
Interactive functional programs∗

Simon Thompson

Computing Laboratory,

University of Kent at Canterbury, U.K.

October 3, 1989

Abstract

In this paper we present a model of interactive programs in a purely
functional style. We exploit lazy evaluation in the modelling of streams
as lazy lists. We show how programs may be constructed in an ad hoc

way, and then present a small set of interactions and combinators which
form the basis for a disciplined approach to writing such programs.

One of the difficulties of the ad hoc approach is that the way in which
input and output are interleaved by the functions can be unpredictable.
In an expanded version of the paper [1] we use traces, i.e. partial histories
of behaviour, to explain the interleaving of input and output, and give a
formal explanation of our combinators. We argue that this justifies our
claim that the combinators have the intuitively expected behaviour, and
finally contrast our approach with another.

1 Introduction

This paper explains an approach to describing interactive processes in the lazy
functional programming language Miranda1[2].

Functional programming is based on expression evaluation, where expres-
sions will, in general, contain applications of system- and user-defined functions.
Lazy evaluation is a particular strategy for expression evaluation (as there is a
choice of the way in which we perform the process) which means that

• The values of arguments to functions are only evaluated when they are
needed.

• Moreover, if an argument is a composite data object, like a list, the object
is only evaluated to the extent that is needed by the function applied to

∗An expanded version of this paper will appear in Research Topics in Functional Program-

ming, David Turner (ed.), Addison-Wesley, 1990
1Miranda is a trademark of Research Software Ltd.

1

it. One of the simplest examples of this is the head function (hd) on lists,
which necessitates the evaluation of only the first item in the argument
list.

The paper consists of two parts. In the first we develop our model of interactive
programs in the lazy Miranda system.

After an introductory discussion of lazy evaluation, we introduce the type
of interactions and present a number of examples. These are developed in an
ad hoc way, which may lead to unexpected interleaving behaviour. We then
present a small collection of primitives from which we can build interactions in
a disciplined way. We aim to avoid the unexpected by using these primitives
alone — despite that we still find there are subtle points which need to be
elucidated.

2 Lazy Evaluation

A feature of a number of modern functional programming languages such as
Miranda is that they embody lazy evaluation. By this we mean that arguments
are passed to functions unevaluated. If we look at the function const (from the
Miranda standard environment) defined thus

const a b = a

then the application
const (16 + 1) f

will return the result without the expression f being evaluated.

An argument is only evaluated if its valued is required by the func-
tion.

Suppose we say
dconst a b = a + a

and evaluate
dconst (16 + 1) b

we get the result 34. In deriving this we may have made no gain, as in evaluating

a + a

we may have replaced a single evaluation of 16+1 by two such. A näıve approach
to demand-driven evaluation might do this — under lazy evaluation we ensure
that the result of evaluating an argument is shared by all its instances.

A more subtle manifestation of lazy evaluation arises when we consider com-
posite arguments. Once we begin to evaluate a numerical argument, for instance,

2

we evaluate it completely. On the other hand, a composite argument may only
be evaluated partially. The simplest example is given by the function

hd (a : x) = a

which returns the first, or head, item a of a list (a : x). If we pass

nums 17

to hd when the function nums is defined by

nums n = n : nums (n + 1)

in order for the application to return the result 17 we only require the fact that
nums 17 evaluates partially to

17 : nums 18

By the effect illustrated above, lazy evaluation has an effect on the membership
of various of the data types of the language, such as lists. In the example above
we see that the infinite list nums 17 receives exactly the same treatment as a
finite list such as

[17, 18, . . . , 23]

In fact, in order for hd l to return 17 all that we need to know about l is that its
first member is 17 — the rest, or tail, of the list may be undefined. We usually
write ⊥ for the undefined list (indeed we write it for the undefined object of any
type). Using this notation we see that

hd (17 : ⊥) = 17

so partial lists, which have undefined final segments, are legitimate lists in our
lazy scheme of things.

Input and output are often thought of as streams. Given the discussion
above we can see that streams can be identified with lazy lists.

• The operation of testing whether a stream contains an item corresponds to
pattern matching the list with the pattern (a : x). In case this is successful,
the item will be bound to a and the remainder of the stream to x.

• On the other hand, given an item b, the stream

b : y

is a stream whose first element is b and whose remainder consists of y. We
can thus view the list construction operation “:” as an output operation,
placing an item onto a stream.

