be to try and get 
the system to perform this class of op- 
timisations automatically. One quite 
promising approach, with which I have 
been experimenting, is to modify the 
run-time system by keeping an associa- 
tive cache of the results of all recent 
function applications.) 

(b) Filter Promotion 

Again we can best bring out the technique 
by means of a simple example. Suppose 
we are asked to modify our earlier defini- 
tion of the function "partitions" so as to 

eliminate permutations, say by deciding 
to allow only increasin~ partitions, e.g. 
among the partitions of 3 we allow 
[i,i,i] and[l,2] but not [2,1]. Our 
first thought could be to apply a filter 
to our original function 

partitions' n = filter increasing 
(partitions n) 

where we can easily give a recursive 
definition of "increasing" as a predicate 
on lists. We can get a considerable :im- 
provement in performance, however, by 
pushing the filter inside the generator 
"partitions" so that the unwanted lists 
are not created in the first place (the 
reader should compare this with the defi- 
nitions of partitions earlier in the 
paper): 

partitions' 0 = [[]] 
partitions' n = {i : p I i ÷ Fl..n]; 

p÷partitions' (n-i) ; 

p = [] v i ~ hd p} 

Like memo-isation, filter promotion can 
lead to very dramatic improvements in 
performance. 

Note 

The use of Zermelo-Frankel set abstraction 
as an implementable language feature seems 
originally to have been proposed by John 
Darlington [Darlington 75]. 
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