3

What is the effect of evaluating an expression such as

nums 17

or
nums′ 17 100

when
nums′ n m = [] , n > m

= n : nums′ (n + 1) m , otherwise

Output will be produced in an incremental fashion: first the first element of the
list will be evaluated and printed, then the second and so on. Portions of the
output will be printed before the evaluation is complete. In particular, if the
result being printed is a function application, the need to print will drive the
evaluation of the arguments to the function. As we hinted above, lazy evaluation
can be seen as a species of demand-driven dataflow.

3 A type of interactions

An interactive program is designed to read from a stream of input, and to write
to a stream of output. As we have already observed, we can view streams as
lists, so if we say

input == [char]

output == [char]

then the type of functions
input → output

forms a simple model of interactive processes. For instance, a process which will
double space its input can be written thus:

double−space (a : x) = a : double−space x , a ∼= newline

= a : a : double−space x , otherwise

double−space [] = []

and a process which simply copies (or echoes) its input is written

echo y = y

The equations we have just supplied describe how the output stream depends
upon the input stream. In an interactive context we are likely to be interested
not only in the input/output relation but also in the way that the two streams
are interleaved temporally, for example on a terminal screen. Recall that our
lists are lazy, and our discussion of the way in which lists are printed. We
mentioned in that account that output will begin to be produced as soon as is

4

possible, and that further output will be generated similarly, contingent upon
the presence of sufficient input. In printing the result of

echo stdin

(stdin denotes standard input), a character can be echoed as soon as it is typed
at the terminal, since an item will be placed on the output stream as soon as
it appears on the input stream. (Users of ‘real’ systems will perhaps observe
something different, as most terminals will buffer their input into lines before
transmitting it to a host. In such a situation echoing will happen as promptly
as possible, i. e. line by line.)

In most cases laziness has the effect which we would intend. Nonetheless, it
can have some unpredicted effects. We return to this in section 6.

Before we continue we should emphasise that our model is sufficiently pow-
erful to capture processes which have an internal state. A particular item on the
output stream will depend on the whole of the input stream which has thus far
been read, and so will depend on the whole history of the input to the process.
Just to give a brief example, we can write a program which either single or
double spaces its input, where $ is used to toggle between the two modes. The
function, which we call option−on, starts off in double spacing mode.

option−on (a : x) = option−off x , a =′ $′

= a : a : option−on x , a = newline

= a : option−on x , otherwise

option−off (a : x) = option−on x , a =′ $′

= a : option−off x , otherwise

4 Partial Interactions

An interactive process in isolation is specified by a function of type

input → output

which describes the form of the output in terms of the input. However in
general we wish to combine simple interactions into composite ones. If we think
of following one interaction by another, we need to be able to pass the portion
of the input stream unexamined by the first on to the second. Such partial

interactions must therefore return the unconsumed portion of the input stream
as a part of their results. These partial interactions will therefore be of type

input → (input, output)

Consider the example of an interaction which reads a line of input and outputs
its length.

line−len :: input → (input, output)

5

line−len in

= (rest, out)
where

out = show (#line)
(line, rest) = get−line [] in

get−line front (a : x)
= get−line (front ++ [a]) x , a ∼= newline

= (front, x) , otherwise

get−line is used to get the first line from the input stream. It returns a result
consisting of the line paired with the remainder of the input, rest. The first
parameter of get− line is used to accumulate the partial line, and show is a
function converting a number to a printable form.

We need to make one further refinement to the model. As we are now
contemplating building interactions from simpler components, we may want to
pass (state) information from one interaction to another. In general we think
of an interaction as being supplied with a value, of type ∗ say, on its initiation
and returning a value of a possibly different type, ∗∗ say, on termination. This
gives a general type of partial interactions

interact ∗ ∗∗ == (input, ∗) → (input, ∗∗, output)

To summarise

• Interactions are modelled by a function type, parametrised on two type
variables ∗, ∗∗.

• The domain type is (input, ∗) — items of this type are pairs consisting of

– input streams and

– initial state values.

• The range type is (input, ∗∗, output) — items from which are triples, con-
sisting of

– the portion of the input stream unexamined by the interaction,

– the final state value, and

– the output produced during the interaction.

There are natural examples of interactions for which ∗ and ∗∗ are different. For
instance, if get−number is meant to get a number from the input stream then
its natural type would be

interact () num

() is the one element type, whose single member is (), the empty tuple — its
use here signifies that no prior state information is required by the process.

6

To give an example of an interaction this type, we might consider modifying
line−len so that it will print an accumulated total number of characters after
each line, as well as the length of the line itself.

line−len−deluxe :: interact num num

line−len−deluxe (in, tot)
= (rest, newtot, out)

where

(line, rest) = get−line [] in

len = # line

newtot = tot + len

out = show len ++ show newtot

The state information passed in by the interaction is modified by the addition
of the current line length.

5 Combining Interactions

Up to this point we have considered ‘primitive’ interactions, built in an ad hoc

way. In this section we look at some functions which enable us to combine
interactions in a disciplined way, with the consequence that their interactive
behaviour will be more predictable.

First we introduce a number of basic interactions and then we present some
combining forms or combinators which build complex interactions from simpler
ones.

5.1 Basic Interactions

First, to read single characters we have

get−char :: interact ∗ char

get−char ((a : x), st) = (x, a, [])

and to write single characters,

put−char :: char → interact ∗ ∗

put−char ch (in, st) = (in, st, [ch])

We can also perform ‘internal’ actions, applying a function to the state value:

apply :: (∗ → ∗∗) → interact ∗ ∗∗

apply f (in, st) = (in, f st, [])

These are three atomic operations from which we can build all our interactions
using the combinators which follow. That these are sufficient should be clear
from the fact that they give the atomic operations on input, output and internal
state, respectively.

7

5.2 Sequential Composition

The type of the sequential composition operator sq is

interact ∗ ∗∗ → interact ∗∗ ∗∗∗ → interact ∗ ∗∗∗

sq first second should have the effect of performing first and then second, so

sq first second (in, st)
= (rest, final, out−first ++ out−second)

where

(rem−first, inter, out−first) = first (in, st)
(rest, final, out−second) = second (rem−first, inter)

first is applied to (in, st) resulting in output out−first, new state inter and
with rem−first the remainder of the input. The latter, paired with inter, is
passed to second, with result

(rest, final, out−second)

The input remaining after the composite action is rest, the final state value
is final and the overall output produced is the concatenation of the output
produced by the individual processes,

out−first ++ out−second

and so we return the triple of these values as the result of the combination. We
explore the precise interleaving behaviour of this combinator in the second part
of this paper.

5.3 Alternation and Repetition

To choose between two alternative interactions, according to a condition on the
initial state, we use the alt combinator, which is of type

cond ∗ → interact ∗ ∗∗ → interact ∗ ∗∗ → interact ∗ ∗∗

alt condit inter1 inter2 (in, st) = inter1 (in, st) , condit st

= inter2 (in, st) , otherwise

cond ∗ == ∗ → bool is the type of predicates or conditions over the type ∗.
The effect of alt is to evaluate the condition on the input state, condit st, and
according to the truth or falsity of the result choose to invoke the first or second
interaction.
The trivial interaction

skip :: interact ∗ ∗

does nothing
skip (in, st) = (in, st, [])

8

(Observe that we could have used apply to define skip since it is given by
apply id). Using sq, alt, skip and recursion we can give a high level definition
of iteration:

while :: cond ∗ → interact ∗ ∗ → interact ∗ ∗

which we define by

while condit inter

= loop

where

loop = alt condit (inter $sq loop) skip

‘Depending on the condition, we either perform inter and re-enter the loop or we
skip, i.e. do nothing to the state and terminate forthwith.’ Note, incidentally,
that we have prefixed sq by $ to make it an infix operator. Using while we can
define a repeat loop:

repeat :: cond ∗ → interact ∗ ∗ → interact ∗ ∗

repeat condit inter

= inter $sq (while not−condit inter)

where

not−condit = (∼).condit

∼ is the boolean negation function, so that not−condit is the converse of the
condit condition.

5.4 Using the combinators

In this section we give an example of a full interaction, that is an interaction of
type

input → output

which is built from partial interactions using the combinators. The program
inputs lines of text repeatedly, until a total of at least one thousand characters
has been input,at which point it halts. After each line of input the length of
the line and the total number of characters seen thus far is printed. Define the
numerical condition

sufficient n = (n >= 1000)

now if

rep−inter :: interact num num

rep−inter = repeat sufficient line−len−deluxe

9

we can define our full interaction,

full−inter :: input → output

by

full−inter in

= out

where

(rest, final, out) = rep−inter (in, 0)

It should be obvious why we have chosen the starting value for the state to be
zero, since no characters have been read on initiation of the process.

6 Two Cautionary Examples

We mentioned that interaction functions that we define may not always behave
as we expect. The two examples we present here illustrate two different ways
in which that can happen.

6.1 Pattern Matching

Pattern matching can delay output. We might write a function which prompts
for an item of input and then echoes it thus:

try (a : x) = ”Prompt : ” ++ [a]

Unfortunately, the prompt will only be printed after the item has been input.
This is because the evaluator can only begin to produce output once that match
with the pattern (a : x) has succeeded, and that means precisely that the item
has entered the input stream. We can achieve the desired effect by writing

again x = ”Prompt : ” ++ [hd x]

The prompt will appear before any input has been entered, as nothing needs to
be known about the argument (x) for that portion of the output to be printed.

6.2 Lazy Reading

Consider the process
while (const True) get

where
get :: interact ∗ ∗

10

is defined by
get (in, st) = (tl in, st, ”Prompt : ”)

What is the effect? We first envisage that it repeats the interaction get indefi-
nitely, and the effect of get is to prompt for an item input and then to read it.
In fact we see that the prompt is printed indefinitely, and at no stage does input
take place. As we explained above, output is driven by the need to print, and
the output from this interaction can be derived without any information about
the input stream, with the consequent effect that no input is read.

The second example, of lazy reading, causes a major headache. We shall see
presently precisely how writes can overtake reads, and in the conclusion to
the paper we argue that this will not happen under the disciplined approach
advocated here.

7 Miscellany and Conclusions

We have shown how interactive programs can be written in a disciplined way in
a functional system. Central to this enterprise are

• streams, implemented here as lazy lists, but available in other languages
as objects distinct from lists, and

• higher order functions. The type interact ∗ ∗∗ of interactions is a function
type, and so our interaction combinators are inescapably higher order.

We need not be limited to sequential combinators in our definitions. We can, for
example, think of resetting a state to its initial value after an interaction, which
means that, for instance, we can perform a “commutative” or “pseudo-parallel”
composition of processes. Such combinations of processes can be useful when
we write input routines for structured objects.

We can view the type interact ∗ ∗∗ in a slightly different way. We can
see the type as one of functions which read input and produce output: these
pseudo-functions are from type ∗ to ∗∗, and they return as part of their results
the input stream after their application, together with the output produced.
This gives us another perspective on the combinators defined above.

Observe also that not every member of the type interact ∗ ∗∗ is a natural
representative of an interaction. All the interactions f we have seen have the
property that if

f (in, st) = (rest, st′, out)

then rest will be a final segment of in (i.e. will result from removing an initial
portion from in).

This seems to be the place to make a polemical point. Much has recently
been made of the notion of ‘multi-paradigm programming’; this work can be seen
as an antidote to this. We have seen that the functional paradigm will allow us

11

to model another paradigm (the imperative) in a straightforward way, without
sacrificing the elegant formal properties of the functional domain. A näıve
combination of the two sacrifices the power and elegance which each possesses
individually.

The major advantage that we see in our approach is that we have a purely

functional model of I/O, and so one to which we can apply the accepted methods
of reasoning. Again, as we rearked in the conclusion to the first part of the paper
we see no need to combine the functional one with any other in order to perform
interactive I/O.

I am grateful to my colleagues at the University of Kent for various discus-
sions about interactions and processes, and for using the interaction combina-
tors supplied in the earlier paper and giving me valuable feedback about their
behaviour.

References

[1] Simon J. Thompson. Interactive functional programs. Technical Report 48,
Computing Laboratory, University of Kent at Canterbury, 1987. An ex-
tended version of this paper, containing further discussion of the examples,
and full proofs of the theorems. A slightly amended version of the paper will
appear in Research Topics in Functional Programming, David Turner (ed.),
Addison-Wesley, 1990.

[2] David A. Turner. Miranda: a non-strict functional language with polymor-
phic types. In J. -P. Jouannaud, editor, Functional Programming Languages

and Computer Architecture, Springer-Verlag, 1985.

12

